• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.43.2009.tde-12052009-100334
Documento
Autor
Nombre completo
Helder Luciani Casa Grande
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2009
Director
Tribunal
Salinas, Silvio Roberto de Azevedo (Presidente)
Costa, Francisco Alexandre da
Marchetti, Domingos Humberto Urbano
Título en portugués
Modelos de dímeros em redes planas. Matriz de transferência e soluções por meio da representação de férmions
Palabras clave en portugués
Mecânica estatística
Modelo de dímeros
Mudança de fase
Resumen en portugués
Resolvemos o modelo de d´meros em duas redes planas diferentes, a rede 4-8 e a rede hexagonal (favo de mel). Na rede 4-8 ocorre uma transição do tipo Ising (bidimensional); na rede hexagonal há uma transição conhecida como 3/2. Após a definição do modelo mostramos que o cálculo da função de partição pode ser formulado em termos do traço de uma matriz de transferência escrita numa representação de matrizes de Pauli. Usando a transformação de Jordan-Wigner, os operadores de Pauli são transformados em operadores de criação e aniquilação de férmions, e a matriz de transferência pode ser diagonalizada pela redução a um problema de férmions livres. Comparamos as soluções do modelo de dímeros na rede 4-8 e do modelo de Ising bidimensional; em particular, comparamos o comportamento do calor específico e analisamos o espectro da matriz de transferência. Verificamos que as nossas soluções concordam com resultados obtidos pelas técnicas combinatórias. Utilizamos a formulação da matriz de transferência para construir uma versão de tempo contínuo dos modelos de dímeros nas redes quadrada, 4-8 e hexagonal. Ao contrário do modelo de Ising, no caso dos dímeros essa aproximação de tempo contínuo altera a natureza do comportamento crítico.
Título en inglés
Dimer models on planar lattice. Transfer matrix and soutions by fermion representation
Palabras clave en inglés
Dimer models
Phase transition
Statistical mechanics
Resumen en inglés
We solve the dimer model on two different planar lattices, the 4-8 lattice and the honeycomb lattice. In the dimer model on the 4-8 lattice there is a phase transition of the (two-dimensional) Ising type; on the honeycomb lattice there is a phase transition known as 3/2. After defining the model we show that the calculation of the partition function can be formulated as the trace of a transfer matrix that is written in terms of Pauli matrices. Using the Jordan-Wigner transformation, the Pauli matrices give rise to fermion creation and annihilation operators, and the problem is reduced to the diagonalization of a system of free fermions. We compare the solutions of the dimer model on the 4-8 lattice and of the two-dimensional Ising model; in particular, we compare the behavior of the specific heat and we analyze the spectrum of the transfer matrix. These solutions agree with well-known results from combinatorial techniques. We then use the transfer matrix approach to obtain a continuum time formulation for the dimer models on the square, 4-8 an d honeycomb lattices. In contrast to the Ising case, for the dimer models this approximation changes the nature of critical behavior.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2009-05-12
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.