• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.1993.tde-22052012-133450
Document
Author
Full name
Romero Tavares da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1993
Supervisor
Committee
Salinas, Silvio Roberto de Azevedo (President)
Almeida, Jairo Rolim Lopes de
Henriques, Vera Bohomoletz
Koiller, Belita
Oliveira, Mario Jose de
Title in Portuguese
ALEATORIEDADE EM MODELOS DE ISING
Keywords in Portuguese
Modelo de campo magnético aleatório
Modelo de Ghatak
Modelo de van Hemmen
Abstract in Portuguese
Na primeira parte deste trabalho propomos uma aproximacão de campo médio dinâmico para analisar modelos de Ising com elementos e aleatoriedade definidos por distribuicões de probabilidades discretas. Analisamos o modelo com campo aleatório (S = 1/2), com interações aleatórias (S = 1/2), com diluição de sítios (S = 1/2) e com anisotropia aleatória (S = 1), obtendo  os respectivos diagramas de fases.   Na segunda parte analisamos modelos de vidros de spin (S= 3/2) com anisotropia de campo cristalino. Estudamos o modelo de van Hemmen, e o modelo clássico à la Sherrington e Kirkpatrick dentro do esquema de réplicas simétricas, obtendo os  diagramas de fases correspondentes.
Title in English
Randomness in Ising models
Keywords in English
Magnetic ramdom field model
Spin glass Ghatak model
van Hemmen model
Abstract in English
In the first part of this work we propose a dynamical mean field approximation to analyse Ising models with elements of randomnss, defined by discret probability functions. We have analysed the random field model (S = 1/2); the random bond model (S = 1/2); the site diluted model (S = 3/2) and the random crystal field model (S = 1), obtaining the respective phase diagrams.   In the second part we have analysed spinglass models (S = 3/2) in the presence of a crystal field. We have studied the van Hemmen and the classic spin glass model à la Sherrington and Kirkpatrick, using replica symmetric scheme, to obtain the corresponding phase diagrams.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-06-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.