CONSTRUÇÃO E APLICAÇÕES
DE UM MICROSCÓPIO
DE TUNELAMENTO
(STM)

ANDRÉ SANTAROSA FERLAUTO

COMISSÃO EXAMINADORA:
Prof. Dr. ALAIN ANDRÉ QUIVY (ORIENTADOR)
Profa. Dra. HELENA L. DE SOUZA SANTOS
Prof. Dr. MAURÍCIO U. KLEINKE

DISSERTAÇÃO APRESENTADA AO
INSTITUTO DE FÍSICA DA
UNIVERSIDADE DE SÃO PAULO PARA A
OBTEÇÃO DO TÍTULO DE MESTRE EM
CIÊNCIAS

SÃO PAULO
1996
FICHA CATALOGRÁFICA
Preparada pelo Serviço de Biblioteca e Informação
do Instituto de Física da Universidade de São Paulo

Ferlauto, André Santarosa
Construção e Aplicações de um Microscópio de Tunelamento (STM).

Dissertação (Mestrado) Universidade de São Paulo.
Instituto de Física. Departamento de Física Experimental.

Área de Concentração: Física do Estado Sólido
Orientador: Prof. Dr. Alain André Quivy

Unitermos: 1. STM; 2. Microscopia de Tunelamento;

USP/IF/SBI - 51/96
A minha mãe, Vane Santarosa,
e meus novos irmãos:
Alexandre e Marcelo
Agradecimentos

Ao Prof. Alain André Quivy pela orientação sempre próxima e descontraída, e a chance de participar em um projeto deste nível.

A todos aqueles que de alguma maneira participaram deste projeto: Edmilson, Evandro, Geraldo, Jair, Jamil, Paulinho e Tomás.

Ao Prof. José Roberto Leite pela oportunidade de trabalhar no LNMS.

Ao Prof. Pedro Kiyohara pelo trabalho em conjunto sobre os filmes finos de ouro.

Ao Prof. Mikyia por emprestar-nos seu interferômetro.

À Profa. Mônica Cotta pelas medidas de AFM.

À Enza pelas correções finais.

Ao Gélio pelos tratamentos nas imagens e pelo “KHOROS”.

A todo o pessoal do laboratório: Ademir, Alex, Américo, Marcos, Renata, Ricardo, Pimenta, Sacha, Sandro et al, pela convivência sempre divertida e frutífera, e pelos futuros churrascos e pizzas.

À grande comunidade de amigos da Física: Daniel (Woody), Fábio (Pica-pau), Max et al, já que estamos todos no mesmo barco.

Ao Glauco, Leon, Rodrigo, Rodrigo e Rogério, pela amizade duradoura.

À Danusa, pela convivência e carinho.

À meus pais e toda minha família, que sempre me apoiaram.

E finalmente, às agências financiadoras, CNPq e FAPESP, que permitiram que a contribuição de cada um de nós viabilizasse este projeto.
Resumo

O objetivo deste trabalho foi a construção de um microscópio de tunelamento (STM) e sua aplicação a alguns tipos de materiais. Todas suas partes constituintes — cabeça de medida, sistema de isolamento contra vibrações, circuito eletrônico de retroalimentação e programa computacional de controle — foram desenvolvidas e montadas em nosso laboratório. O aparelho foi testado e calibrado por medidas de interferência óptica e através de imagens da estrutura cristalina de grafite obtidas com o próprio instrumento. Foi realizado um estudo sobre filmes finos de ouro, otimizando-se o processo de deposição por sputtering, para sua utilização como cobertura de amostras isolantes a serem investigadas por microscopia eletrônica de varredura (SEM) ou de tunelamento. Um método de preparo de amostras semicondutoras foi proposto e utilizado no estudo inicial de pontos quânticos de InAs crescidos pela técnica de epitaxia por feixe molecular (MBE).
Abstract

The aim of this work was the construction of a scanning tunneling microscope (STM) and its application to some interesting physical systems. All its parts — measurement head, antivibration system, electronic feedback circuit and control software — were developed and mounted in our laboratory. The instrument was tested and calibrated by optical interferometry and using images of the atomic structure of graphite obtained with the microscope itself. A systematic study of thin sputtered Au films was carried out in order to optimize the sputtering process for its use in the coverage of insulating samples to be investigated by scanning electron microscopy (SEM) and STM. We also proposed a new method to prepare semiconducting surfaces for STM measurements in air, which was used to study InAs quantum dots grown by molecular beam epitaxy (MBE).
Conteúdo

<table>
<thead>
<tr>
<th>CAPÍTULO</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUÇÃO</td>
<td>01</td>
</tr>
<tr>
<td>REFERÊNCIAS</td>
<td>03</td>
</tr>
<tr>
<td>1 TUNELAMENTO</td>
<td></td>
</tr>
<tr>
<td>1.1 INTRODUÇÃO</td>
<td>04</td>
</tr>
<tr>
<td>1.2 MODELO SIMPLES</td>
<td>05</td>
</tr>
<tr>
<td>1.3 JUNÇÕES PLANARES METAL-ISOLANTE-METAL</td>
<td>07</td>
</tr>
<tr>
<td>1.4 TUNELAMENTO EM UM STM — TRÊS DIMENSÕES</td>
<td>11</td>
</tr>
<tr>
<td>1.5 STM EM SEMICONDUTORES</td>
<td>14</td>
</tr>
<tr>
<td>REFERÊNCIAS</td>
<td>16</td>
</tr>
<tr>
<td>2 CONSTRUÇÃO</td>
<td></td>
</tr>
<tr>
<td>2.1 INTRODUÇÃO</td>
<td>17</td>
</tr>
<tr>
<td>2.2 SISTEMA MECÂNICO</td>
<td>19</td>
</tr>
<tr>
<td>2.2.1 Cabeças de medida</td>
<td>19</td>
</tr>
<tr>
<td>2.2.2 Isolamento de vibração</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3 Ponta</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4 Deslocamento fino — elementos piezelétricos</td>
<td>29</td>
</tr>
<tr>
<td>2.3 SISTEMA ELETRÔNICO</td>
<td>35</td>
</tr>
<tr>
<td>2.4 MICROCOMPUTADOR</td>
<td>40</td>
</tr>
<tr>
<td>REFERÊNCIAS</td>
<td>43</td>
</tr>
<tr>
<td>3 CALIBRAÇÃO</td>
<td></td>
</tr>
<tr>
<td>3.1 INTRODUÇÃO</td>
<td>44</td>
</tr>
<tr>
<td>3.2 INTERFEROMETRIA ÓPTICA</td>
<td>45</td>
</tr>
<tr>
<td>3.3 GRAFITE</td>
<td>47</td>
</tr>
<tr>
<td>REFERÊNCIAS</td>
<td>53</td>
</tr>
</tbody>
</table>
Introdução

A microscopia de tunelamento* (scanning tunneling microscopy, STM) é uma técnica de análise de superfícies relativamente recente. O primeiro microscópio de tunelamento foi criado por Gerd Binnig e Heinrich Rohrer no começo dos anos 80. Eles partiram de uma ideia simples: o tunelamento de elétrons entre dois eletrodos (uma ponta metálica afilada e uma amostra condutora) e a varredura desta ponta alguns Angström acima da superfície da amostra. A corrente de tunelamento, que se estabelece com a aplicação de uma diferença de potencial conveniente entre os eletrodos, é fortemente dependente da distância entre eles e fica confinada à região determinada pelas dimensões da ponta. Dessa forma, o controle preciso da varredura permite o mapeamento da topografia da superfície, com altíssima resolução, nas três direções espaciais.

O STM ocupou rapidamente uma posição de destaque dentro da área de microscopia. Os microscópios ópticos têm sua resolução limitada pelo comprimento de onda da luz utilizada (devido a efeitos de difração); os microscópios eletrônicos têm maior resolução, por utilizarem feixes de elétrons com menor comprimento de onda, mas sua operação requer altas voltagens de aceleração e sofisticados sistemas de lentes eletromagnéticas e de vácuo. Outros tipos de microscópios com maior resolução, como o microscópio de emissão de campo, têm aplicações limitadas. O STM, por sua vez, possui uma resolução superior nas direções horizontal e vertical, aliada a um funcionamento relativamente simples que proporciona uma versatilidade quanto aos ambientes de operação. Ele pode, a princípio, funcionar em qualquer ambiente (vácuo, gás, líquido), fator que amplia suas possíveis aplicações. A única restrição à operação do STM é que a amostra a

* Por tratar-se de uma nova técnica, ainda não existe um termo consagrado em português para designá-la. Neste trabalho, serão utilizados ‘microscopia (microscópio) de tunelamento’ ou simplesmente ‘STM’. Palavras derivadas do termo ‘túnel’ serão adotadas livremente, como neologismos.
ser estudada não pode ser isolante, para que a corrente de tunelamento possa ser estabelecida.

A capacidade do STM de obter informações no espaço real o distingue das técnicas de difração utilizadas tradicionalmente na investigação de estruturas microscópicas periódicas, que fornecem informações médias de uma região macroscópica da amostra, possibilitando, por exemplo, a determinação do parâmetro de rede cristalina com bastante precisão. O STM atua de maneira complementar, fornecendo informações locais e detalhadas sobre defeitos superficiais, materiais adsorvidos, rugosidade, modo de crescimento de cristais, grau de desordem e estruturas de dimensões nanoscópicas. Neste sentido, ele é uma ferramenta única nos estudos de sistemas mesoscópicos e de baixa dimensionalidade.

A configuração especial do instrumento permite também que ele seja utilizado na realização de medidas espectroscópicas. O monitoramento do comportamento da corrente de tunelamento, em função da voltagem aplicada na junção ou da distância ponta-amostra, fornece informações locais acerca da estrutura eletrônica do material, da função trabalho da superfície, da identidade química de elementos adsorvidos, etc.\(^2\). Esta potencialidade eleva o status deste aparelho para além de um simples instrumento de investigação topográfica.

A invenção do STM provocou o surgimento de inúmeras técnicas novas que exploram o mesmo princípio simples: a obtenção de informações locais com altíssima resolução (atômica) através de algum tipo de interação entre a superfície de interesse e uma ponta de prova, variada sobre ou acima desta superfície. Dentre essas técnicas, conhecidas como microscopias de prova (scanning probe microscopies, SPMs)\(^3\) ou métodos de prova local (local probe methods)\(^4\), destaca-se a microscopia de força atômica (atomic force microscopy, AFM), inventada por Binnig e colaboradores\(^5\), que se baseia no monitoramento das forças de interação (repulsivas e/ou atrativas) entre a ponta e a amostra. Esta técnica tornou-se muito importante em várias áreas de pesquisa, como ciências biológicas, pois pode ser utilizada com qualquer tipo de material, inclusive os isolantes.
Nesta dissertação, vou inicialmente tratar do fenômeno de tunelamento de elétrons e das teorias envolvidas, com ênfase nas condições típicas de um STM (capítulo 1). No capítulo 2, descrevo o processo de elaboração e construção de todas as partes do STM. Após a fase de testes, foi realizada a calibração, abordada no capítulo 3. Os capítulos 4 e 5 foram concebidos como trabalhos independentes, relatando as primeiras aplicações de nosso aparelho: a otimização dos processos de deposição de filmes finos de ouro e o estudo de pontos quânticos de InAs crescidos por MBE, respectivamente.

REFERÊNCIAS:

Capítulo 1

TUNELAMENTO

1.1 INTRODUÇÃO

O efeito túnel é um fenômeno tipicamente quântico, associado ao caráter ondulatório de uma partícula microscópica. Ele consiste na probabilidade pequena, porém não nula, de esta partícula atravessar uma região energeticamente proibida.

O interesse no tunelamento começou juntamente com a formulação da própria teoria da mecânica quântica. O novo conceito foi aplicado na compreensão de fenômenos como o decaimento alfa de núcleos pesados, a ionização de átomos de hidrogênio sob um campo elétrico constante, a dissociação de moléculas, a emissão de campo em metais sob campos elétricos intensos, o tunelamento interbanda em sólidos, etc. Com o desenvolvimento de novas técnicas experimentais na ciência de materiais, surgiram as chamadas junções de tunelamento que permitiram a modificação das condições experimentais para o tunelamento dos elétrons (principalmente as características geométricas da barreira de potencial), ampliando o campo de estudo para o tema.

As junções de tunelamento caracterizam-se por dois electrodos colocados muito próximos um do outro, sem contato mecânico. Quando uma voltagem for aplicada entre eles, elétrons irão atravessar de um eletrodo ao outro, gerando uma pequena corrente elétrica chamada corrente de tunelamento. A barreira de potencial pode ser gerada por uma
camada de isolante, pelo vácuo, ou pela camada de depleção em uma junção p-n. Os eletrôdos podem ser metais, semicondutores ou supercondutores.5,7

Como a maioria dos fenômenos de tunnelamento ocorre em uma direção preferencial, o estudo de um modelo simples em uma dimensão fornece uma boa aproximação das características chaves dos sistemas físicos onde ocorre esse efeito.

1.2 MODELO SIMPLES

Considerando uma barreira de potencial retangular de altura V_0 e largura d, e uma partícula de massa m movendo-se da esquerda para a direita (figura 1.1), teremos a equação de Schrödinger

$$-\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x) \quad \text{com} \quad V(x) = \begin{cases} 0, & x < 0 \text{ e } x > d \\ V_0, & 0 \leq x \leq d \end{cases} \quad (1.1)$$

que tem como solução para as três regiões

$$\psi_1(x) = Ae^{ix} + Be^{-ix}, \quad x < 0$$
$$\psi_2(x) = Ce^{-\kappa x} + De^{\kappa x}, \quad 0 \leq x \leq d$$
$$\psi_3(x) = Fe^{ix}, \quad x > d$$

com $\kappa^2 = \frac{2mE}{\hbar^2}$ e $\kappa^2 = \frac{2m(V_0 - E)}{\hbar^2}$
Figura 1.1: Esquema de tunelamento em uma dimensão.

A quantidade correspondente à corrente de tunelamento será o coeficiente de transmissão T, que é a razão entre a densidade de corrente transmitida j_r e a densidade de corrente incidente j_i, dadas pelas fórmulas

$$j_i = \frac{-i\hbar}{2m} \left(\psi_3 \frac{d\psi_3}{dx} - \psi_3^* \frac{d\psi_3^*}{dx} \right) = \frac{\hbar k}{m} |F|^2,$$

$$j_r = \frac{\hbar k}{m} |A|^2.$$ \hspace{1cm} (1.3)

Assim,

$$T = \frac{j_i}{j_r} = \frac{|F|^2}{|A|^2}. \hspace{1cm} (1.4)$$

Usando as condições de contorno de continuidade da função de onda ψ e sua derivada $d\psi/dx$ nos pontos $x=0$ e $x=d$, pode-se deduzir os coeficientes das função de onda nas três regiões, obtendo-se então a expressão exata para o coeficiente de transmissão T:

$$T = \left[1 + \frac{(k^2 + \kappa^2)^2}{4k^2\kappa^2} \sinh^2 (\kappa d) \right]^{-1}.$$ \hspace{1cm} (1.5)

Considerando o limite de alta atenuação da barreira ($\kappa d >> 1$), obtém-se:
\[T = \frac{16k^2\kappa^2}{(k^2 + \kappa^2)^2} \exp(-2k\rho) \]

(1.6)

A contribuição dominante em \(T \) vem do termo exponencial e revela a forte dependência da corrente de tunelamento em relação à largura da barreira \(d \) e à raiz quadrada da altura efetiva da barreira \((V_0 - E)^2 \). Assumindo valores típicos na operação do STM, \((V_0 - E) \approx 5 \text{ eV} \), \(d \approx 10 \text{ Å} \), obtém-se um valor para \(T \) da ordem de \(10^{-10} \), sendo que a variação de 1 Å na distância \(d \) leva a uma variação de uma ordem de grandeza no coeficiente de transmissão \(T \). É esta extrema sensibilidade que permite a altíssima resolução na direção vertical do instrumento.

1.3 JUNÇÕES PLANARES METAL-ISOLANTE-METAL

Os tratamentos teóricos, aplicados aos diversos sistemas físicos onde ocorrem fenômenos de tunelamento, foram elaborados a partir de diferentes aproximações, das quais destacam-se duas\(^8\): o método independente do tempo, no qual são calculados os coeficientes de transmissão e reflexão de uma única partícula incidente em uma barreira de potencial, resolvendo-se a equação de Schrödinger (ajustando-se os coeficientes das funções de onda) e o método da hamiltoniana de transferência\(^9,10\), em que o tunelamento é considerado como uma perturbação de primeira ordem, dependente do tempo, entre estados independentes nos dois lados da barreira. A primeira aproximação foi adotada por Simmons\(^10,11\) para o estudo de junções planares do tipo metal-isolante-metal. Este estudo será apresentado a seguir, servindo como uma primeira abordagem aos experimentos em superfícies metálicas, típicos em um STM, apesar das estruturas geométricas dos eletrodos (ponta e amostra) serem ignoradas.
A presença de uma fina camada de isolante (ou vácuo), separando dois eletrodos metálicos (élletrons livres), induz a formação de uma barreira de potencial acima dos níveis de Fermi dos eletrodos. Quando uma voltagem positiva \(V \) for aplicada ao eletrodo direito, sua energia de Fermi será diminuída de \(eV \), e elétrons em estados ocupados no eletrodo esquerdo poderão tunelar elasticamente até estados desocupados criados no eletrodo direito (ver figura 1.2). A corrente resultante será dada pela diferença entre o número de elétrons tunelando da esquerda para direita e dos elétrons tunelando da direita para a esquerda (equação 1.7). Sem a voltagem aplicada, a corrente total será nula, pois haverá um equilíbrio estatístico entre o número de elétrons atravessando a barreira nos dois sentidos.

\[
j = \frac{2e}{(2\pi)^3} \int_{0}^{E_{F}} \int_{-\infty}^{\infty} d^{3}k_{x} \left[f(E) - f(E + eV) \right] T(E_{x}) \tag{1.7}
\]

onde \(j \) é a densidade de corrente de tunelamento, o fator 2 vem da degenerescência de spin, \(1/(2\pi)^{3} \) é a densidade de estados, \(f(E) \) é a função de distribuição de Fermi-Dirac e \(k_{i} \) é o momento transversal \((k_{i}^{2} = k_{y}^{2} + k_{z}^{2}) \). \(T(E_{x}) \) é a probabilidade de um elétron atravessar uma barreira na direção \(x \) e pode ser obtida a partir da aproximação semi-clássica de Wentzel-Kramers-Brillouin (WKB).

\[\]

Figura 1.2: Esquema da junção de tunelamento metal-vácuo-metal. (a) Sem voltagem aplicada; (b) polarizada por uma voltagem \(V \).
\[
T(E_x) = \exp\left[-2 \int_{x_i}^{x_f} \kappa(x, E_x) \, dx\right],
\]
\[
\kappa(x, E_x) = \left(\frac{2m}{\hbar^2}\right) \left[\phi(x) - E_x\right]^k,
\]

onde \(\phi(x)\) é a altura da barreira de potencial e \(x_i\) e \(x_f\) são os pontos de retorno clássicos de \(\phi(x)\), \(i.e.\) os dois pontos onde \(\phi(x) = 0\) (ver figura 1.3). Como a forma da barreira de potencial não é geralmente quadrada, pode-se definir uma barreira de potencial média \(\bar{\phi}\) como:

![Figura 1.3: Esquema da junção de tunelamento metal-vácuo-metal com uma barreira de potencial qualquer, e sua altura média.](image)

\[
\bar{\phi} = \frac{1}{d} \int_{x_i}^{x_f} \phi(x) \, dx,
\]

onde \(d = (x_f - x_i)\). Simmons\(^{10}\) obteve, com algumas aproximações convenientes, uma solução analítica geral para a corrente:

\[
j = j_0 \left\{ -\bar{\phi} \exp\left(\frac{1}{2} \kappa \bar{\phi} \cdot d\right) - (\bar{\phi} + eV) \exp\left[-A(\bar{\phi} + eV)^\kappa \cdot d\right] \right\},
\]

onde \(j_0 = e/4\pi^2\hbar d^2\) e \(A = 8\pi^2 (2m\hbar^2)^{1/3}\). Os dois termos correspondem a correntes fluindo da esquerda para direita e vice-versa. Esta expressão é geral e pode ser aplicada a qualquer tipo
de barreira. No limite de baixas voltagens \((eV \ll \Phi)\), típico em um STM, a expressão para a densidade de corrente torna-se

\[
j = \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \frac{4\pi^2 e^2}{d} \Phi^2 V \exp(-A \Phi d). \tag{1.11}
\]

Observa-se que o termo exponencial é bastante semelhante ao já encontrado no tratamento mais simples anterior e que a junção tem um comportamento ôhmico, \(i.e.\) a corrente de tunelamento é linearmente proporcional à voltagem aplicada na junção.

O perfil de uma barreira de potencial pode ser modificado devido ao efeito do potencial imagem, associado à interação dos elétrons em tunelamento com as superfícies dos eletrodos metálicos, que aparece quando a largura da barreira é muito pequena\(^{12}\). Uma expressão aproximada para este potencial é dada por Simmons\(^{10}\)

\[
\Phi_i(x) = -1.15 \frac{e^2 \ln 2}{8\pi \varepsilon_0 K} \frac{d}{x(d-x)}, \tag{1.12}
\]

onde \(K\) é a constante dielétrica do isolante e \(\varepsilon_0\) é a permissividade do vácuo. As conseqüências deste efeito são um “arredondamento” dos cantos da barreira (considerada originalmente retangular), com a redução de suas altura e largura (ver figura 1.4). Sendo assim, os valores calculados para a corrente de tunelamento tornam-se maiores. Este efeito já foi comprovado experimentalmente, tanto em junções planares como em medidas com STM.

![Figura 1.4: Efeito do potencial imagem sobre o perfil de uma barreira retangular.](image_url)
1.4 TUNELAMENTO EM UM STM — TRÊS DIMENSÕES

Em um experimento de STM, as características gerais da corrente de tunelamento, obtidas através do estudo de junções planares acima, se mantêm: a corrente varia exponencialmente com a distância entre os eletrodos (distância ponta-amostra) e depende linearmente da voltagem aplicada (para pequenas voltagens). No entanto, o fenômeno de tunelamento presente em um STM é muito mais complexo: a presença de uma ponta, com dimensões reduzidas (centenas de Angström), induz uma alta inomogeneidade na forma da barreira. Assim, um tratamento tridimensional é necessário para levar em conta a anisotropia da interação local entre a ponta e a superfície da amostra, e permitir uma interpretação adequada das imagens obtidas.

Para tratar do problema do tunelamento em três dimensões, o método da hamiltoniana de transferência deve ser adotado. Este método, que foi inicialmente proposto por Openheimer\(^2\) e sistematizado por Bardeen\(^9\), baseia-se na teoria de perturbação de primeira ordem, dependente do tempo. Assume-se que os eletrodos dos dois lados da barreira estão fracamente acoplados, i.e. a barreira é opaca (alta e espessa). O tunelamento será representado pela hamiltoniana perturbativa de transferência associada à sobreposição das funções de onda dos estados eletrônicos independentes em ambos os lados da barreira.

A corrente de tunelamento é dada por

\[
I = \frac{2\pi e}{h} \sum_{\mu, \nu} \left\{ f(E_{\mu}) [1 - f(E_{\nu} + eV)] - f(E_{\nu} + eV) [1 - f(E_{\mu})] \right\} |M_{\mu, \nu}|^2 \delta(E_{\mu} - E_{\nu})
\]

(1.13)

onde \(f(E)\) é a função de Fermi, \(V\) é a voltagem aplicada, \(M_{\mu, \nu}\) é o elemento da matriz de tunelamento entre os estados eletrônicos não perturbados \(\psi_{\mu}\) da ponta e \(\psi_{\nu}\) da superfície da amostra, e \(E_{\mu(\nu)}\) é a energia do estado \(\psi_{\mu(\nu)}\). A fórmula (1.13) representa a transição de
estados ψ_μ para estados ψ_ν e vice-versa. Como os experimentos em um STM são geralmente realizados à temperatura ambiente, ou menor, e com baixas voltagens aplicadas, tomam-se os limites para baixa temperatura e voltagem, resultando em

$$ I = \frac{2\pi e^2}{h} V \sum_{\mu,\nu} \left| M_{\mu,\nu} \right|^2 \delta(E_\mu - E_F) \delta(E_\nu - E_F). $$ (1.14)

A matriz de tunelamento é calculada, segundo o formalismo de Bardeen\(^9\), como

$$ M_{\mu\nu} = \frac{\hbar^2}{2m} \int dS \cdot (\psi_\mu^* \nabla \psi_\nu - \psi_\nu^* \nabla \psi_\mu). $$ (1.15)

A integral deve ser efetuada sobre uma superfície inteiramente na região da barreira e o termo entre parênteses pode ser identificado como o operador de corrente. O principal empecilho para a determinação analítica dos elementos da matriz é a falta de conhecimento das funções de onda da ponta.

Tersoff e Hamman\(^{13,14}\), que aplicaram pela primeira vez este método para a configuração de um STM, aproximaram a geometria da ponta por uma esfera (ver fig. 1.5) e consideraram somente funções de onda esféricas (tipo s). Deste modo, resolveram a matriz de tunelamento $M_{\mu\nu}$, chegando à seguinte expressão para a corrente:

$$ I \propto V D_p(E_F) \exp(2\kappa R) \sum_\nu \left| \psi_\nu(r_p) \right|^2 \delta(E_\nu - E_F), $$ (1.16)

onde $D_p(E_F)$ é a densidade de estados ao nível de Fermi para a ponta, $\kappa = (2m\phi/\hbar)$ é a constante de decaimento, R é o raio de curvatura local da ponta, r_p é o vetor posição do centro de curvatura e

$$ \rho(r_p, E_F) = \sum_\nu \left| \psi_\nu(r_p) \right|^2 \delta(E_\nu - E_F) $$ (1.17)
é simplesmente a densidade local de estados da superfície (LDOS - local density of states) na energia de Fermi E_F, calculada no centro de curvatura r_p da ponta. Como era de se esperar, as características básicas de uma junção de tunelamento estão presentes: a corrente de tunelamento depende linearmente da voltagem aplicada V (para V pequena), e exponencialmente da distância ponta-amostra d, já que os estados ψ_r da superfície da amostra decaim exponencialmente no vácuo (região da barreira):

$$\left|\psi_r(r_p)\right|^2 \propto \exp(-2\kappa(R+d)) \Rightarrow I \propto \exp(-2\kappa d). \quad (1.18)$$

Figura 1.5: Esquema geométrico da junção de tunelamento.13

Como uma imagem topográfica de STM é geralmente adquirida em modo de corrente constante (a corrente de tunelamento é mantida constante durante toda a varredura por um circuito eletrônico de retroalimentação), ela pode ser diretamente interpretada como sendo o mapa de contornos de LDOS constante, i.e. da densidade de cargas dos estados eletrônicos ao nível de Fermi, calculados à distância $(d + R)$ da superfície. Como, para os metais, a densidade de carga acompanha a posição dos átomos, uma imagem de STM com resolução atômica, obtida com baixa voltagem, representará efetivamente a disposição dos átomos na superfície do metal. A resolução lateral do instrumento pode ser estimada por este método, e é dada aproximadamente13 por $2\hat{\Lambda}(R+d)$.19
O tratamento realizado por Tersoff e Hamman, apesar de oferecer uma interpretação direta e até intuitiva das imagens de um STM, sofre de algumas limitações. Por tratar-se de um método perturbativo, ele não é válido quando voltagens de tunelamento maiores forem usadas (ver tratamento a seguir). A aproximação de funções de onda \(s \) para os estados da ponta também é questionada por Chen15,16. Outros tipos de análise teórica já foram efetuados, através de métodos não perturbativos, buscando a solução exata de alguns sistemas simples17. Ainda não existe um método único e completo que possa oferecer uma solução satisfatória para as diversas configurações possíveis em microscopia de tunelamento18.

1.5 STM EM SEMICONDUTORES

Os materiais semicondutores, ao contrário dos metais, apresentam uma variação significativa na densidade local de estados de superfície em função da energia, \textit{i.e.} para uma dada energia, os estados de superfície tendem a se localizar em certos átomos e/ou ligações. Assim, as estruturas presentes em uma imagem de uma superfície semicondutora não podem ser diretamente relacionadas à disposição espacial de seus átomos. Este fenômeno pode ser compreendido com uma generalização qualitativa do resultado obtido por Tersoff e Hamman13. Ao se considerar uma voltagem aplicada finita, os estados eletrônicos da superfície da amostra com energias entre \(E_F \) e \(E_F + V \) contribuirão para a corrente de tunelamento total, dada por19

\[
I \propto \int_{E_F}^{E_F+V} \rho(r_p, E) \, dE.
\]

Este resultado é aproximado pois ignora-se a influência da voltagem finita sobre os estados eletrônicos da superfície (na determinação da densidade \(\rho(r_p, E) \)) e também sobre a forma da barreira de potencial.
As imagens de materiais semicondutores refletem uma mistura de informações topográficas e eletrônicas da superfície. Um exemplo simples e ilustrativo é a superfície de GaAs (110): se uma voltagem negativa for aplicada à amostra, somente elétrons tunelando para fora dos estados ocupados, localizados principalmente nos sítios de As, contribuirão para a corrente, e a imagem resultante conterá um máximo por célula unitária associado ao átomo de As. Se a polaridade for invertida, somente elétrons tunelando para estados desocupados, localizados nos sítios de Ga, contribuirão, e uma imagem semelhante será obtida, com os máximos associados aos átomos de Ga. Uma imagem topográfica completa será a sobreposição das duas imagens obtidas simultaneamente com polaridade inversa.

Esta capacidade de obterem-se informações acerca da estrutura eletrônica das superfícies, associada a sua alta resolução espacial, incentivou a utilização do STM como uma ferramenta para a realização de medidas espectroscópicas locais. Este novo campo de pesquisa está em fase de grande desenvolvimento. Vários tipos de técnicas foram desenvolvidas nos últimos anos, buscando métodos novos e confiáveis para a aquisição e distinção das informações eletrônicas das superfícies. As análises teóricas também estão se desenvolvendo paralelamente. A grande meta futura é a compreensão mais profunda e sistemática das inúmeras informações reveladas neste novo campo.
REFERÊNCIAS

Capítulo 2

CONSTRUÇÃO

2.1 INTRODUÇÃO

A operação do STM consiste na aproximação de uma ponta metálica até alguns Angström da superfície da amostra a ser estudada. Ao se aplicar uma pequena voltagem entre os dois eletrodos (ponta e amostra), uma corrente se estabelece, associada ao tunelamento de elétrons através da camada de ar (ou vácuo). A varredura é efetuada deslocando-se a ponta no plano x-y (paralelo à superfície) com um sistema de alta precisão (geralmente são usados elementos piezelétricos). O valor da corrente de tunelamento é mantido constante através de um circuito eletrônico de retroalimentação atuando sobre o elemento piezelétrico que controla a distância ponta-amostra (direção z). Deste modo, durante a varredura, a ponta acompanha os contornos topográficos da amostra. O registro da voltagem aplicada ao elemento piezelétrico z em cada ponto da varredura corresponde à imagem da superfície da amostra varrida pela ponta. Um microcomputador é usado para o controle da varredura e aquisição dos dados (ver figura 2.1). Para se atingir um bom desempenho com resolução atômica, a estrutura da cabeça de medida deve ser rígida, compacta e estável. Além disso, um sistema de amortecimento das vibrações mecânicas externas é quase sempre utilizado1, 3.
Figura 2.1: Esquema do STM: (1) Amostra; (2) Ponta; (3) Sistema piezoeelétrico de varredura x-y e controle z (faixa de 1μm a 1Å); (4) Sistema grosseiro de aproximação z (faixa de 5 mm a 0,1μm); (5) Sistema eletrônico de retroalimentação; (6) Microcomputador.

O projeto do STM foi dividido em três partes desenvolvidas de maneira independente:

- o sistema mecânico: cabeça de medida e isolamento de vibração;
- o sistema eletrônico;
- o programa de controle, aquisição e tratamento de dados.

O sistema mecânico foi concebido para a operação do aparelho no ar. Já o sistema eletrônico e o programa computacional de controle foram projetados com uma arquitetura aberta, de modo a permitir sua utilização em futuras versões operando em diferentes ambientes (hélio líquido ou vácuo), bem como a implementação de medidas espectroscópicas locais (curvas IxV) e medidas da função trabalho φ.
2.2 SISTEMA MECÂNICO

2.2.1 Cabeças de medida

Durante o andamento deste projeto, duas cabeças de medidas foram desenvolvidas. O primeiro protótipo foi montado a partir de um posicionador óptico comercial adaptado. Seu parafuso micrométrico foi trocado por um micrômetro diferencial de maior precisão (resolução de 0,1 μm) para permitir a aproximação entre a ponta e a amostra até a distância necessária para a atuação do circuito eletrônico de retroalimentação. Uma peça metálica, usada como porta-amostra, é presa à parte fixa do posicionador, enquanto uma outra peça, consistindo em um tubo e um L metálicos, é presa à parte móvel. No tubo, o sistema piezoeletrico de deslocamento da ponta é fixado (ver figura 2.2). A cabeça é colocada dentro de uma caixa metálica para efeitos de blindagem eletromagnética.

Figura 2.2: Cabeça de medida baseada em um posicionador óptico: (1) Amostra; (2) Ponta; (3) Tubo piezoeletrico; (4) Posicionador óptico; (5) micrômetro diferencial.
Com esta cabeça de medida, foram realizados os testes iniciais do conjunto completo do microscópio, conseguindo-se alcançar o regime de tunelamento. Foram obtidas algumas imagens da superfície de grafite e de filmes de ouro. No entanto, a cabeça apresentou um problema estrutural: ela possuía uma frequência de ressonância muito baixa, da ordem de 400 Hz. Assim sendo, qualquer ruído ambiente no laboratório — passos, vozes humanas, batidas de portas, etc. — excitava este modo de vibração, gerando instabilidades na corrente de tunelamento, prejudiciais ao desempenho do aparelho (ver sub-seção 2.2.2). Estas instabilidades são mais críticas para imagens de grafite com alta resolução, pois, neste caso, o sinal eletrônico deve ser amplificado centenas de vezes, juntamente com o ruído espúrio.

Várias modificações na configuração básica foram realizadas para melhorar o desempenho do instrumento: as peças metálicas, inicialmente feitas de latão, foram trocadas por peças de aço inox e o porta-amostra foi fixado em um segundo ponto, para tornar a cabeça mais rígida. Além disso, forrou-se a caixa metálica de blindagem com camadas de cortiça para o isolamento acústico. Mesmo sendo atenuadas pelas camadas de cortiça, as vibrações acústicas ambientais continuavam interferindo, gerando excitações na mesma faixa de frequência. Foi concluído então que o problema tinha origem no posicionador óptico, o qual não possuía suficiente estabilidade mecânica.

Optou-se assim pelo desenvolvimento de um segundo protótipo, montado a partir de um tubo de aço inox (ver figura 2.3). O mesmo micrômetro diferencial é fixado em uma das bases do tubo, empurrando um pistão oco que desliza ao longo do eixo do tubo principal. O sistema piezelétrico de deslocamento da ponta é preso no interior do pistão. O porta-amostra, que permite a movimentação da amostra no plano x-y, é parafusado à base oposta do tubo principal (uma espécie de tampa). Entre o pistão e o porta-amostra, está posicionada uma mola (não mostrada na figura) que mantém o pistão firmemente apoiado contra o micrômetro diferencial. O tubo principal permanece na posição horizontal apoiado sobre um suporte metálico. Nesta configuração, a junção de tunelamento, i.e. a região entre a ponta e a amostra, encontra-se no interior do tubo principal que atua como uma blindagem eletromagnética.
Figura 2.3: Segunda cabeça de medida: (1) Amostra; (2) Ponta; (3) Tubo principal; (4) Pistão; (5) Tubos piezelétricos; (6) Micrômetro diferencial.
2.2.2 Isolamento de vibração

A operação de um STM requer um nível de estabilidade da ponta em relação à amostra melhor que a resolução desejada para a medida. Um bom desempenho com resolução atômica (≤ 1Å na direção z normal à superfície da amostra, e alguns Angström no plano x-y) só pode ser alcançado se as instabilidades forem da ordem de 0,1Å. Os prédios possuem, em geral, modos de vibração com frequências na faixa de 1 a 100Hz que são excitados pelo funcionamento de máquinas (aparelhos elétricos, elevadores, bombas de vácuo), passos, automóveis, etc., gerando vibrações com amplitudes de até dezenas de micrômetros. A resposta do aparelho às vibrações externas deve ser então reduzida de um fator de no mínimo -120 dB (10^6). A combinação de dois procedimentos é geralmente utilizada para obter o resultado desejado^46.

Tornar a cabeça de medida mais rígida e compacta possível:

A cabeça de medida, por não possuir uma rigidez ideal (infinita), pode ser representada por um sistema massa-mola — com uma mola de alta constante (k) ligando a ponta à amostra — comportando-se como um filtro passa-alta, _i.e._ vibrações externas de baixa frequência não afetam a distância ponta-amostra, pois a cabeça de medida oscila como um todo. Já as vibrações de alta frequência (acima da frequência de ressonância mais baixa da cabeça) excitam os modos de vibração internos da unidade, afetando diretamente a distância ponta-amostra.

A principal limitação para se construir uma cabeça rígida e compacta é o sistema de deslocamento da ponta, onde são utilizados elementos piezelétricos que devem possuir dimensões e formas restritas (ver sub-seção 2.2.4). Geralmente, as frequências próprias das cabeças de medida encontram-se na faixa de alguns kHz, o que torna necessária a inclusão de um sistema de isolamento de vibrações.
Colocar a cabeça de medida em um sistema de isolamento de vibrações:

O sistema de isolamento consiste basicamente de um sistema massa-mola que deve ter uma baixa frequência de corte (da ordem de 1 Hz). Assim, para altas frequências, um amortecimento típico será de 40 dB por década. O pico de ressonância na resposta do sistema, que ocorre na frequência de corte, pode ser facilmente diminuído incluindo-se uma forma de dissipação da energia mecânica (damping) no sistema.

Os sistemas de isolamento mais adotados são: molas metálicas com amortecimento magnético (correntes de Eddy) ou uma pilha de placas metálicas separadas por pequenos pedaços de borracha — em geral Vitton ou borracha natural. O primeiro é mais eficiente, mas sua construção é mais complexa e custosa. No segundo, a atenuação para baixas frequências não é tão grande mas, por outro lado, como esse sistema conta com vários estágios (cada camada metal-borracha atua como um sistema amortecedor em série com os outros), uma boa atenuação é obtida para as altas frequências, que são as mais críticas. Este sistema é de fácil construção, bastante compacto e muito barato.

A resposta total será a combinação de um filtro passa-alta interno (cabeça de medida) com um filtro passa-baixa externo (isolamento). Uma curva de transferência típica, obtida com um modelo simples de osciladores acoplados, é mostrada na figura 2.4. Uma região de platô aparece entre as frequências próprias dos dois filtros. O nível de resposta nesse platô depende da separação entre as duas frequências: quanto maior a distância entre elas — quanto mais baixa a frequência de corte do isolamento e/ou quanto mais alta a frequência própria da cabeça de medida — maior será o amortecimento das vibrações externas na região de operação do STM.
Figura 2.4: (a) Modelo simples de osciladores acoplados para o sistema de isolamento de vibração. (b) Escolhendo a frequência de ressonância da cabeça de medida, \(\omega_c = (k_c/m_c)^{1/2} \) como sendo 100 vezes maior que a frequência do sistema de isolamento, \(\omega_0 = (k_i/m_i)^{1/2} \), obtém-se as funções de transferência para o isolamento (1), a cabeça de medida (2) e a combinação dos dois (3). Os picos de ressonância são diminuídos com a inclusão de fatores de amortecimentos (\(\xi_c \) e \(\xi_i \)). O platô na região central corresponde a uma atenuação de \(10^6 \) [ref. 6].

Em nosso aparelho, optamos por um sistema ainda mais simples e barato com um único estágio de amortecimento: a cabeça de medida do microscópio foi colocada sobre uma placa de alumínio suspensa por quatro tensores de borracha presos ao teto do laboratório. A frequência de ressonância do sistema é facilmente determinada a partir do alongamento dos tensores em relação ao seu comprimento original. Se os tensores encontrarem-se em regime elástico, a força exercida pela placa sobre eles será:

\[
F = m \cdot g = k \cdot \Delta l, \tag{2.1}
\]
onde \(m \) é a massa da placa, \(g \) é a aceleração de gravidade, \(k \) é a constante de mola dos tensores e \(\Delta l \) seu alongamento. Substituindo \(k \) na expressão para a frequência de ressonância, \(\omega = \left(\frac{k}{m} \right)^{\frac{1}{2}} \), obtém-se:

\[
\omega = \left(\frac{g}{\Delta l} \right)^{\frac{1}{2}}.
\]

(2.2)

A massa da placa de alumínio foi escolhida de modo a obter o maior alongamento possível dos tensores dentro do regime elástico e, conseqüentemente, a menor frequência de ressonância. Os tensores possuem um amortecimento natural devido à fricção viscoelástica das tiras de borracha que os constituem, tornando desnecessário qualquer tipo de amortecimento suplementar.

Figura 2.5: Sistema de isolamento de vibração usado para nosso STM. (1) Tensores elásticos; (2) Cabeça de medida; (3) Placa de alumínio.
2.2.3 Ponta

Uma das principais características das novas técnicas de microscopia de varredura de provas (*Scanning Probe Microscopies* -SPM’s), que revolucionaram a ciência de superfícies na última década, é a utilização de uma ponta de varredura. As interações com a superfície da amostra fornecem os mais diferentes tipos de informações no espaço real, com altíssima resolução. Em um STM, a ponta é um dos eletrôdos por onde fluirá a corrente de tunelamento e, portanto, suas características geométricas, químicas e físicas influenciam diretamente as medidas.

Para conseguir-se a resolução atômica em medidas sobre superfícies lisas, o ideal é a presença de um único átomo no final da ponta, sendo a geometria macroscópica da ponta de menor importância. Esta configuração não é difícil de se obter pois, como a corrente de tunelamento é fortemente dependente da distância ponta-amostra (em medidas típicas, a corrente varia uma ordem de grandeza quando a distância ponta-amostra muda de 1Å), o átomo que estiver mais próximo da amostra, em uma protuberância no final da ponta, contribuirá com quase a totalidade da corrente de tunelamento. Ainda assim, imagens anômalas podem ser observadas, com simetrias diferentes da simetria original da rede cristalina superficial, quando dois ou mais átomos contribuem similarmente para a corrente total (*multiple-tip*)\(^7,8\) (ver seção 3.3). Em estudos de estruturas de maior escala, quando superfícies muito rugosas forem varridas, a influência da geometria da ponta será efetiva. Uma ponta pouco afilada não será capaz de penetrar nos vales mais profundos, gerando um alisamento artificial da superfície\(^2\).

O material a ser utilizado na confecção da ponta deve ser relativamente duro para que a ponta não sofra muitas alterações no contato com a amostra, que é bastante frequente. Sua escolha depende do ambiente de operação do aparelho. Pontas de tungstênio (W) são as mais usadas em ambiente de ultra-alto vácuo (*ultra high vacuum* — UHV). Para operação no ar, o material deve ser inerte, já que a presença de camadas de impurezas (óxidos, etc.)
pode prejudicar bastante a estabilidade da junção de tunelamento. Os metais nobres como ouro (Au) ou platina (Pt) são os mais indicados. No entanto, geralmente, são utilizadas ligas, acrescentando-se materiais como irídio (Ir) para aumentar a dureza da ponta. Em nosso STM, são usadas pontas de uma liga de platina-irídio com 10% de irídio (Pt-Ir, 90%-10%).

A preparação das pontas é importante para a obtenção das características geométricas necessárias a um desempenho eficiente do STM. Para as pontas de tungstênio, uma preparação mais elaborada é geralmente efetuada com processos de corrosão mecânica e eletroquímica (etching) para torná-las afiladas. Algumas vezes a corrosão é associada a processos posteriores de emissão de campo iônico. No entanto, em pontas de platina-irídio, um processo simples e direto é muito utilizado, consistindo em cortar-se, com uma tesoura comum, um fio da liga em questão, de maneira a obterem-se pequenas protuberâncias no fim da ponta. Em uma dessas protuberâncias, é possível a presença de um único átomo no ápice, por onde fluirá a corrente (ver figuras 2.6 e 2.7).

![Diagrama de ponta de STM]

Figura 2.6: Perfil estilizado da ponta com vários aumentos.
Figura 2.7: Micrografias de microscopia eletrônica de varredura (SEM) de uma ponta de Pt-Ir com diferentes aumentos: (a) Observa-se a ponta formada após o corte de um fio de Pt-Ir (φ=0,5 mm), com a presença de pequenas protuberâncias no seu ápice, observadas em (b). Em (c) observa-se uma das protuberâncias (whisker) com aumento maior.
2.2.4 Deslocamento fino — elementos piezelétricos

Em um STM, um sistema de deslocamento fino é necessário para a realização da varredura da amostra pela ponta (no plano x-y paralelo à superfície da amostra) e para o controle da distância ponta-amostra (direção z). Um sistema eficiente deve satisfazer as seguintes condições\(^1\):¹

1. Alta resolução — para que as dimensões atômicas possam ser alcançadas;
2. Alta sensibilidade — para que as voltagens aplicadas ao sistema sejam reduzidas, e grandes áreas de varredura sejam possíveis;
3. Ortogonalidade — os deslocamentos em uma direção devem afetar o mínimo possível os deslocamentos nas outras direções;
4. Linearidade — os deslocamentos devem ser linearmente proporcionais às voltagens aplicadas;
5. Rigidez mecânica — para manter altas as frequências de ressonância da cabeça de medida, permitindo altas velocidades de varredura e sistemas de isolamento de vibração mais simples.

O material que melhor satisfaz, conjuntamente, as condições de alta resolução, sensibilidade e linearidade são as cerâmicas piezelétricas PZT [Pb (Zr,Ti) O\(_3\)], que são largamente usadas como transdutores eletromecânicos. Com uma montagem adequada das cerâmicas, as condições de ortogonalidade e rigidez podem ser satisfeitas.

A piezeletricidade é a propriedade que certos materiais possuem de, quando submetidos a uma pressão mecânica, produzirem um campo elétrico local proporcional. Esta propriedade tem origem na falta de simetria central no arranjo atômico das células primitivas destes materiais, e está presente em alguns cristais naturais e em cerâmicas policristalinas comercialmente fabricadas. Estas são mais apropriadas, pois podem ser produzidas com a forma desejada, bem como ter suas características piezelétricas controladas, i.e. ter seus eixos de simetria elétricos e mecânicos precisamente orientados. Para isto, no processo de
fabricação da cerâmica, um campo elétrico elevado (campo de polarização — *poling field*) é aplicado, orientando os momentos elétricos dipolares dos diversos microcristais e criando um momento elétrico dipolar macroscópico paralelo ao eixo desejado (eixo de polarização)\(^{10}\).

O processo de polarização (*poling*) muda as dimensões do material cerâmico permanentemente. Quando um campo elétrico for aplicado sobre o material, na mesma direção e sentido que o campo de polarização, a cerâmica sofrerá uma tensão mecânica, expandindo-se nesta direção e contraindo-se nas outras. Analogamente, se o campo elétrico for aplicado no sentido oposto ao do campo de polarização (com intensidade menor que o mesmo, para não mudar as propriedades da cerâmica), o material irá contrair-se nesta direção e expandir-se nas outras. Este é o chamado efeito piezoeelétrico inverso.

O deslocamento da ponta durante uma varredura é baseado neste efeito inverso. Levando-se em conta a natureza do elemento piezoeletrico, sua forma, a orientação do eixo de polarização e a disposição dos eletrodos, determina-se a voltagem apropriada a ser aplicada para obter a movimentação desejada. O comportamento dos elementos piezoeletricos pode ser resumido pela relação

\[
S_i = \frac{\Delta l_i}{l_i} = \sum_j d_{ij} E_j,
\]

(2.3)

onde \(S_i\) é a deformação sofrida, \(\Delta l_i\) e \(l_i\) são, respectivamente, o deslocamento e a dimensão do elemento na direção \(i\) (\(i = x, y\) ou \(z\)), \(d_{ij}\) é o tensor com as constantes piezoeletricas características do elemento e \(E_j\) é o campo elétrico aplicado.

A maneira mais simples, adotada nos primeiros STMs\(^{11}\), de deslocar a ponta nas três direções ortogonais, consiste em utilizar um elemento piezoeletrico, em forma de cubo ou bastão, para cada direção. Com os três elementos colados, obtém-se a movimentação nas
três direções simultaneamente. O deslocamento de cada elemento é da forma transversal, i.e. o alongamento é perpendicular à direção do campo aplicado.

\[\Delta l = d_{31} V \]

(2.4)

Apesar de satisfazer a condição de ortogonalidade, esta montagem não é muito rígida, tornando as frequências de ressonância da cabeça de medida muito baixas.

Em 1986, Binnig e Smith\(^\text{12}\) propuseram a utilização de uma montagem muito mais rígida e compacta: um único elemento piezelétrico em forma de tubo, com os eletrodos nas paredes e o campo de polarização radial. O deslocamento na direção vertical \(z \) pode ser obtido simplesmente aplicando-se uma tensão no eletrodo interno do tubo, — enquanto o externo é ligado ao terra — provocando uma retração (ou expansão) nas paredes do tubo e, consequentemente, um aumento (diminuição) do seu comprimento,

\[\Delta z = (l/e) d_{31} V \]

(2.5)

onde \(l \) e \(e \) são, respectivamente, o comprimento e a espessura do tubo. Uma outra vantagem desta configuração é a possibilidade de obterem-se deslocamentos maiores, com a mesma faixa de voltagem, pois o alongamento do tubo é aumentado de um fator geométrico \((l/e)\) em relação ao cubo. A solução para a obtenção dos deslocamentos \((\Delta x e \Delta y)\) nas direções horizontais é separar o eletrodo externo em quatro partes iguais. Quando uma voltagem for aplicada em um dos quadrantes, somente o segmento associado do tubo irá sofrer uma tensão mecânica, levando o tubo inteiro a entorpecer-se na direção desejada. Com o controle das voltagens aplicadas em dois quadrantes adjacentes, obtém-se os deslocamentos nas duas direções ortogonais (ver figura 2.8). A relação entre o deslocamento \(\Delta x (\Delta y) \) e a voltagem aplicada não é trivial, mas pode ser obtida com algumas aproximações\(^\text{13}\).
\[\Delta x (\Delta y) = \sqrt{2} \frac{j^2}{\pi De} d_{31} \cdot V, \]

onde, além das grandezas já definidas, \(D \) é o diâmetro interno do tubo.

Figura 2.8: a) Vista superior de um tubo piezoelettrico com o esquema de separação dos eletrodos; b) deslocamento lateral da ponta (no plano \(x-y \) paralelo à amostra); c) deslocamento na direção \(z \), para manter constante a corrente de tunelamento durante a varredura.

Esta configuração de tubo único apresenta um problema intrínseco: é fácil perceber que o deslocamento \(\Delta x (\Delta y) \) da ponta está associado a um ligeiro deslocamento \(\Delta z \) devido ao fato do tubo entortar-se, mudando sua dimensão ao longo do eixo (comprimento \(l \)) de modo inomogêneo (as duas paredes opostas do tubo ficam com alturas diferentes). Este deslocamento indesejado cria uma inclinação artificial das imagens. O problema é mais crítico para grandes áreas varridas, quando o deslocamento da ponta na direção \(z \) torna-se considerável, e o tubo — por ter um alcance limitado pelas voltagens aplicadas — não consegue manter a distância ponta-amostra necessárias para o tunelamento. Ele pode ser solucionado com um sistema um pouco mais sofisticado, utilizando-se dois tubos.
concêntricos. Os dois tubos são colados a um disco de macor\(^*\) e o porta-ponta é fixado sobre o tubo interno (diâmetro menor), responsável somente pelo movimento vertical da ponta (direção \(z\)). Os eletrodos interno e externo do tubo maior são separados verticalmente em quatro, permitindo os deslocamentos no plano \(x-y\). O deslocamento \(\Delta x (\Delta y)\) é dobrado em relação a um tubo simples\(^{13}\) (equação 2.6).

\[
\Delta x (\Delta y) = 2\sqrt{2} \frac{i^2}{\pi De} d_{31} \cdot V ,
\]

pois as voltagens são aplicadas simetricamente, \textit{i.e.} duas voltagens iguais e opostas são aplicadas nos dois quadrantes opostos. Assim, ao entortar, o tubo expande-se de um lado e contrai-se do outro. Deste modo, o deslocamento indesejado em \(z\) é drasticamente reduzido, pois no centro do tubo, onde a ponta está posicionada, o seu comprimento permanece quase inalterado. Outra vantagem é a compensação térmica: com um único tubo, qualquer variação das dimensões do tubo, devido a uma variação da temperatura, afetará a posição da ponta; com os dois tubos colados na mesma base, a variação da dimensão de um tubo em um sentido será cancelada pela variação do outro no sentido oposto, a posição da ponta ficando inalterada\(^{14}\) (ver figura 2.9).

Neste projeto foram utilizadas as configurações com um e com dois tubos. A preparação do sistema com dois tubos é um pouco mais trabalhosa, pois são necessárias mais conexões elétricas, e a colagem dos tubos nas peças de macor deve ser cuidadosa. A separação dos eletrodos (cobertura de prata) é feita pintando-se o tubo com uma máscara de esmalte e correndo-se as tiras verticais expostas com uma solução (1:1) de hidróxido de amônia (NH\(_4\)OH) e peróxido de hidrogênio (H\(_2\)O\(_2\))\(^3\).

\(^*\) Cerâmica de baixo coeficiente de dilatação térmica e facilmente usinável. É utilizada nas peças isolantes do STM.
Figura 2.9: Corte lateral (a) e vista superior (b) do sistema piezelétrico com dois tubos:
1) Tubo menor interno para o deslocamento na direção z; 2) tubo maior externo para os deslocamentos no plano x-y; 3) peças de macor; 4) pistão de aço inoxidável; 5) Porta ponta.

Embora as cerâmicas piezelétricas sejam as mais adequadas para o controle preciso de pequenos deslocamentos, elas apresentam algumas características indesejadas, como histerese e creep, associadas a um comportamento não linear em função dos campos elétricos aplicados. O creep é um atraso na resposta do material piezelétrico a variações abruptas da voltagem aplicada. A histerese representa uma variação na resposta do material em função de seu estado passado, i.e. das voltagens anteriormente aplicadas. Por isso, ao realizar-se uma varredura, os dados são adquiridos somente quando a ponta está sendo varrida em um sentido.
2.3 SISTEMA ELETRÔNICO

O microscópio de tunelamento requer um sistema eletrônico de controle para duas tarefas fundamentais:

1. Detectar a corrente de tunelamento e, através de um sistema de retroalimentação (feedback), atuar no elemento piezelétrico z, ajustando a distância ponta-amostra, de modo a manter a corrente de tunelamento constante;
2. Estabelecer a ligação entre o microcomputador e a cabeça de medida, tratando o sinal de interesse a ser enviado ao microcomputador (topografia, espectroscopia, voltagem da ponta, etc.), e amplificando o sinal de varredura, fornecido pelo microcomputador, a ser aplicado nos elementos piezelétricos x e y.

Nosso sistema foi projetado tomando-se como ponto de partida os circuitos utilizados pelo Prof. Dr. Alain André Quivy em seu trabalho de doutorado3. Os esquemas originais foram modificados, com a inclusão de elementos digitais que permitem o controle externo (através do microcomputador) de vários parâmetros da varredura, procurando-se automatizar a operação do STM e facilitar sua utilização por pessoas sem experiência prévia.

O sistema foi concebido de maneira modular: cada tarefa é realizada por uma placa de circuito impresso independente colocada em um caixa metálica para efeitos de blindagem. Todas as caixas foram fixadas em uma grande caixa metálica com um painel frontal de controle e um painel traseiro com conectores para a interface com o microcomputador e o microscópio. A arquitetura modular foi escolhida por permitir a adição de novos módulos com outros tipos de aquisição de dados (e.g. medidas espectroscópicas) e facilitar a detecção e correção de eventuais erros.
O processo de produção das placas foi todo realizado por nós, consistindo das seguintes etapas: 1) desenho dos circuitos eletrônicos; 2) projeto e revisão dos lay-outs através de um programa de computador específico (ORCAD); 3) revelação das máscaras com filmes fotosensíveis; 4) Confecção das placas: cada face das placas (face dupla) era coberta com uma resina fotosensitente, por um processo de silk-screen, e secada; em seguida a face era coberta pela máscara realizada no item 3, exposta à luz intensa, revelada; e o cobre indesejado era corroído com uma solução de Cloreto de Ferro III, produzindo as placas com as trilhas impressas.

A descrição dos módulos principais é apresentada a seguir:

Detecção:

A corrente de tunelamento (100pA-1nA) é detectada por um pequeno circuito (pré-amplificador) que converte a corrente em um sinal de voltagem de alguns milivolts (10 mV/nA). Alguns cuidados devem ser tomados para limitarem-se os efeitos de interferência e ruído, pois baixíssimas correntes e altas impedâncias estão envolvidas: um amplificador operacional de alto desempenho (baixa corrente bias e alta impedância de entrada), atuando com um ganho de 10^7, é utilizado com uma blindagem especial (guard) para evitar correntes de fuga e interferências eletromagnéticas. Um cabo coaxial especial, contra ruído triboelétrico, o mais curto possível, realiza a conexão entre a junção de tunelamento e o pré-amplificador. Além disso, o amplificador operacional é responsável pela aplicação da voltagem na junção de tunelamento, através de seus terminais de entrada.

Retroalimentação:

O sinal proveniente do pré-amplificador (faixa de milivolts) é comparado a uma tensão de referência, correspondente à corrente a ser mantida na junção de tunelamento. O sinal erro obtido — associado às flutuações da distância ponta-amosta — é amplificado, integrado no tempo e enviado a um amplificador de alta voltagem (faixa de -150V a +150V). A voltagem resultante é aplicada ao sistema piezelétrico responsável pelo deslocamento vertical da ponta. A corrente de tunelamento (distância ponta-amosta) é
assim mantida constante durante a varredura. O fator característico desse sistema de retroação é sua frequência de corte (ν_c); ela é determinada a partir do compromisso entre a rapidez da atuação do sistema (ν grande) e a sua estabilidade (ν pequena)1.

Leitura:

O sinal que sai do circuito integrador, aplicado ao elemento piezelétrico e depois da amplificação de alta voltagem, é também lido pelo microcomputador, através de um conversor analógico-digital de 12 bits. Porém, antes da leitura, esse sinal deve ser processado de maneira a obter-se a maior razão sinal/ruído. Geralmente, o sinal de interesse (da ordem de alguns milivolts) é sobreposto a uma voltagem constante (de alguns volts), que estabelece a distância ponta-amostra necessária para o regime de tunelamento. Devido a isso, o sinal precisa passar por um circuito que compensa essa voltagem constante (offset), amplifica o sinal proveniente da varredura — de maneira que as variações ocupem toda a faixa de operação do conversor AD (-10V a 10V) — e realiza uma filtragem dos ruídos de alta frequência. O controle do offset e do filtro utilizado é feito manualmente pelo operador. Já o ganho é definido através do programa de controle, que envia bits de comando para uma chave multiplexadora através de uma porta lógica digital.

Varredura:

A varredura é totalmente controlada pelo microcomputador. Dois conversores digital-analógico de 16 bits geram as rampas de voltagem x e y. As rampas vão sempre de -10V a 10V para aproveitar toda a faixa de operação dos conversores. Um divisor de tensão variável (com uma chave multiplexadora acionada através de 3 bits de controle) realiza a divisão dos sinais até a faixa associada a área de varredura selecionada no menu do programa de controle. Cada sinal de varredura (x e y) passa por um amplificador de alta voltagem (faixa de -150V a 150V) e é aplicado ao sistema piezelétrico.
Isolamento:

Os ruídos elétricos gerados pelo funcionamento do microcomputador são relativamente altos e certamente produziriam interferências danosas aos sinais de nossos circuitos eletrônicos. Por isso, estão incluídos no circuito, módulos de isolamento elétrico por onde passam todos os sinais enviados e recebidos pelas placas de interface colocadas no microcomputador de controle.
Figura 2.10: Diagrama de blocos do sistema eletrônico associado ao microcomputador de controle. 1) Retroalimentação; 2) Leitura, 3) Varredura. As setas cheias indicam os caminhos dos sinais analógicos e as setas tracejadas indicam os bits de controle.
2.4 MICROCOMPUTADOR

O último constituinte de um STM é o microcomputador. Ele é responsável pelo controle da varredura (geração das rampas de voltagem e determinação dos parâmetros) e pela aquisição e tratamento das imagens. Para a realização dessas tarefas, a seguinte configuração foi adquirida: um microcomputador com processador 486 DX2 de 66 MHz, 16 Mb de memória RAM, um monitor colorido SVGA, uma placa de vídeo de alto desempenho (local bus, 1Mb) e um sistema completo de placas de aquisição (conversor A/D de 12 bits, conversores D/A de 12 e 16 bits, saídas TTL bidirecionais).

O programa de controle foi desenvolvido por alunos de iniciação científica, a partir do compilador Borland C++ para 'Windows' (versão 4.0), adotando-se a programação orientada a objetos. Com essa escolha, foi possível a criação de um programa, ao mesmo tempo, veloz, eficiente (características da linguagem C) e de fácil operação (recursos do 'Windows'), com uma estrutura aberta que permitisse a introdução de novas rotinas. O programa apresenta uma janela principal com seis menus: arquivo, calibração, parâmetros, varredura, visualização e tratamento de dados.

Arquivo:

Este menu permite gravar e abrir os arquivos de dados. Nos arquivos estão incluídos, além dos dados originais, todos os parâmetros de varredura.

Calibração:

Os dados relevantes da calibração do microscópio são visualizados, podendo também ser modificados em caso de alteração do circuito eletrônico ou da cabeça de medida. São estes as constantes de alongamento dos tubos piezoeletônicos (k_o), as resistências dos divisores do sinal de varredura e as resistências do ganho do sinal topográfico.
Parâmetros:

Neste menu são apresentados os parâmetros de varredura (fig. 2.11). O usuário pode determinar a área a ser varrida, a velocidade de varredura (número de passos por dado), o ganho do sistema eletrônico, a direção de varredura (x ou y), o número de varreduras, se os dados serão apresentados durante a varredura ou depois, e se a determinação de alguns dos parâmetros será manual (acionando-se potenciômetros e chaves no painel de controle do sistema eletrônico) ou automática (o programa encarrega-se de ajustar todos os parâmetros através dos bits de controle).

Varredura:

A partir dos parâmetros estabelecidos no menu parâmetros, o programa gera as rampas de tensão através dos conversores D/A de 16 bits (sempre de -10V a 10V), e adquire, simultaneamente, o sinal do microscópio através de um conversor A/D de 12 bits. Em cada varredura, é obtida uma imagem com 100 linhas de 100 pontos cada (10.000 pontos no total). A velocidade da varredura é definida pelo número de pequenos incrementos na rampa de tensão entre cada aquisição de sinal (número de passos por dado).

Visualização:

A visualização das imagens obtidas pode ser feita em escala de cinza (2D) ou em três dimensões (fig. 2.12). Neste caso, as imagens podem ser rotacionadas, para que os ângulos de visualização mais apropriados sejam conseguidos. Além disso, curvas de perfil em regiões escolhidas da imagem podem ser apresentadas.

Tratamento de dados:

Os recursos de subtração de plano e filtro de medianas estão disponíveis para que os dados originais possam ser tratados, buscando uma melhor compreensão e interpretação das imagens.
Figura 2.11: Menu dos parâmetros de controle da varredura

Figura 2.12: Visualização em escala de cinza (2D) e 3D.
REFERÊNCIAS

43
Capítulo 3

CALIBRAÇÃO

3.1 INTRODUÇÃO

A calibração de um STM consiste basicamente na obtenção dos valores efetivos dos coeficientes de alongamento de seus elementos piezelétricos que realizam os deslocamentos da ponta. Assim, conhecendo-se as voltagens aplicadas pelo sistema eletrônico nestes elementos, chega-se aos valores das áreas varridas (calibração no plano x-y) e das variações na altura da ponta (calibração na direção z). Ela é necessária, pois os valores originais dos coeficientes de alongamento dos tubos, fornecidos pelo fabricante, são alterados de maneira não controlada durante a montagem do sistema de deslocamento, devido à separação dos eletrodos e à colagem dos tubos (ver sub-seção 2.2.4).

Dois métodos são usados para a calibração de um STM: um delas é a determinação ex-situ dos deslocamentos dos tubos em função de uma voltagem aplicada, com técnicas como interferometria óptica, sensores mecânicos¹, etc.; o outro consiste na utilização de imagens de estruturas atômicas regulares já conhecidas como referência (calibração in-situ).
3.2 INTERFEROMETRIA ÓPTICA

A técnica de interferometria de Michelson foi adotada para a calibração inicial. Esta técnica, apesar de não ser muito precisa — sua resolução é da ordem de uma fração do comprimento de onda da luz utilizada —, é bastante simples e de fácil realização.

Foi utilizado um interferômetro didático (do laboratório de ótica do Prof. Mikiya Maramatsu) que possui: um semi-espeelho, um espelho fixo com regulagem precisa da inclinação e um espelho com posição variável. No lugar deste último, foi posicionado o tubo piezoeletérico, com um espelho adaptado ao porta-ponta (já colado ao tubo), de modo a permitir medidas na três direções ortogonais (ver figura 3.1).

![Diagrama do interferômetro de Michelson]

Figura 3.1: Interferômetro de Michelson: 1) semi-espeelho; 2) espelho fixo; 3) tubo piezoeletérico com espelho preso.

A luz de um laser de hélio-neônio ($\lambda = 6.328\text{Å}$) incide sobre o semi-espeelho que separa o feixe numa parte refletida e outra transmitida. O feixe refletido incide sobre o espelho fixo, e o transmitido sobre o espelho preso ao tubo. Os dois feixes se encontram
novamente no semi-espalho, e incidem sobre um anteparo, formando um padrão de interferência com franjas circulares (se o sistema for alinhado corretamente).

Variando-se a tensão aplicada aos eletrodos dos tubos e contando-se o número de franjas que passam por um certo ponto fixo, obtém-se o deslocamento total Δd realizado pelo elemento piezelétrico

$$\Delta d = \frac{n\lambda}{2},$$ \hspace{1cm} (3.1)

onde n é o número de franjas contadas e λ é o comprimento de onda do laser. O valor do coeficiente de alongamento k é dado por

$$k = \frac{\Delta d}{\Delta V},$$ \hspace{1cm} (3.2)

onde ΔV é variação da voltagem aplicada.

Com este procedimento, foram obtidos os coeficientes de alongamento nas direções x, y e z para cada tubo utilizado no STM. Os valores de k para a direção vertical z ficaram sempre próximos aos calculados a partir dos dados originais do fabricante\(^2\), indicando que as modificações no tubo não alteram significativamente seu comportamento nesta direção. Os valores dos coeficientes nas direções x e y também foram obtidos, mas não foram considerados, devido a um fator de erro incontrolável (a direção normal ao espelho nunca é perfeitamente alinhada com a direção efetiva de varredura) e à possibilidade de obter-se a calibração \textit{in-situ}, através das imagens de grafite.
3.3 GRAFITE — in-situ

A grafite ou grafita é um dos materiais mais estudados em microscopia de tunelamento\(^3\)\(^-\)\(^5\), servindo principalmente como amostra padrão para a calibração e para os testes iniciais de um STM. Sua estrutura, formada por planos fracamente ligados de átomos de carbono, permite uma fácil clivagem da amostra, resultando em uma superfície plana (a nível atômico) e inerte, adequada para medidas no ar.

A grafite possui uma estrutura cristalina hexagonal, ilustrada na figura 3.2. Em cada plano, os átomos de carbono estão dispostos em um arranjo de “favos de mel” (honeycomb), com fortes ligações covalentes entre eles. O parâmetro de rede \(a\) é 2,46 Å, sendo a distância entre primeiros vizinhos de 1,42 Å. Os planos se mantêm unidos por forças de Van der Wall (fracas), e são espaçados de 3,35 Å (parâmetro de rede axial \(c\) de 6,70 Å). Os planos consecutivos são desalinhados entre si, formando uma sequência de empilhamento do tipo ABABAB\(^*\) que dá origem a dois sítios não-equivalentes. Os sítios \(\alpha\) de um dado plano possuem um vizinho em cima e em baixo nos planos diretamente adjacentes. Já os sítios \(\beta\) estão localizados entre os centros dos hexágonos (hollow sites) formados pelos átomos dos planos contíguos\(^6\).

Os cristais naturais de grafite são raros e geralmente muito pequenos. Por isso, o tipo de grafite mais usado nos estudos de STM é o HOPG (highly-oriented pyrolytic graphite), material policristalino sintético formado por grãos de dimensões de alguns micrômetros, com alta orientação de seus eixos cristalinos \(c\) — ângulo de desorientação de 1\(^o\) a 2\(^o\). A preparação das amostras é simples: a clivagem é feita colando-se uma fita adesiva na superfície e puxando-a delicadamente; camadas de grafite irão se descolar junto com a fita, deixando exposta uma nova superfície, limpa, atomicamente plana, e inerte.

\(^*\) Os planos também podem se empilhar na sequência ABCABC, mas este arranjo é mais raro.
Figura 3.2: Estrutura da grafite com empilhamento dos planos na sequência ABABAB. (a) Vista superior; (b) Vista lateral. a=2,46 Å e c=6,70 Å.

A calibração in situ é feita através de uma imagem de grafite com resolução atômica, como mostrada na figura 3.3. Sabendo-se o valor total da rampa de voltagem aplicada ao tubo piezoeletrico durante a varredura (x ou y) e a distância entre 2 pontos da imagem (calculada a partir do parâmetro de rede a), obtém-se diretamente o coeficiente k de alongamento do tubo para as direções x e y. A calibração na direção z não é possível através de uma imagem de grafite, pois a altura aparente dos átomos pode variar consideravelmente de uma imagem para a outra, devido a interações entre a ponta e a amostra.

Em geral, somente três dos seis átomos da célula hexagonal são visíveis, formando um aparente padrão hexagonal compacto (fig. 3.3). Este fenômeno tem origem na assimetria dos sítios dos átomos de carbono, pois a densidade de carga em torno dos sítios α é menor, devido à redistribuição eletrônica com os átomos da camada inferior. Este fenômeno não acontece para os sítios β, que não possuem vizinhos na camada inferior. Sendo assim, a contribuição destes últimos para a densidade de estados no nível de Fermi é maior, e são estes átomos dos sítios β que aparecem predominantemente nas imagens.
Figura 3.3: Imagem da superfície da grafite. Área de 22x22 Å² e escala de cinza na faixa de 8 Å. Somente três dos seis átomos da célula hexagonal da superfície podem ser vistos, formando um aparente padrão hexagonal compacto.
Além de sua utilidade para a calibração do instrumento, as imagens de grafite apresentam algumas características anômalas, que não podem ser explicadas pela simples hipótese de que uma imagem corresponde aos contornos topográficos da superfície (contornos de LDOS constante). Estas anomalias, bem como a fácil obtenção de imagens com alta resolução, incitaram vários estudos sobre este material.

Giant corrugations:

Uma das anomalias é a ocorrência de valores altos e variáveis para a altura aparente dos átomos de carbono (giant corrugations), principalmente em medidas no ar. Valores de frações de Angström até 20 Å já foram observadas. Uma explicação vem da configuração eletrônica peculiar da grafite, com somente um único estado na superfície de Fermi (que contribui para a densidade de estados ρ(E_F)) o qual possui uma estrutura nodal, apresentando máximos associados aos átomos de carbono (cantos da Zona de Brillouin) e um mínimo singular nos centros dos hexágonos (centro da Zona de Brillouin), que provocaria o aumento nas alturas aparentes.

Porém, os altos valores experimentais da amplitude destas corrugações só podem ser compreendidos considerando também a ação de forças elásticas entre a ponta e a amostra. Soler e colaboradores estimaram que as forças exercidas por uma ponta afilada (com alguns átomos no ápice), localizada muito próxima à superfície da grafite, seriam suficientes para deformar elásticamente os planos de carbono (fracamente ligados), levando a um aumento aparente das amplitudes observadas. Esta interpretação sofre de um problema, pois a energia elástica envolvida nesta interação local (alguns Angström) seria muito grande, tornando uma ponta com poucos átomos completamente instável. A interpretação mais aceita atualmente foi dada por Mamin e colaboradores, seguindo Coombs e Pethica, que propuseram que a interação elástica entre a ponta e a superfície da grafite é mediada por uma camada de impurezas isolantes, como gases adsorvidos. A ponta, com um perfil mais arredondado, empurra esta camada isolante que, por sua vez, produz uma deformação em uma área maior da superfície (algumas centenas de Angström). A resolução atômica pode, mesmo assim, ser obtida, considerando que a
corrente de tunelamento se estabelece a partir de uma protuberância da ponta (mini ponta) penetrando na camada isolante.

Multiple tips:

Um outro efeito anômalo bastante estudado6,17-19 é a distorção ou mudança da forma observada da célula unitária da superfície de grafite. Como já foi dito, nas imagens mais comuns, a superfície apresenta uma simetria hexagonal compacta, mas já foram observadas imagens com a própria estrutura de favo de mel19, com simetria retangular, com somente linhas de átomos, ou com os átomos de forma triangular ou retangular6 (ver figura 3.4). A explicação mais aceita para este fenômeno é o efeito conhecido como pontas múltiplas (multiple tips), que ocorre quando dois ou mais átomos do ápice da ponta contribuem efetivamente na passagem da corrente de tunelamento. Mizes e colaboradores17 e Soethout6 mostraram que as estruturas anômalas observadas em uma imagem podem ser reproduzidas através da sobreposição de duas ou mais “imagens”, cada uma delas associada a uma destas minipontas. O peso de cada contribuição está associado à distância entre cada miniponta e a superfície da amostra. Uma confirmação deste efeito é a mudança de padrão aparente durante uma mesma varredura, indicando que a configuração da ponta foi modificada.
Figura 3.4: Imagens da superfície da grafite: (a) padrão 'favo de mel', área de 25x25 \(\text{Å}^2\) e escala de cinza na faixa de 4 \(\text{Å}\); (b) átomos com forma triangular, área de 14x14 \(\text{Å}^2\) e escala de cinza na faixa de 11 \(\text{Å}\).
REFERÊNCIAS

Capítulo 4

FILMES DE OURO

4.1 INTRODUÇÃO

A primeira aplicação para nosso microscópio foi um estudo da morfologia de filmes finos de ouro em colaboração com o Laboratório de Microscopia Eletrônica (LME) do IFUSP. O ouro é um dos materiais utilizados para cobrir as amostras não condutoras a serem investigadas pela técnica de microscopia eletrônica de varredura (SEM, scanning electron microscopy). A cobertura é necessária para a formação de um caminho condutor que possibilite a dissipação dos elétrons incidentes do feixe de varredura, evitando efeitos de acumulação de cargas. O ouro é escolhido por ser um material inerte (metal nobre) e oferecer um alto contraste nas imagens de SEM, devido a seu grande número de elétrons secundários. No LME são utilizadas duas técnicas para a deposição de filmes finos: a evaporação térmica no vácuo e a técnica de sputtering, sendo a última a adotada para o crescimento de filmes de ouro.

Filmes finos metálicos já foram estudados por STM em inúmeros trabalhos \(^2\text{–}^3\); dentre eles, alguns possuem semelhanças com o trabalho aqui apresentado: Hammiche e Webb\(^2\) estudaram os estágios iniciais da evaporação do ouro em substratos de HOPG, Mazur e colaboradores\(^3\) compararam as técnicas para a deposição de filmes condutores (de alguns tipos de materiais, inclusive Au) sobre materiais isolantes para possibilitar medidas de STM. Outros trabalhos enfatizaram o estudo quantitativo da rugosidade de superfícies através de imagens de STM\(^6\text{–}^8\).
Inicialmente, neste trabalho, foi feita a comparação entre as duas técnicas de crescimento. Em seguida, centrando o estudo na técnica de evaporação por *sputtering*, foram determinados os melhores parâmetros de crescimento (taxa de deposição e espessura) para a produção de filmes homogêneos e com baixa rugosidade que pudessem ser utilizados em microscopia eletrônica de varredura com o objetivo de estudarem-se amostras isolantes sem perda de resolução. Paralelamente, foram analisados pequenos ‘cristais de ouro’, para comparar-se a morfologia da sua superfície com a dos filmes crescidos.

A seguir, uma breve descrição das duas técnicas de evaporação é apresentada:\1:\n
evaporação térmica em vácuo:

Nesta técnica, utiliza-se uma câmara de vácuo, com pressão de cerca de 10^{-5} torr. O material a ser depositado é colocado em uma fonte de evaporação (cadinho ou fio de tungstênio enrolado) por onde irá fluir uma alta corrente elétrica (alguns Ampère), aquecendo o material até a sua evaporação. O substrato é posicionado a uma distância de cerca de 10 cm, suficiente para que ele não seja aquecido sob a influência do filamento de tungstênio. O vácuo é necessário para evitar a incorporação de impurezas no filme e para que os átomos evaporados tenham um alto caminho livre médio, podendo se dispersar em todas as direções e atingir o substrato. A espessura do filme pode ser estimada conhecendo-se a massa de material evaporada, a distância do substrato à fonte de evaporação e o ângulo sólido interceptado pelo substrato (um outro método será apresentado mais adiante).

evaporação por sputtering:

Nesta técnica, utiliza-se uma câmara, com pressão parcial de argônio de cerca de 10^{-2} torr, contendo dois eletrodos em forma de disco. Ao se aplicar uma alta diferença de potencial entre os eletrodos (~1500 V), o gás de argônio é ionizado por um processo em cascata — elétrons são acelerados pelo campo elétrico aplicado, ionizando átomos de Ar e gerando íons Ar$^+$ e elétrons livres que também são acelerados, ionizando novos átomos de Ar e formando assim um processo contínuo. Os íons Ar$^+$ são acelerados no sentido oposto aos elétrons, e vão bombardear a superfície do catodo (também chamado de alvo), feito do
material a ser depositado (neste caso o ouro). Com o choque, os íons Ar\(^+\) transferem momento aos átomos da superfície, arrancando tanto elétrons, que irão reforçar o efeito em cascata, como os próprios átomos de Au que vão se dispersar em todas as direções\(^*\). Alguns destes átomos atingem a superfície do substrato, posicionado sobre o anodo, depositando-se e formando o filme de ouro (ver figura 4.1). A taxa de deposição, ou velocidade de crescimento do filme, pode ser controlada variando-se a corrente elétrica de descarga, resultante do processo de ionização dos átomos de argônio.

![Diagram](image)

Figura 4.1: Esquema da câmara de sputtering.

\(^*\) *Sputtering* significa o processo de arrancamento de material através da colisão de partículas aceleradas. Este processo é também usado com outros objetivos, além da deposição de filmes finos (e.g. corrosão controlada de materiais), e existe uma vasta gama de técnicas envolvidas na formação e utilização deste processo\(^9,10\).
4.2 RESULTADOS E DISCUSSÕES

Os filmes de Au foram todos depositados sobre substratos de HOPG. Este material foi escolhido por apresentar, após a clivagem com uma fita adesiva, uma superfície limpa, inerte e atomicamente plana (ver capítulo 3). Sendo assim, pode-se atribuir a formação das estruturas observadas nas imagens de STM somente ao processo de crescimento dos filmes.

4.2.1 Comparação das técnicas de crescimento

Nesta primeira etapa, foram crescidos três filmes de ouro com espessura aproximada de 300 Å, que é a espessura típica adotada para o recobrimento das amostras para medidas de SEM no LME. No primeiro filme (A) foi utilizada a técnica de evaporação térmica em vácuo; nos outros dois, a técnica de evaporação por sputtering: um deles com uma taxa de deposição alta (B) e outro com taxa de deposição baixa (C) (ver tabela 4.1).

<table>
<thead>
<tr>
<th>Filme</th>
<th>Procedimento de crescimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>evaporação térmica em vácuo</td>
</tr>
<tr>
<td>B</td>
<td>evaporação por sputtering — j = 30 mA.cm(^{-2})</td>
</tr>
<tr>
<td>C</td>
<td>evaporação por sputtering — j = 5 mA.cm(^{-2})</td>
</tr>
</tbody>
</table>

Tabela 4.1: Relação dos filmes (A, B e C) e seus respectivos modos de crescimento, onde j é a densidade de corrente de sputtering.
Os filmes foram analisados por SEM e por STM. Nas micrografias de SEM apresentadas na figura 4.2, observa-se que:

- No filme A (Fig. 4.2.a) existem rachaduras, ou fissuras, com larguras de até 100 nm, em toda a região observada, indicando que o filme é pouco homogêneo e bastante rugoso.
- No filme B (Fig. 4.2.b) também existem rachaduras, aproximadamente uma ordem de grandeza menores, indicando que o filme B é mais homogêneo e liso que o filme A.
- A granulosidade do filme C quase não é observada (Fig. 4.2.c), indicando que o filme é bem mais liso e homogêneo que os outros dois.

Nas imagens de STM, podem ser observadas estruturas menores, que não são visualizadas nas micrografias de SEM, devido a sua resolução limitada, permitindo um estudo mais detalhado da morfologia dos filmes. Na figura 4.3 são apresentadas imagens dos três filmes onde observa-se que:

- Nos três filmes, os átomos de ouro se dispõem em pequenos aglomerados (clusters) que, por sua vez, também se aglomeram formando estruturas maiores (superestruturas).
- Estas ‘superestruturas’ têm um tamanho médio de 50, 30 e 20 nm, nos filmes A, B e C respectivamente. Nos filmes A e B, a forma destes grandes aglomerados não é bem definida; já no filme C eles são esferoidais.
- Na fig. 4.3.a existe uma fenda ou rachadura semelhante à observada na imagem de SEM (fig. 4.2.a).

Concluiu-se que a técnica de evaporação por sputtering produz filmes mais homogêneos que a técnica de evaporação térmica em vácuo. Além disso, percebe-se que, na primeira técnica, a taxa de deposição dos filmes é um parâmetro relevante na determinação da qualidade do filme (uma taxa baixa garante um filme mais homogêneo, com rugosidade menor).
Figura 4.2: Micrografias de SEM da primeira série de filmes de Au: (a) Filme A; (b) Filme B; (c) Filme C. As escalas estão nas próprias imagens.
Figura 4.3: Imagens de STM dos filmes de Au da primeira série:
(a), (b) e (c) Filme A: áreas de 735x735 nm², 370x370 nm² e 185x185 nm² respectivamente;
(d), (e) e (f) Filme B: áreas de 735x735 nm², 370x370 nm² e 185x185 nm² respectivamente;
(g), (h) e (i) Filme C: áreas de 735x735 nm², 370x370 nm² e 185x185 nm² respectivamente;
4.2.2 Influência da taxa de deposição

Em seguida, foi realizado um estudo mais sistemático da influência da taxa de deposição na evaporação por sputtering. Para isso foi necessária uma calibração inicial das taxas de crescimento em função da densidade de corrente de descarga no aparelho utilizado no LME. Foram crescidos filmes, com diferentes taxas de deposição, sobre lamínulas de vidro. A quantidade de ouro depositada em cada lamínula foi determinada medindo-se a massa do substrato antes e depois da deposição com uma micro-balança. A partir da massa de ouro depositada, as espessuras dos filmes foram calculadas, chegando-se às taxas de deposição (razão da espessura do filme pelo tempo de deposição) apresentadas na tabela 4.2.

<table>
<thead>
<tr>
<th>j (mA.cm(^{-2}))</th>
<th>Taxa de deposição (Å.s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,7</td>
</tr>
<tr>
<td>5</td>
<td>1,3</td>
</tr>
<tr>
<td>10</td>
<td>2,5</td>
</tr>
<tr>
<td>20</td>
<td>3,1</td>
</tr>
<tr>
<td>30</td>
<td>3,7</td>
</tr>
<tr>
<td>50</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Tabela 4.2: Taxas de deposição de filmes de ouro em função da densidade de corrente de descarga (j).

Uma nova série de seis filmes de ouro foi produzida, todos com espessura de 500 Å, variando-se as taxas de deposição segundo a tabela 4.2, ou seja, utilizando uma densidade de corrente diferente para cada filme. Na tabela 4.3 são relacionados os filmes com suas respectivas taxas de deposição e rugosidades. A rugosidade da superfície dos filmes é determinada como sendo o valor RMS (root mean square) das alturas das imagens de STM*, com área de 370x370 nm\(^2\), após a subtração de um plano de inclinação melhor ajustado (que é originalmente sobreposto à imagem devido ao efeito de inclinação do tubo piezoelettrico de varredura)\(^6,8\).

\[RMS = \sqrt{\frac{1}{N} \sum_{i=0}^{N} h_i^2} \], onde \(h_i \) é a altura de cada ponto da imagem de STM.

* RMS = \(\sqrt{\frac{1}{N} \sum_{i=0}^{N} h_i^2} \), onde \(h_i \) é a altura de cada ponto da imagem de STM.
<table>
<thead>
<tr>
<th>Filme</th>
<th>Taxa de deposição (Å. s⁻¹)</th>
<th>Rugosidade RMS (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0,7</td>
<td>18,8</td>
</tr>
<tr>
<td>E</td>
<td>1,3</td>
<td>24,0</td>
</tr>
<tr>
<td>F</td>
<td>2,5</td>
<td>20,5</td>
</tr>
<tr>
<td>G</td>
<td>3,1</td>
<td>22,1</td>
</tr>
<tr>
<td>H</td>
<td>3,7</td>
<td>10,7</td>
</tr>
<tr>
<td>I</td>
<td>2,0</td>
<td>11,9</td>
</tr>
</tbody>
</table>

Tabela 4.3: Taxa de deposição dos filmes (D-I) e respectivas rugosidades RMS.

Na figura 4.4 são apresentadas imagens obtidas por STM com diferentes áreas de varredura. Nestas imagens observam-se diferentes tipos de arranjo:

- Nos filmes D, E, F, G, e I, os átomos se aglomeram, formando ilhas com fronteiras (vales profundos) bem definidas: tamanho e formas homogêneas. Nos filmes D e E as ilhas são um pouco alongadas; já nos filmes F e G, as ilhas têm uma tendência de se alinharem em uma determinada direção, formando pequenos grupos de duas ou mais ilhas.

- No filme H, os átomos formam aglomerados bem menores e sem fronteiras definidas, que se distribuem na superfície de forma inhomogênea, dando origem a superestruturas de forma irregular e tamanhos variáveis.

Analizando os valores de rugosidade RMS (tabela 4.3), percebe-se uma tendência do aumento da rugosidade dos filmes, com o aumento da taxa de deposição para os filmes D, E, F e G (apesar da rugosidade do filme E ser maior). Na deposição dos filmes H e I, a pressão parcial de argônio teve que ser bastante aumentada para gerar altas correntes de descarga (tabela 4.2), e provavelmente interferiu no processo. Sendo assim estes filmes apresentaram morfologias e rugosidades diferentes do resto do conjunto. Apesar desta variedade das morfologias observadas nas imagens de STM e dos dados quantitativos de rugosidade não serem totalmente conclusivos (valores mais precisos exigiriam a análise de um maior número de imagens), pode-se concluir, em conjunto com o estudo dos filmes B e C (primeira série de amostras), que taxas de deposição mais lentas produzem, geralmente, filmes mais homogêneos e menos rugosos. Sendo assim, a taxa de deposição de 0,7 Å.s⁻¹ (densidade de corrente de descarga de 2 mA.cm⁻²) foi adotada para a produção da última série de filmes.
Figura 4.4: Imagens de STM dos filmes de Au da segunda série: (a) Filme D, (b) Filme E, (c) Filme F, (d) Filme G, (e) Filme H, (f) Filme I. Todas as imagens possuem a mesma área de 370x370 nm².
4.2.3 Influência da espessura dos filmes

Finalmente, foi produzida uma série de sete filmes com diferentes espessuras (variando-se o tempo de deposição — ver tabela 4.4), a fim de estudar o comportamento da rugosidade em função da espessura e determinar a espessura mínima necessária para que o filme condutor se torne contínuo.

<table>
<thead>
<tr>
<th>Filme</th>
<th>Espessura (Å)</th>
<th>Rugosidade RMS (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>K</td>
<td>40</td>
<td>9.8</td>
</tr>
<tr>
<td>L</td>
<td>70</td>
<td>6.9</td>
</tr>
<tr>
<td>M</td>
<td>100</td>
<td>6.2</td>
</tr>
<tr>
<td>N</td>
<td>150</td>
<td>7.9</td>
</tr>
<tr>
<td>O</td>
<td>300</td>
<td>14.5</td>
</tr>
<tr>
<td>P</td>
<td>500</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Tabela 4.4: Espessuras dos filmes (J-P) e respectivas rugosidades, calculadas como sendo o valor RMS médio das alturas de imagens de STM com área de 185x185 nm². A rugosidade do filme J não foi determinada, pois não foi possível a obtenção de imagens de STM apropriadas.

No gráfico apresentado na figura 4.5, observa-se que nos filmes de 100 a 500 Å, a rugosidade cresce de forma contínua com o aumento da espessura. Este resultado era esperado, indicando um comportamento conhecido na literatura para vários tipos de filmes⁶. Entre 70 e 100 Å, ocorre um mínimo, com a rugosidade dos filmes aumentando ligeiramente para espessuras menores. Este mínimo no valor da rugosidade está associado à espessura na qual o filme se torna contínuo. O ligeiro aumento na rugosidade para espessuras menores pode ser explicado pela presença de buracos nos filmes (regiões onde o substrato não foi coberto pelo ouro).
Figura 4.5: Gráfico da rugosidade RMS em função da espessura para os filmes de Au da terceira série.

Nas imagens de STM apresentadas na figura 4.6, observa-se que os filmes de 70 a 500 Å (J, K, L, M e N) são bastante homogêneos, com os clusters de ouro se distribuindo aleatoriamente na superfície. A forma dos clusters é aproximadamente esférica e seu tamanho médio aumenta com a espessura, o que corrobora o fato da rugosidade RMS também aumentar com a espessura⁶. Nos filmes H e I, com espessuras de 20 e 40 Å respectivamente, a obtenção das imagens foi mais difícil, provavelmente devido à camada de ouro ser extremamente fina e descontínua.
Figura 4.6: Imagens de STM dos filmes de Au da terceira série: (a) Filme K, (b) Filme L, (c) Filme M, (d) Filme N, (e) Filme O, (f) Filme P. Todas as imagens possuem a mesma área de 185x185 nm².
4.2.4 ‘Cristais’ de ouro

Além do estudo dos filmes de ouro, foram realizadas medidas em amostras de ouro puro a fim de analisar sua superfície cristalina, e assegurar que as características morfológicas dos filmes tinham origem somente nos processos de deposição. Para obterem-se superfícies atomicamente planas de ouro, aqueceu-se uma pequena quantidade de ouro (99% de pureza) em um forno, até a sua fusão completa \(T = 1064^\circ C\), seguida de um processo lento de resfriamento. Como resultado, obteve-se uma pequena esfera de ouro, com uma superfície brilhante. Este procedimento é semelhante ao descrito por Schneir e colaboradores\(^\text{11}\).

Já é bem conhecido na literatura que a superfície do ouro (em diferentes processos de crescimento e/ou reconstrução) tende a se arranjar em planos cristalinos (111)\(^\text{12}\). Na figura 4.7 é apresentada uma imagem, com área de 320 x 335 nm\(^2\), onde são observados degraus paralelos, associados a terrasços que são provavelmente formados por planos (111). A altura destes degraus pode ser usada para a calibração do STM na direção \(z\). Neste caso, a calibração não foi possível, pois o sinal era muito fraco, no limite da resolução do nosso microscópio, inviabilizando medidas precisas da altura dos degraus. De qualquer maneira, fica evidente nas imagens que as superfícies dos filmes de ouro apresentam uma morfologia bastante diferente da morfologia da superfície cristalina da esfera de ouro.
Figura 4.7: Imagem de STM da superfície cristalina de uma esfera de Au. com área de 320x335 nm². O filtro de Sobel foi utilizado para realçar os degraus na imagem.
4.3 CONCLUSÕES

Neste trabalho, conseguimos otimizar a produção de filmes finos de ouro crescidos no LME pela técnica de evaporação por sputtering, que serão utilizados como cobertura condutora de amostras isolantes ou semicondutoras para estudos no SEM. A técnica de STM demonstrou ser uma ferramenta eficiente no estudo da morfologia dos filmes, possibilitando tanto a análise quantitativa da rugosidade dos filmes (valores RMS), como a análise qualitativa das estruturas da superfície.

Os filmes de ouro com espessura entre 100 e 150 Å, produzidos com taxas de deposição lentas (~1 Å/s), apresentaram alta homogeneidade e baixa rugosidade, mostrando-se perfeitamente adequados para as investigações morfológicas por SEM, pois a estrutura não é detectada pelo instrumento, mesmo no limite de resolução da técnica. Sendo assim, as estruturas originais das amostras não condutoras podem ser identificadas com clareza e sem ambigüidade (ver figura 4.8). Este fato levou o LME a adotar os valores para a taxa de deposição e espessura dos filmes sugeridos neste trabalho na cobertura de amostras não-condutoras.

O sucesso na otimização da produção dos filmes nos levou também a considerar a utilização do mesmo procedimento de cobertura de amostras não-condutoras para a técnica de STM, quando for necessária a determinação de estruturas de dimensões nanoscópicas. Um exemplo será mostrado no próximo capítulo.
Figura 4.8: Imagens de amostras semicondutoras de GaAs, cobertas com filme de ouro, onde são observadas estruturas formadas devido a clivagem. (a) Filme mais espesso (~500 Å) crescido com alta taxa de deposição. (b) Filme com 150 Å de espessura, crescido com uma baixa taxa de deposição (~1 Å/s). Em (a) a granulosidade do filme atrapalha a percepção das estruturas de interesse, já em (b) as estruturas de interesse são visualizadas com clareza.
REFERÊNCIAS

[1] Apostilas do curso de microscopia eletrônica do IFUSP.
Capítulo 5

PONTOS QUÂNTICOS DE InAs

5.1 INTRODUÇÃO

Estruturas semicondutoras de baixa dimensionalidade têm sido alvo de interesse tanto em pesquisa básica como em áreas de aplicações tecnológicas já há algum tempo, pois elas apresentam propriedades eletrônicas e ópticas singulares, diferentes das de um cristal tridimensional (bulk), devido ao confinamento espacial dos elétrons em pelo menos uma dimensão1. Estruturas bidimensionais já foram (e continuam sendo) bastante estudadas e têm sido utilizadas como ‘matéria-prima’ para os mais modernos e eficientes dispositivos eletrônicos e opto-eletrônicos. Nos últimos anos, uma parte dos esforços está se voltando para o estudo de sistemas de uma dimensão, os chamados fios quânticos, e sistemas de dimensão zero, os pontos quânticos.

Os pontos quânticos (ou caixas quânticas) caracterizam-se pelo confinamento dos elétrons nas três direções espaciais, ou seja, eles são cristais de dimensões tão reduzidas que se aproximam do comprimento de onda dos próprios elétrons no material. Alguns processos de criação de pontos quânticos já foram propostos: a formação de nanocristais em uma matriz vítreia, a nanolitografia através de técnicas avançadas de corrosão de estruturas bidimensionais2, etc. Recentemente, foi demonstrada a formação \textit{in-situ} de ilhas de InAs e InGaAs auto-organizadas com dimensões ‘quânticas’, sobre uma matriz de GaAs, através da técnica de MBE3.

72
A formação *in-situ* de pontos quânticos em uma câmara de MBE é conseguida aproveitando-se a transição espontânea, descrita pelo modelo de Stranski-Krastanov⁴, do modo de crescimento de 2D para 3D, que ocorre quando se deposite um material sobre um substrato com parâmetro de rede diferente — a diferença entre os parâmetros do InAs e GaAs é de cerca de 7%. No início do crescimento, são formadas camadas epitaxiais tensionadas de InAs, até o filme atingir uma certa espessura crítica na qual ocorre a transição. A energia do sistema é então reduzida com a formação de ilhas de InAs (com parâmetro de rede do próprio material) e a deformação do substrato de GaAs, que permitem a relaxação das tensões acumuladas⁵.

Vários artigos relatam a produção de pontos quânticos de InAs e InGaAs por MBE⁶-¹¹ e técnicas semelhantes¹²-¹⁶. No entanto, os fenômenos envolvidos neste tipo de transformação morfológica, que implica na formação das ilhas, ainda não são bem compreendidos. Alguns artigos discutem a importância do efeitos cinéticos de superfície e dos efeitos termodinâmicos¹⁰,¹⁶. Outros enfatizam a influência das condições de crescimento (temperatura, pressão parcial de As, quantidade de In) sobre a distribuição e organização das ilhas, e sobre seu tamanho⁶,¹¹,¹⁶. Na caracterização estrutural das ilhas de InAs, já foi relatada a utilização das técnicas de: microscopia eletrônica de transmissão, tanto na superfície de crescimento como em amostras clivadas⁶-¹⁰,¹⁶, microscopia de força atômica¹¹, e microscopia de tunelamento¹²-¹⁵. A aplicação tecnológica dos pontos quânticos, como a fabricação de *lasers*, permanece ainda como desafio¹⁷, já que a produção de dispositivos optoeletrônicos eficientes implica em exigências severas: as ilhas devem ser cristalinas, apresentar altíssimo confinamento quântico (tamanho reduzido), baixa dispersão do tamanho, alta pureza, etc.

Neste trabalho, são relatadas a produção *in-situ* de ilhas de InAs sobre substrato de GaAs pela técnica de MBE, e sua caracterização direta por STM e AFM. Dois ‘novos’ métodos de preparação de amostras semicondutoras para medidas de STM no ar são propostos.
5.2 PARTE EXPERIMENTAL

5.2.1 Preparação das amostras

A preparação e o crescimento das amostras foram realizados pelo Prof. Alain André Quivy. Os substratos de GaAs passaram por um processo padrão de limpeza antes de serem colados em blocos de Mo e introduzidos na câmara do sistema MBE. As estruturas crescidas consistiram de uma camada buffer de GaAs com 1 μm de espessura, dopada com silício \(N = 2 \times 10^{18} \text{ cm}^{-3} \) e crescida a 600 °C, e uma fina camada de InAs, crescida a 500 °C. A espessura crítica, associada à transição 2D-3D, para estas condições de crescimento, foi determinada em uma amostra de calibração através do monitoramento das mudanças no padrão de difração de RHEED (reflection high-energy electron diffraction), chegando-se ao valor de ~1,8 monocamadas (MC). Duas séries de amostras foram crescidas: a primeira serviu como teste inicial para comprovar a formação das ilhas de InAs; na segunda, variou-se a espessura nominal da camada de InAs de 1,8 MC até 3,0 MC. A taxa de crescimento de InAs de 0,04 MC/s foi escolhida a fim de permitir paradas do crescimento com precisão de 0,01 MC (ver tabela 5.1).

<table>
<thead>
<tr>
<th>Amostra #</th>
<th>Espessura nominal da camada de InAs (MC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>série 1:</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>2,6</td>
</tr>
<tr>
<td>601</td>
<td>1,9</td>
</tr>
<tr>
<td>602</td>
<td>1,8</td>
</tr>
<tr>
<td>603</td>
<td>1,6</td>
</tr>
<tr>
<td>série 2:</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>0,0</td>
</tr>
<tr>
<td>616</td>
<td>2,0</td>
</tr>
<tr>
<td>617</td>
<td>2,2</td>
</tr>
<tr>
<td>618</td>
<td>2,4</td>
</tr>
<tr>
<td>619</td>
<td>2,6</td>
</tr>
<tr>
<td>620</td>
<td>13,8</td>
</tr>
<tr>
<td>621</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Tabela 5.1: Relação das amostras crescidas com as respectivas espessuras da camada de InAs depositada. A amostra 615 consiste somente da camada buffer de GaAs, sem cobertura de InAs.
5.2.2 Caracterização

As superfícies de materiais semicondutores são extremamente reativas devido à existência de ligações pendentes (dangling bonds); quando expostas ao ar ambiente, elas são rapidamente cobertas por uma camada de óxido que impede a operação direta no ar de um STM. Para transpor este obstáculo, as amostras já crescidas passaram por um processo de preparação para a remoção da camada de óxido, sendo mergulhadas em HCl por 2 minutos e enxaguadas com água corrente deionizada por 10 minutos. Imediatamente após a limpeza, pingava-se uma gota de óleo mineral" sobre a superfície da amostra para retardar ao máximo sua reoxidação12,13.

Outra exigência para as medidas de STM em semicondutores é a aplicação de uma voltagem bias entre ponta e a amostra suficiente para superar o gap do material (1,42 eV para o GaAs e 0,36 eV para o InAS a 300 K). As varreduras foram realizadas com voltagens bias aplicadas na faixa de 2 a 3,5 V e corrente de tunelamento entre 0,1 e 1 nA. A aplicação de uma voltagem bias alta, associada a uma baixa corrente de tunelamento, também é desejável, pois implica que a resistência da junção de tunelamento será mais alta, ou seja, a ponta será deslocada a uma distância maior da superfície, provavelmente sem penetrar na camada de óxido residual, presente mesmo após a limpeza da superfície da amostra. Finalmente, a dopagem com Si foi efetuada para aumentar a condutividade elétrica das amostras, evitando a acumulação de cargas na região de tunelamento, e assim melhorar o sinal.

As amostras das duas séries foram analisadas. Na maioria das tentativas, a corrente de tunelamento se mostrava bastante instável, dificultando a obtenção de imagens satisfatórias e reproduzíveis. No entanto, para uma amostra de cada série, as condições de varreduras foram satisfatórias, \textit{i.e.} a corrente de tunelamento se manteve estável, permitindo a obtenção de imagens reproduzíveis. Concluiu-se que, de alguma maneira, as

* Nas Ref. 12 e 13, os autores utilizam óleo para bomba de vácuo; nós optamos pela utilização de NOJOL, um óleo mineral neutro, muito utilizado pela indústria farmacêutica na preparação e conservação de remédios.
superfícies destas duas amostras, mantiveram-se livres de impurezas, ao contrário das outras amostras, indicando que os processos de limpeza e conservação da amostra ainda devem ser otimizados.

Para comparar os resultados parciais obtidos com as medidas de STM, foram realizadas medidas na mesma série de amostras com o microscópio de força atômica do LPD, no Instituto de Física Gleb Wataghin (UNICAMP) junto à Profa. Dra. Mônica Cotta.

A técnica de AFM utiliza o mesmo princípio que a técnica de STM: a topografia da superfície da amostra é determinada através da varredura de uma ponta (geralmente de forma piramidal) posicionada na extremidade de uma microalavanca (cantilever), com um coeficiente de mola baixíssimo, capaz de se defletir com as mínimas variações nas forças de interação entre a ponta e a superfície. As deflexões da microalavanca são monitoradas por um sistema óptico, que consiste em um feixe de laser que é refletido pela superfície da microalavanca, incidindo em um detector de posição de fotodiodos. Como no STM, um sistema de retroação mantém a deflexão da microalavanca constante durante a varredura, que é realizada também por elementos piezelétricos. Nestas medidas, foi usado o método de contato, onde a varredura é realizada com a ponta suavemente encostada na superfície da amostra18. A vantagem do AFM é que ele permite a realização de medidas em qualquer superfície, até mesmo isolante.

Como uma outra alternativa às medidas diretas de STM, foi realizada uma deposição por sputtering de um filme fino de ouro com 150 Å de espessura sobre a superfície de uma das amostras, a fim de tornar a sua superfície condutora, facilitando as medidas de STM (ver capítulo 4).
5.3 RESULTADOS E DISCUSSÕES

Na figura 5.1 e 5.2 são apresentadas imagens de STM das amostras #600 e #619, respectivamente. Apesar das amostras possuírem a mesma camada nominal de InAs de 2,6 MC, a morfologia das duas superfícies é diferente. Na amostra #600 observam-se claramente as ilhas de InAs, que possuem um tamanho relativamente uniforme: em média, o diâmetro da base é 60 nm e a altura 10 nm. Existe uma tendência de orientação das ilhas em uma dada direção. Já a superfície da amostra #619 é coberta por estruturas alongadas, do tipo fios quânticos. Os fios estão orientados em uma mesma direção e se distribuem de forma compacta em toda a superfície. Eles têm comprimento variável, entre 50 e 200 nm, largura média de aproximadamente 20 nm, e altura variando de 1 a 5 nm.

Os tipos de morfologia observado por nós são bastante semelhantes aos observados nos trabalhos de Guryanov e colaboradores12 e Cirlin e colaboradores13. Nestes trabalhos, as ilhas foram cresidas por MBE, mas com um crescimento por sub-camadas, \textit{i.e.} o crescimento dava-se em ciclos de deposição de 0,5 MC, seguida de uma interrupção de crescimento sob o fluxo molecular de As\textsubscript{4}. Os autores associaram as diferenças entre as morfologias observadas (estruturas em formas de fios e pontos) ao aumento dos tempos de interrupção e à variação da cobertura de InAs. No nosso caso, as duas amostras, apesar de possuírem a mesma espessura nominal, foram cresidas em dias diferentes: logo a mudança na morfologia pode ser explicada por alguma mudança não controlada dos parâmetros de crescimento ou por uma diferença na quantidade de InAs depositada.
Figura 5.1: Imagens de STM da amostra #600. (a) Área de 735x735 nm² e escala de cinza na faixa de 28 nm. (b) Área de 370x370 nm² e escala de cinza na faixa de 35 nm.
Figura 5.2: Imagens de STM da amostra #619. (a) Área de 735x735 nm² e escala de cinza na faixa de 11 nm. (b) Área de 370x370 nm² e escala de cinza na faixa de 8 nm.
A técnica de AFM possibilitou a obtenção de imagens, sem qualquer dificuldade, de todas as amostras das duas séries. Na figura 5.3, são apresentadas imagens das amostras da segunda série. Nestas imagens, pode-se observar a topografia da camada buffer de GaAs e as ilhas de InAs distribuídas sobre a superfície. As camadas buffer apresentam dois tipos básicos de topografia: algumas mais rugosas, com buracos profundos (fig. 5.3.a) e outras com estruturas ovaladas em uma dada direcção (fig 5.3.b-e). Na maioria das amostras, percebe-se que as ilhas de InAs se distribuem de forma heterogênea na superfície, concentrando-se nas regiões de variação brusca do relevo da camada buffer. Este comportamento é mais acentuado nas amostras com menor quantidade de InAs (fig. 5.3.c e 5.3.d). Com o aumento da camada depositada de InAs e consequente aumento da densidade das ilhas, elas tendem a se distribuir de forma mais homogênea. Na amostra #619 (figura 5.3.e) observa-se que o tamanho das ilhas é bastante variável (várias ilhas com tamanho maior que a média), indicando que elas começaram a se juntar ou coalescer. Na amostra #620 (figura 5.3.f) onde uma dezena de monocamadas de InAs foram depositadas, os pontos quânticos coalesceram, dando lugar as ilhas microscópicas e disformes, de acordo com o modelo de crescimento 3D de Stranski-Krastanov.

A figura 5.4 apresenta imagens com áreas menores, de onde percebem-se mais claramente a forma e o tamanho das ilhas. As ilhas têm uma forma arredondada, com o diâmetro da base variando de 40 a 60 nm, e a altura de 6 a 11 nm, para as diferentes amostras. A forma arredondada, que difere das formas quadradas encontradas com medidas de TEM, também foi observada por Moison e colaboradores com a utilização da técnica de AFM.
Figura 5.3: Imagens de AFM com área de 4x4 μm²: (a) amostra #621, (b) #616, (c) #617, (d) #618, (e) #619, (f) #620.
Figura 5.4: Imagens de AFM com área de 1x1 μm²: (a) amostra #600, (b) #617, (c) #619, (d) #621.
Nas imagens de AFM da amostra #619, figura 5.3.e, não estão presentes as estruturas em forma de fios (fig. 5.2). O que se observa é o mesmo tipo de ilhas, algumas com tamanhos maiores que a média e com formas indefinidas indicando que a espessura de coalescência já foi atingida. Esta discrepância entre os resultados de STM e AFM só pode ser explicada assumindo que o crescimento da amostra não foi uniforme, o que pode ser justificado, pois o porta-amostra não foi rotacionado durante o crescimento. Por outro lado, para a amostra #600 (fig. 5.1 e 5.4.a), os valores obtidos para as dimensões médias das ilhas através do STM e do AFM são compatíveis.

Na figura 5.5, são apresentadas imagens de STM de uma das amostras coberta com um filme fino de ouro de 150 Å de espessura. As ilhas de InAs podem ser claramente diferenciadas da morfologia do próprio filme condutor. A topografia da camada buffer também pode ser indiretamente percebida. A determinação exata do tamanho e da forma das ilhas fica comprometida, pois a espessura da camada de ouro é da mesma ordem de grandeza que o tamanho das ilhas de InAs. Porém, este método pode fornecer informações confiáveis sobre a distribuição das ilhas. Finalmente, a figura 5.5.b apresenta uma imagem da mesma amostra onde existe uma estrutura de tamanho maior, que foi identificada como sendo um defeito oval, relativamente comum em amostras de GaAs cresidas por MBE19.
Figura 5.5: Imagens de STM de uma das amostras coberta com um filme fino de ouro.
(a) Área de 735x735 nm² e escala de cinza na faixa de 12 nm. (b) Área de 1470x1470 nm² e escala de cinza na faixa de 40 nm. Na parte superior da imagem observa-se um defeito oval, na parte inferior, as ilhas de InAs.
5.4 CONCLUSÕES

Inicialmente, foi demonstrada a possibilidade de realização de medidas topográficas de materiais semicondutores, em especial GaAs e semelhantes, com o STM operando no ar, através da preparação prévia das amostras. Dois métodos foram introduzidos:

1. O processo de limpeza e cobertura com óleo mineral, semelhante ao descrito nas referências [12] e [13]. As dificuldades encontradas sugerem que este método ainda pode ser otimizado, melhorando-se o processo de limpeza e utilizando-se outros tipos de óleo ou substâncias para a cobertura da amostra.

2. A cobertura das amostras com filmes finos de ouro, a qual pode ser utilizada quando as estruturas de interesse tiverem dimensões maiores que a própria granulosidade do filme, como foi demonstrado para as ilhas de InAs e para os defeitos ovais.

As medidas de STM e AFM revelaram a presença das ilhas de InAs de dimensões nanométricas nas amostras crescidas por MBE em nosso laboratório. Com o STM, poucas amostras (2) puderam ser analisadas, mas as estruturas observadas são semelhantes às descritas na literatura. As medidas de AFM forneceram um painel mais geral da evolução da morfologia da superfiúce em função da camada de InAs depositada, mostrando que a topografia da camada buffer de GaAs influencia a organização das ilhas de InAs, e que as próprias camadas buffer de GaAs não eram atomicamente planas.

É importante enfatizar que a produção dos pontos quânticos de InAs em nosso laboratório está no estágio inicial e, portanto, estas técnicas de caracterização serão extremamente úteis na sua otimização e no estudo dos fenômenos físicos envolvidos.
REFERÊNCIAS

86

Conclusão

Na minha tese de mestrado, participei do projeto de construção de um microscópio de tunelamento desenvolvido no Laboratório de Novos Materiais Semicondutores. Todas as partes constituintes do aparelho foram construídas por mim, técnicos e alunos de iniciação científica, sob a coordenação do Prof. Dr. Alain André Quivy. Foram desenvolvidos: duas cabeças de medidas diferentes para operação no ar, um sistema de isolamento de vibrações mecânicas, um circuito eletrônico e um programa computacional de controle.

Todas as partes do STM foram testadas exaustivamente. A cabeça de medida baseada em um posicionador óptico apresentou um problema estrutural (freqüência de ressonância interna muito baixa), o que acabou motivando o desenvolvimento de uma segunda cabeça de medida, desta vez com um desempenho melhor, que permitiu o alcance da resolução atômica com amostras de grafite. O sistema eletrônico, projetado com uma arquitetura aberta, poderá ser usado em novas versões operando em outros ambientes, e permite a inclusão de novos módulos para a realização de medidas espectroscópicas. A calibração do instrumento foi efetuada por dois métodos independentes: interferometria óptica e através de imagens da estrutura cristalina da superfície da grafite.

Nosso STM revelou-se uma ferramenta eficiente para o estudo da morfologia de filmes metálicos. A deposição por sputtering de filmes finos de ouro foi otimizada com o intuito de utilizá-los na cobertura de amostras não condutoras a serem estudadas por SEM e também por STM, quando as estruturas de interesse tiverem dimensões nanoscópicas.

Por fim, o microscópio foi utilizado em uma das primeiras caracterizações diretas (no espaço real) de ilhas nanoscópicas de InAs sobre GaAs, crescidas por MBE (os chamados
pontos quânticos). Um novo método de preparação de amostras semicondutoras, a serem estudadas no ar por STM, foi proposto e testado.

Para terminar quero ressaltar que a construção deste instrumento, além de fornecer ao laboratório e à comunidade científica uma técnica de ponta para a caracterização de materiais, teve, como não poderia deixar de ser, um caráter altamente didático para todas as pessoas envolvidas, já que várias técnicas e áreas de conhecimento foram utilizadas, como a teoria quântica do tunelamento, sistemas de controle eletrônicos, aquisição de dados, programação computacional e processamento de imagens digitais.