• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.43.1984.tde-28022014-101333
Document
Auteur
Nom complet
Helena Maria Avila de Castro
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1984
Directeur
Jury
Wreszinski, Walter Felipe (Président)
Braga, Carmen Lys Ribeiro
Escobar, Bruto Max Pimentel
Henry, Daniel Bauman
Ventura, Ivan
Titre en portugais
Resultados matemáticos sobre o método de espalhamento inverso.
Mots-clés en portugais
Método de espalhamento inverso
Resumé en portugais
Neste trabalho são apresentados alguns resultados matemáticos relevantes para a aplicação do método de espalhamento inverso à resolução de uma classe de equações de evolução não-lineares. É demonstrada a propriedade isoespectral para certas famílias de operadores lineares não auto-adjuntos. Esta propriedade tem um papel central na aplicação do método acima a equações de evolução não-lineares de interesse físico, tais como a equação de sine-Gordon e a equação de Schrödinger não-linear. É feito também, uma teoria de espalhamento inverso rigorosa para sistemas do tipo Zakharov-Shabat, o que inclui uma análise qualitativa do espectro de operadores deste tipo.
Titre en anglais
Mathematical results about the method of inverse scattering.
Mots-clés en anglais
Inverse scattering method
Resumé en anglais
This Thesis presents some mathematical results relevant in applications of the inverse scattering transform to the solution of a class of non-linear evolution equations. First, it is shown that certain families of non-selfadjoint linear operators have the isospectral property, which is fundamental for the above applications. These families include various operators related to no-linear equations of great physical interest, such as the sine-Gordon and the non-linear Schrödinger equations. In the sequel, a rigorous inverse scattering theory, including a qualitative spectral analysis, is developed for systems of Zakharov-Shabat type.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
RE45423Castro.pdf (23.81 Mbytes)
Date de Publication
2014-02-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.