• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.43.1993.tde-22052012-133450
Document
Auteur
Nom complet
Romero Tavares da Silva
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1993
Directeur
Jury
Salinas, Silvio Roberto de Azevedo (Président)
Almeida, Jairo Rolim Lopes de
Henriques, Vera Bohomoletz
Koiller, Belita
Oliveira, Mario Jose de
Titre en portugais
ALEATORIEDADE EM MODELOS DE ISING
Mots-clés en portugais
Modelo de campo magnético aleatório
Modelo de Ghatak
Modelo de van Hemmen
Resumé en portugais
Na primeira parte deste trabalho propomos uma aproximacão de campo médio dinâmico para analisar modelos de Ising com elementos e aleatoriedade definidos por distribuicões de probabilidades discretas. Analisamos o modelo com campo aleatório (S = 1/2), com interações aleatórias (S = 1/2), com diluição de sítios (S = 1/2) e com anisotropia aleatória (S = 1), obtendo  os respectivos diagramas de fases.   Na segunda parte analisamos modelos de vidros de spin (S= 3/2) com anisotropia de campo cristalino. Estudamos o modelo de van Hemmen, e o modelo clássico à la Sherrington e Kirkpatrick dentro do esquema de réplicas simétricas, obtendo os  diagramas de fases correspondentes.
Titre en anglais
Randomness in Ising models
Mots-clés en anglais
Magnetic ramdom field model
Spin glass Ghatak model
van Hemmen model
Resumé en anglais
In the first part of this work we propose a dynamical mean field approximation to analyse Ising models with elements of randomnss, defined by discret probability functions. We have analysed the random field model (S = 1/2); the random bond model (S = 1/2); the site diluted model (S = 3/2) and the random crystal field model (S = 1), obtaining the respective phase diagrams.   In the second part we have analysed spinglass models (S = 3/2) in the presence of a crystal field. We have studied the van Hemmen and the classic spin glass model à la Sherrington and Kirkpatrick, using replica symmetric scheme, to obtain the corresponding phase diagrams.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2012-06-14
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.