• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.42.2024.tde-01072024-124533
Document
Author
Full name
Camila Felix de Lima Fernandes
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2024
Supervisor
Committee
Lopes, Marilene Hohmuth (President)
Borges, Júlio César
Carramaschi, Lygia da Veiga Pereira
Pierulivo, Enrique Mario Boccardo
Title in Portuguese
Estudo do papel da STIP1 e potenciais fatores associados à rede de proteostase na regulação da pluripotência.
Keywords in Portuguese
células-tronco pluripotentes
expressão gênica
pluripotência
proteostase
STIP1
Abstract in Portuguese
Stress-inducible phosphoprotein 1 (STIP1) é uma proteína evolutivamente conservada, formada por três domínios tetratricopeptídeos repetitivos e dois domínios dipeptídeos ricos em resíduos de aspartato e prolina. A estrutura da STIP1 está intimamente associada à sua multifuncionalidade nas células, sendo encontrada no citoplasma, núcleo e ambiente extracelular. Uma das principais funções da STIP1 é sua atuação como co-chaperona, permitindo a formação de um complexo proteico entre as proteínas de choque-térmico HSP70- HSP90, auxiliando no dobramento e processamento de diversas proteínas clientes dessa maquinaria. O complexo formado pela STIP1 é essencial para a manutenção da homeostase proteica, ou proteostase. A depleção total de STIP1 em camundongos leva a inviabilidade dos embriões, mas apesar do fenótipo elucidado, os mecanismos moleculares exatos que levam a degeneração precoce desses animais não são totalmente conhecidos. Células-tronco embrionárias murinas (CTEm) representam um dos mais eficientes modelos in vitro para mimetizar o desenvolvimento embrionário inicial de mamíferos. CTE classificam-se como células-tronco pluripotentes (CTPs), pois possuem a capacidade de se diferenciar em qualquer fenótipo somático adulto sob estímulos adequados, e podem se autorrenovar indefinidamente sem senescência celular. CTPs possuem mecanismos de controle de proteoma avançados, entre eles o aumento na síntese de chaperonas e co-chaperonas, como a STIP1. Muitos fatores cruciais da biologia das CTPs ainda permanecem desconhecidos, e, portanto, compreender as bases moleculares associadas a manutenção da pluripotência é de fundamental importância, tanto para a utilização dessas células em pesquisas científicas, quanto a liberação de seu potencial terapêutico. Nesse sentido, o presente projeto se propõe a lançar luz sobre aspectos associados ao controle de CTPs e seu potencial de diferenciação, proliferação e autorrenovação através dos mecanismos de proteostase. Ainda, buscamos encontrar novas vias moleculares, possivelmente moduladas pela STIP1, associadas ao controle da pluripotência e desenvolvimento inicial de mamíferos.
Title in English
Study of the role of STIP1 and associated factors to the proteostasis network and pluripotency regulation.
Keywords in English
gene expression
pluripotency
pluripotent stem cells
proteostasis
STIP1
Abstract in English
Stress-inducible phosphoprotein 1 (STIP1) is an evolutionarily conserved protein formed by three repetitive tetratricopeptide domains and two dipeptide domains rich in aspartate and proline residues. The structure of STIP1 is closely associated with its multifunctionality in cells, being found in the cytoplasm, nucleus, and extracellular environment. One of the main functions of STIP1 is its role as a co-chaperone, allowing the formation of a protein complex between the heat shock proteins HSP70 and HSP90, assisting in the folding and processing of several other proteins, named clients of this molecular machinery. The complex formed by STIP1 is essential for the maintenance of protein homeostasis, or proteostasis. Total depletion of STIP1 in mice leads to embryo degeneration, but despite the elucidated phenotype, the exact molecular mechanisms that lead to early collapse in these animals are unknown. Mouse embryonic stem cells (mESCs) represent one of the most efficient in vitro models to mimic early mammalian embryonic development. ESCs are classified as pluripotent stem cells (PSCs), as they can differentiate into any adult somatic phenotype under appropriate stimuli and can self-renew indefinitely without cellular senescence. PSCs have advanced proteome control mechanisms, including increased synthesis of chaperones and co-chaperones, such as STIP1. Many crucial factors in the biology of PSCs remain unknown. Therefore, understanding the molecular bases associated with the maintenance of pluripotency is of fundamental importance, both for the use of these cells in scientific research and the release of their therapeutic potential. Thus, the present project aims to shed light on aspects associated with the control of PSCs and their potential for differentiation, proliferation, and self-renewal through proteostasis mechanisms. Furthermore, we seek to find new molecular pathways, possibly modulated by STIP1, associated with the control of pluripotency and early development of mammals.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
There are withheld file due to requirements (data publishing, patents or rights).
Release Date
2026-07-01
Publishing Date
2024-07-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.