• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.43.1995.tde-27022014-152353
Document
Auteur
Nom complet
Wellington da Cruz
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1995
Directeur
Jury
Guitman, Dmitri Maximovitch (Président)
Farina, Carlos
Gomes, Marcelo Otavio Caminha
Rivelles, Victor de Oliveira
Zimerman, Abraham Hirsz
Titre en portugais
Representações via integrais de trajetória de propagadores de partículas relativísticas
Mots-clés en portugais
Física matemática
Física nuclear
Partículas
Resumé en portugais
Neste trabalho, introduzimos integrais de trajetória sobre velocidades para partículas relativísticas. Nesta representação, a integração funcional sobre velocidades ocorre com condições de contorno iniciais e finais arbitrárias, e as matrizes inversas obtidas ao se resolver as integrais Gaussianas não contêm qualquer derivada em relação ao tempo. Podemos definir integrais Gaussianas e quase-Gaussianas sobre velocidades e regras de cálculo para resolvê-las. Esta técnica é usada para se obter uma expressão explícita do propagador causal da partícula escalar em um campo eletromagnético constante e em sua combinação com um campo de onda plana. No caso da partícula de Dirac, o fator espinorial foi calculado para campo constante. O propagador obtido neste caminho foi comparado com o da representação de Schwinger. Consideramos também, a partícula com momento magnético anômalo e para o cálculo do propagador levou-se em conta uma aproximação.
Titre en anglais
Representations Integral Trajectory Relativistic Particle Propagators
Mots-clés en anglais
Mathematical physics
Nuclear physics
Particles
Resumé en anglais
ln this work, we have introduced paths integrals over velocities for relativistic particles. ln this representation we are integrating over velocities with arbitrary initial and final boundary conditions, and the matrices which have to be inverted in course of doing Gaussian integrals do not contain any derivatives in time. One can define Gaussian and quasi-Gaussian integrals over velocities and rules of handling them. This technique was applied for to obtain an explicit expression for the scalar propagator in a constant electromagnetic field and its combination with a plane wave field. ln the case of the Dirac particle, the spin factor was found for constant field. The propagator found in this way was compared with the representation of Schwinger. We considered also, the particle with anomalous magnetic moment and the propagator was found taking into account an approximation.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
45491Cruz.pdf (637.80 Kbytes)
Date de Publication
2014-02-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.