• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.43.2008.tde-09052008-100444
Documento
Autor
Nombre completo
José Cleriston Campos de Souza
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2008
Director
Tribunal
Saa, Alberto Vazquez (Presidente)
Alcaniz, Jailson Souza de
Burdman, Gustavo Alberto
Opher, Reuven
Silva, Adilson Jose da
Título en portugués
Análise geométrica e dinâmica de modelos de gravidade generalizada
Palabras clave en portugués
análise dinâmica
Cosmologia
gravidade generaliza
gravitação
princípio de Maupertuis-Jacobi
Resumen en portugués
Este trabalho teve por objetivo investigar alguns aspectos dinâmicos de modelos de gravidade generalizada escalares-tensoriais e f(R), que pretendem resolver de modo mais natural o problema da existência da energia escura, que seria a componente do Universo responsável por sua expansão acelerada. Num espaço-tempo de Friedmann-Lemaître-Robertson-Walker com curvatura espacial nula foi possível escrever as equações de movimento de forma a se obter um sistema dinâmico com um número menor de variáveis e cujo espaço de fase foi estudado genericamente e esboçado para alguns modelos em particular. Em seguida, as regiões dinamicamente proibidas e os pontos fixos do espaço de fase foram analisados. Para os modelos f(R), apresentamos Lagrangianas e Hamiltonianas efetivas e deduzimos uma expressão geral para o parâmetro de equação de estado w. Discutimos ainda a equivalência entre os modelos f(R) e os escalares-tensoriais. Por fim, introduzimos o Princípio de Maupertuis-Jacobi, que permite relacionar a Lagrangiana de um sistema mecânico a uma métrica numa determinada variedade Riemanniana, para determinar singularidades que podem surgir nos modelos f(R), tanto numa métrica isotrópica como numa anisotrópica do tipo mais simples (Bianchi tipo I). Encontramos, de maneira mais direta, as mesmas singularidades já conhecidas através de métodos de análise dinâmica.
Título en inglés
Geometrical and Dynamical Analysis of Generalized Gravity Models
Palabras clave en inglés
Cosmology
dynamical analysis
generalized gravity
gravitation
Maupertuis-Jacobi principle
Resumen en inglés
This work aims the investigation of some dynamical aspects of generalized gravity models, namely scalar-tensor and f(R) models. These models intend to solve in a more natural way the problem of the existence of the dark energy, which is supposedly the component of the Universe that causes its accelerated expansion. In a null spatial curvature Friedmann-Lemaître-Robertson-Walker spacetime, it has been possible to write the equations of movement in a fashion that allowed us to obtain a dynamical system with a reduced number of variables, whose phase space has been generically studied and depicted for some particular models. In sequence, the dynamically forbidden regions and the fixed points of the phase space have been analyzed. For f(R) models, we have presented effective Lagrangians and Hamiltonians and derived a general expression for the equation of state parameter w. Furthermore, we have discussed the equivalence between f(R) and scalar-tensor models. Finally, we have introduced the Maupertuis-Jacobi Principle, which allows one to relate the Lagrangian for a mechanical system to a metric in a certain Riemannian manifold, to determine singularities which may appear in f(R) models, in an isotropic metric as well as in an anisotropic one of the simplest kind (Bianchi type I). We have found, in a more direct way, the same singularities that arise by using dynamical analysis methods.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese_phd.pdf (852.73 Kbytes)
Fecha de Publicación
2008-05-12
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.