• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.43.1996.tde-28022014-163442
Documento
Autor
Nome completo
Mário Noboru Tamashiro
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1996
Orientador
Banca examinadora
Salinas, Silvio Roberto de Azevedo (Presidente)
Barbosa, Márcia Cristina Bernardes
Coutinho, Sérgio Galvão
Moreira, Jose Guilherme Martins Alves
Yokoi, Carlos Seihiti Orii
Título em português
Modelos de Ising com Competição
Palavras-chave em português
Mecânica estatística
Modelo de ising
Resumo em português
Neste trabalho consideramos três modelos de Ising com competição: que é gerada por acoplamentos dinâmicos de caráter antagônicos, pela própria geometria da rede subjacente ou através de interações de periodicidades uniaxiais competitivas e elementos de desordem. O primeiro modelo, no qual as técnicas de mecânica estatística de equilíbrio não se aplicam, consiste numa rede neural atratora completamente conectada com acoplamentos assimétricos armazenando p = 2 padrões, cuja evolução temporal pode ser descrita (no caso de atualização síncrona) por um mapeamento dissipativo bidimensional. O segundo modelo se refere ao problema clássico do antiferromagneto de Ising na rede triangular na presença de um campo magnético uniforme, investigado através de diversas aproximações - em particular, através de uma aproximação de Bethe-Peierls considerando três sub-redes interpenetrantes equivalentes. O terceiro modelo, introduzido para investigar o efeito de uma desordem congelada em um sistema magnético modulado, é definido pelo modelo ANNNI em um campo aleatório. Inicialmente consideramos um análogo deste modelo na árvore de Cayley, no limite de coordenação infinita, que pode ser formulado em termos de um mapeamento dissipativo bidimensional. A seguir, consideramos uma versão de campo médio em uma rede cúbica simples. que permite uma análise das superfícies de transição de primeira ordem e das linhas tricriticas.
Título em inglês
Ising models with competition
Palavras-chave em inglês
Ising model
Statistical mechanics
Resumo em inglês
In this work we consider three Ising models with competition: which is generated by dynamical couplings of antagonistic character, by the geometry of the underlying lattice, or by interactions of competitive uniaxial periodicities and disorder elements. The first model, for which equilibrium statistical mechanics techniques do not apply, consists in a fully connected attractor neural network storing p = 2 patterns, whose temporal evolution can be described (in the case of synchronous updating) by a two-dimensional dissipative mapping. The second model refers to the classic problem of the Ising antiferromagnet on the triangular lattice in the presence of a uniform magnetic field, which is investigated by various approximations - in particular, by a Bethe-Peierls approximation considering three interpenetrating equivalent sublattices. The third model, introduced to investigate the effects of quenched disorder in a modulated magnetic system, is defined by the ANNNI model in a random field. Initially we consider an analogous of this model on a Cayley tree, in the infinite-coordination limit, which can be formulated in terms of a two-dimensional dissipative mapping. Next, we consider a mean-field version on a simple cubic lattice, which allows for an analysis of the first-order transition surfaces and tricritical lines.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-03-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.