• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.43.2008.tde-09052008-100444
Document
Auteur
Nom complet
José Cleriston Campos de Souza
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2008
Directeur
Jury
Saa, Alberto Vazquez (Président)
Alcaniz, Jailson Souza de
Burdman, Gustavo Alberto
Opher, Reuven
Silva, Adilson Jose da
Titre en portugais
Análise geométrica e dinâmica de modelos de gravidade generalizada
Mots-clés en portugais
análise dinâmica
Cosmologia
gravidade generaliza
gravitação
princípio de Maupertuis-Jacobi
Resumé en portugais
Este trabalho teve por objetivo investigar alguns aspectos dinâmicos de modelos de gravidade generalizada escalares-tensoriais e f(R), que pretendem resolver de modo mais natural o problema da existência da energia escura, que seria a componente do Universo responsável por sua expansão acelerada. Num espaço-tempo de Friedmann-Lemaître-Robertson-Walker com curvatura espacial nula foi possível escrever as equações de movimento de forma a se obter um sistema dinâmico com um número menor de variáveis e cujo espaço de fase foi estudado genericamente e esboçado para alguns modelos em particular. Em seguida, as regiões dinamicamente proibidas e os pontos fixos do espaço de fase foram analisados. Para os modelos f(R), apresentamos Lagrangianas e Hamiltonianas efetivas e deduzimos uma expressão geral para o parâmetro de equação de estado w. Discutimos ainda a equivalência entre os modelos f(R) e os escalares-tensoriais. Por fim, introduzimos o Princípio de Maupertuis-Jacobi, que permite relacionar a Lagrangiana de um sistema mecânico a uma métrica numa determinada variedade Riemanniana, para determinar singularidades que podem surgir nos modelos f(R), tanto numa métrica isotrópica como numa anisotrópica do tipo mais simples (Bianchi tipo I). Encontramos, de maneira mais direta, as mesmas singularidades já conhecidas através de métodos de análise dinâmica.
Titre en anglais
Geometrical and Dynamical Analysis of Generalized Gravity Models
Mots-clés en anglais
Cosmology
dynamical analysis
generalized gravity
gravitation
Maupertuis-Jacobi principle
Resumé en anglais
This work aims the investigation of some dynamical aspects of generalized gravity models, namely scalar-tensor and f(R) models. These models intend to solve in a more natural way the problem of the existence of the dark energy, which is supposedly the component of the Universe that causes its accelerated expansion. In a null spatial curvature Friedmann-Lemaître-Robertson-Walker spacetime, it has been possible to write the equations of movement in a fashion that allowed us to obtain a dynamical system with a reduced number of variables, whose phase space has been generically studied and depicted for some particular models. In sequence, the dynamically forbidden regions and the fixed points of the phase space have been analyzed. For f(R) models, we have presented effective Lagrangians and Hamiltonians and derived a general expression for the equation of state parameter w. Furthermore, we have discussed the equivalence between f(R) and scalar-tensor models. Finally, we have introduced the Maupertuis-Jacobi Principle, which allows one to relate the Lagrangian for a mechanical system to a metric in a certain Riemannian manifold, to determine singularities which may appear in f(R) models, in an isotropic metric as well as in an anisotropic one of the simplest kind (Bianchi type I). We have found, in a more direct way, the same singularities that arise by using dynamical analysis methods.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
tese_phd.pdf (852.73 Kbytes)
Date de Publication
2008-05-12
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.