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ABSTRACT

The new era of cosmological observations is generating vast amounts of data, increasing the
pressure for improvements in both existing and new techniques to analyze this data. Machine
Learning (ML) methods are currently at the cutting edge in terms of new techniques and tools,
often surpassing traditional methods. In this work, we employ a series of ML techniques to:
(1) improve cosmological covariance matrices, (2) investigate the halo-galaxy connection, and
(3) perform robust field-level likelihood-free inference with galaxies and halos. Parameter
inference is a key aspect in Cosmology, and here we present two different approaches: the
use of traditional methods, aimed at obtaining accurate and precise cosmological covariance
matrices using image denoising techniques, and a novel approach, which involves deriving
parameters directly by converting galaxy/halo catalogs into graphs, without cuts on scale, and
then feeding these graphs into graph neural networks to predict the parameters. Simultaneously,
the relationship between galaxies and halos is central to describing galaxy formation and is
a fundamental step towards extracting precise cosmological information from galaxy maps.
We address this problem with a sequence of approaches, ranging from using raw methods
and augmenting the data set to stacking methods and converting a regression problem into
a classification one, to recover galaxy properties along with their stochasticity. All of these
projects aim at improving the extraction of information from simulations by enhancing the
accuracy and precision of the derived constraints, thereby impacting cosmological parameters
and the halo-galaxy connection. These are the initial steps before applying this new set of
innovative methodologies to real data, for both current and next-generation surveys.

Keywords: Cosmological parameters inference. Machine learning algorithms. Cosmological
simulations. Halo-galaxy connection.





RESUMO

A nova geração de observações cosmológicas está gerando uma enorme quantidade de dados e
aumentando a pressão pelo desenvolvimento de novas e já existentes técnicas para a análise
dos mesmos. Métodos de Aprendizado de Máquina (AM) tem se mostrado como uma excelente
e revolucionária alternativa para essa função, muitas vezes superando os métodos tradicionais.
Neste trabalho nós utilizamos uma série de técnicas de AM para: (1) melhorar matrizes de
covariância cosmológicas, (2) investigar a conexão galáxia-halo, e (3) realizar uma inferência
robusta de parâmetros cosmológicos, livre de verossimilhança, usando apenas o campo de
galáxias e halos. A inferência de parâmetros é uma atividade central em Cosmologia e aqui
nós apresentamos duas diferentes soluções: o uso de métodos tradicionais, para a obtenção de
matrizes de covariância cosmológicas precisas e acuradas por meio uma técnica de remoção
de ruído de imagens e um método novo, que envolve converter catálogos de galáxias e halos
em grafos para alimentar uma rede neural gráfica capaz de diretamente inferir os parâmetros.
Ao mesmo tempo, sabendo que a relação entre galáxias e halos é fundamental para descrever
a formação de galáxias e para inferir informação cosmológica a partir das galáxias, nós de-
senvolvemos uma série de metodologias para obter essa conexão. Usamos métodos de AM
diretamente nas propriedades de halos e galáxias, fizemos o mesmo para um conjunto de dados
aumentado e usamos ambas as predições para obter modelos empilhados. Convertemos o prob-
lema de regressão em classificação, sendo capazes de recuperar não apenas as propriedades das
galáxias, mas também sua estocasticidade. Todos esses diferentes projetos focam em aperfeiçoar
a obtenção de informação cosmológica de simulações, melhorando sua acurácia e precisão,
tanto para os parâmetros cosmológicos, quanto para a conexão galáxia-halo. Estes são os passos
iniciais da futura aplicação de metodologias inovadoras em dados reais para a próxima e atual
geração de observações.

Palavras-chave: Inferência de parâmetros cosmológicos. Algoritmos de aprendizado de máquina.
Simulações cosmológicas. Conexão galáxia-halo.
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1 INTRODUCTION

According to P. J. E. Peebles, as outlined in Principles of Physical Cosmology (1), we
can define:

“Physical cosmology is the attempt to make sense of the large-scale nature of the material

world around us, by the methods of natural sciences”.

In this context, Cosmology is the area of science responsible for describing how our
Universe works, elaborating on how to the components present in the very early Universe
evolved into the structures we can observe today (2–4). This is not an easy task, which is why
Cosmology makes use of many other fields, such as Astronomy, General Relativity, Particle
Physics, Quantum Field Theory, Physical Statistics, and even Computer Science, developing
alongside them. Simultaneously, the abundance of observational data provides us with the
means to carefully select from the complete theoretical and experimental framework developed
thus far. This access to a vast array of observations enables us to make informed decisions in
both current and future cosmological research.

The birth of Cosmology was given by the development of astronomical observations
together with General Relativity (GR). GR, formulated by Albert Einstein between 1914 and 1917,
introduced the well-known Einstein’s equations. These equations were crafted to elucidate the
gravitational force and to position the Universe as a central subject of study (5). Subsequently,
from 1917 to 1922, the Friedmann-Robertson-Leimaître-Walker metric was developed (6–9),
describing the evolution of the Universe as homogeneous and isotropic. Some years later
(1927-1929), observations related to the correlation between distances of galaxies and their
velocities confirmed that the Universe is indeed expanding, with Lemaître and Hubble being
instrumental in this confirmation (10, 11). Ideas regarding the origin of the Universe began to
take shape in subsequent years, notably with Lemaître in 1931 (8). However, the comprehensive
theory of the Big Bang only fully emerged in 1948 (12). A pivotal component of the Big Bang
theory, claiming that the Universe expanded from a hot dense state dominated by thermal black
body radiation, is the observable cosmic microwave background (CMB). Penzias and Wilson
observed the CMB in 1965, marking a significant milestone in cosmological research (13).

The final product of Cosmology nowadays is the ΛCDM (Lambda cold dark matter)
model, which has been supported over the past years by various observations. These ob-
servations include anisotropies of the CMB (14), rotational curves of galaxies leading to the
identification of Dark Matter (DM) (15, 16), and observations of distant supernovae Ia, which
not only reveal the accelerated expansion of the Universe but also hint at the presence of Dark
Energy (DE) (17,18). Notably, DE can be interpreted as the cosmological constant Λ, introduced
by Einstein in 1917 (5). According to the ΛCDM model, the Universe is composed of three main
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components: Λ, representing DE; a cold (non-relativistic) type of matter that only interacts
gravitationally, i.e., DM; and ordinary matter (or baryonic matter). These components constitute
approximately 68.5%, 26.5%, and 5% of the Universe, respectively. A minor fraction (≲ 0.002%)
of the overall content is allocated to radiation, encompassing photons, CMB, gravitons, and
neutrinos. Figure 1 illustrates a pie chart depicting the matter distribution in the Universe. It is
worth noting that DM and baryonic matter are represented with the same color, as they are
both part of the matter component.

Despite its notable success, the ΛCDM model fails to explain the nature of both DM
and DE, among other unresolved questions. These questions extend to issues such as tensions
in certain cosmological parameters like the Hubble parameter (H0) or the relationship between
the matter content (Ωm) and the power spectrum amplitude at 8h−1 Mpc (σ8), denoted as
S8 = σ8 (Ωm/0.3)

1/2 (19–21). Given the presence of these persistent puzzles and tensions,
our current objective is to rigorously constrain these cosmological parameters, aiming for
the highest possible accuracy in our pursuit of understanding the fundamental aspects of the
Universe.

Figure 1 – Pie chart of the relative abundance of matter in the Universe. We take into
account dark energy, radiation, baryonic matter, and dark matter.

Since the distribution of matter and galaxies in the Universe depends on the cosmological
parameters, the clustering of these objects can be used to infer the values of those parameters.
To gather as much diverse data as possible, large international efforts are currently underway
to survey the cosmos at different wavelengths. These include projects such as DESI (22),
Euclid (23–26), PFS (27), J-PAS (28), SKA (29), Roman (30), JWST (31), and others. The data
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collected from these missions will encompass larger volumes at different redshifts, observing a
variety of galaxy types across many wavelengths. Extracting the maximum amount of relevant
information from these data sets is crucial in improving our understanding of fundamental
physics.

To achieve this objective, theoretical predictions and methods for extracting informa-
tion are necessary. On the one hand, we have traditional methods for extracting information
from cosmological observations. In the case of Bayesian inference schemes for cosmological
parameters, nearly all analyses rely on summary statistics, such as the power spectrum. How-
ever, this approach is sub-optimal as we do not know which summary statistics contain all (or
the majority) of the cosmological information across all scales (32–35). Furthermore, conven-
tional methods typically require costly simulations to either estimate covariance matrices or to
forward-model the observations (36–40).

On the other hand, machine learning (ML) techniques have demonstrated superiority
over traditional methods in various contexts and fields, including Cosmology and Astrophysics.
The power of these new methods lies precisely in their capacity to handle large and complex
data sets, providing nonlinear relations in high-dimensional feature spaces that enable solving
regression and classification tasks (41). By using different summary statistics as input data,
authors from Reference (42) were able to derive cosmological parameters without the need
for additional input from theoretical models. This represents a potent extension of traditional
Monte Carlo-based methods. Particularly, likelihood-free inference methods (also known as
simulation-based inference or implicit likelihood inference) utilize forward models of observ-
ables instead of analytic models. Subsequently, these methods infer a posterior distribution over
the parameters (43). Several studies have demonstrated their competitiveness with traditional
statistical inference methods (44–52). At a level closer to the observations and simulations,
numerous studies exploring the halo-galaxy connection can make predictions comparable to
the output of numerical/analytical methods (53–69). An added advantage of ML models is
that, once trained, they typically make predictions much faster than traditional methods (66).
However, a notable disadvantage arises when these models struggle to extrapolate predictions
across different data sets than those with which they were initially trained (48, 50, 70).

The abundance of data combined with a rapidly expanding menu of different methods
represents a challenge for our understanding of the structure formation and evolution of the
Universe. The overarching goal is to extract the maximum information from ongoing and
forthcoming surveys, as well as from the state-of-art of simulations and approximated methods,
in order to select the most fitting models. Ultimately, we aim to delve into the nature of the
cosmos and all its constituent elements. This collective pursuit represents a crucial step toward
unraveling the mysteries that the Universe presents, fostering a deeper understanding through
the synthesis of observational, theoretical, and computational approaches.
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1.1 Goals and organization of the thesis

The primary focus of this thesis revolves around the application of ML techniques to
extract cosmological information. Each sub-project within this thesis is dedicated to developing
a robust ML method and provide predictions with the highest accuracy and precision. The
objective is not to replace traditional methods but to offer as a viable alternative to do Cosmology
nowadays. Importantly, each sub-project has culminated in scientific publications. The sub-
projects are aligned with three main approaches:

• Improving Cosmological Covariance Matrices. Cosmological covariance matrices
play a pivotal role for parameter inference using Markov Chain Monte Carlo (MCMC) ex-
plorations of the likelihood. This methodology involves comparing the theoretical model
with a summary statistic taken over many realizations of a simulation or an approximated
method. The precision and accuracy of this pipeline depend on the number of realizations
of the statistic used to construct a cosmological covariance matrix. Realistically, running
thousands of hydrodynamical, N -body, or even approximated simulations to obtain these
matrices is often impractical. In the project presented in the Chapter 4, we explored the
capability of an image denoising technique to take a cosmological covariance matrix
constructed with only hundreds of spectra and generate a matrix resembling one created
with thousands of spectra. Moreover, we trained our algorithm using only approximated
simulations (which are fast to run) and were able to extrapolate their predictions for
matrices built with realistic N -body simulations. Utilizing the Wishart distribution, we
demonstrated that the denoiser’s end product can be compared to an effective sample
augmentation in the input matrices (40). This work serves as a proof of concept that
we can borrow computer vision techniques and apply them to improve even traditional
approaches in Cosmology.

• Mimicking the halo-galaxy connection. The relationship between galaxies and halos
is central to the description of galaxy formation and is a fundamental step towards
extracting precise cosmological information from galaxy maps. However, this connection
involves several complex and interconnected processes. By utilizing halo properties such
as halo mass, concentration, spin, and halo overdensity, we are obtaining central galaxy
properties such as stellar mass, specific star formation rate (sSFR), color, and size, as
outlined in Chapter 5. During this process we have followed two different approaches:

1. Employing traditional ML methods, namely extremely randomized trees (ERT), k-

nearest neighbors (kNN), light gradient boosting machine (LGBM), and neural networks

(NN)
1
. Rather than selecting the best model, we adopted a stacking approach, com-

bining their predictions to derive a single prediction for each galaxy property. The
1 Note that, here, we are referring as NN a Multi Layer Perceptron (MLP).
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ensemble technique aimed to enhance the overall predictive performance beyond
what individual models could achieve. However, we observed that the inherent
stochasticity in galaxy properties was not faithfully reproduced, as ML models often
focused on the peaks of the distributions. Recognizing this challenge, we framed
the issue as an imbalanced data set problem and applied the Synthetic Minority
Over-sampling Technique for Regression with Gaussian Noise (SMOGN), in the
galaxy properties, to address it. While this technique proved effective in alleviating
the problem, achieving a perfect reproduction of the complete scatter in galaxy
properties remained elusive (65). Nonetheless, this work represents a significant
step towards refining the modeling of the intricate relationship between halos and
galaxies in the context of ML.

2. Transforming a regression to a classification problem: NNClass. To address the scatter
problem for galaxy predictions, we transformed them from a single value to a
probability density distribution for each galaxy property (one at a time, or two
simultaneously) given a set of halo attributes. To achieve this, we employed a NN2

and altered the activation function of the last layer from linear activation to a
SoftMax, and the loss function from mean squared error to Cross-Entropy. The
outcome of this approach demonstrated its effectiveness in recovering the complete
scatter over the 2D galaxy-galaxy and galaxy-halo properties for all galaxies. By
adopting a probabilistic framework for the halo-galaxy connection, as introduced
in Reference (69), we opened up new avenues for understanding and modeling the
complex relationships between halos and galaxies.

• Field-level Likelihood-free Inference with Graph Neural Networks. In this work
we have tailored the Graph Neural Networks (GNNs), together with the Moment Neural
Networks (MNNs), to get the first robust suite over five different codes and subgrid
models – IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE – changes in
astrophysics, and subhalo-galaxy finder. The models are rotational, translational, and
permutation invariant and do not impose any cut on scale, using only galaxy positions
and vz velocities to infer Ωm (71). We also have shown:

1. We are able to translate the GNN operations into analytical equations, using sym-
bolic regression (SR). This gave us some insights over the physical relation between
the use of objects positions and velocities, speculating that the suite was learning a
physical relation between them and the matter content of the simulations, instead
of a trivial correlation (72).

2. Because the best subgrid physical model used as data set to train the GNNs was
Astrid, we have started to analyze their differences with the other hydrodynamical
models. The main conclusions were related to the broader variations on their galaxy

2 Note that, once again, we are referring as NN a Multi Layer Perceptron (MLP).
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properties and their number per different variations through cosmological and
astrophysical parameters (71, 73).

3. The next phase of our exploration involved speculating on the applicability of our
suite to real galaxy catalogs. The initial step in this direction involved incorporating
observational effects into galaxy catalogs derived from hydrodynamical simula-
tions. We considered various factors, including: (i) mask effects, (ii) uncertainties in
peculiar velocities and radial distances, and (iii) different galaxy selections. Despite
the increased level of complexity introduced by these observational effects, our
suite demonstrated robust performance. In at least 90% of the available data, the
model exhibited strong predictive capabilities. This encouraging result emphasized
the potential of our methodology to real observational data. Detailed findings and
implications were documented in Reference (74), showcasing the promise of our
approach in handling and extracting valuable information from real-world galaxy
catalogs.

This thesis is then organized according to: first, we make a general presentation of
the whole set of methods we have used, from Cosmology (in Chapter 2) to Machine Learning
techniques (in Chapter 3); second, we present the improvements to the cosmological covariance
matrices (in Chapter 4); third, we discuss the halo-galaxy connection in the context of ML
applications (in Chapter 5); fourth, we present the area of field-level likelihood-free inference
with graph neural networks (in Chapter 6); then, we finalize with a discussion, conclusions,
and next steps for all the work developed along these years.
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2 COSMOLOGY BACKGROUND

This thesis is built upon the principles of Cosmology. In this chapter, you will find a
brief overview of it, which will serve as a basis for the next chapters. For a more comprehensive
understanding of the topics discussed here, we recommend consulting References (1–3, 75, 76).

Firstly, in Section 2.1, we offer an overview of ΛCDM model, beginning with Classi-
cal Cosmology. This encompasses the Friedman-Lemaître-Robertson-Walker (FLRW) metric,
Friedman equations, the different eras of the Universe, and culminates with a discussion on
cosmological parameters, the estimation of which forms a primary objective of many projects
developed within this thesis. Secondly, we provide a brief introduction to the history of the
observable Universe, in Section 2.2. Thirdly, in Section 2.3, we present an overview of traditional
cosmological methods, including discussions on the power spectrum, correlation function, bias,
elements of the halo model, Bayesian statistics, and sample covariance matrices. Fourthly, we
introduce linear theory, in Section 2.4, providing motivation for the presentation of the mea-
sured linear power spectrum. This is followed by Section 2.5, where we discuss the motivation
for studying the nonlinear power spectrum while describing nonlinear theory through N -body
and hydrodynamic simulations.

2.1 From the beginning: Classical Cosmology

Classical Cosmology begins with GR (77–79). At the heart of GR are Einstein’s equations:

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (2.1)

where gµν is the metric tensor, Rµν is the Ricci tensor, R is their trace, and Tµν is the energy-
momentum tensor. The left side of these equation represent the geometric component of the
Universe, while the right side represents the source of energy and momentum that acts as the
source of the curvature of the space-time.

All the geometric components came from the metric tensor by definition:

Rµν ≡ ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + Γρ

ρλΓ
λ
µν − Γρ

νλΓ
λ
ρµ, (2.2)

R ≡ gµνRµν = Rµ
µ, (2.3)

Γα
βγ ≡ gαδ

2
(∂βgδγ + ∂γgβδ − ∂δgβγ) . (2.4)

where gµνgνσ = gλσg
λµ = δµσ or gµνgµν = I, and Γα

βγ is the Christoffel symbol. The energy-
momentum tensor Tµν , in general, takes a complicated form. However, considering a perfect

fluid, which can be completely characterized by its pressure p and energy density ρ, we can
write

Tµν = (ρ+ p)uµuν + pgµν , (2.5)
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where uµ is the fluid four-velocity.

Solving Einstein’s equations involves determining the metric tensor. However, these
equations are nonlinear, which represents a challenge for finding their solutions. Nonetheless,
exploiting the symmetries of space-time can simplify the process and make the path to their
solutions more straightforward.

This can be done in the cosmological framework considering the Universe as homoge-
neous, isotropic, and temporally evolving with time. This is translated by the FLRW metric
(6–9, 77–79), which can be written as

ds2 = −dt2 + a2(t)

[
dr2

(1− kr2)
+ r2

(
dθ2 + sin2 θ dϕ2

)]
, (2.6)

where a(t) is the expansion factor, r is the radial coordinate, θ and ϕ are the angular coordinates,
and k is the curvature parameter1, with dimensions of L−2.

Considering a perfect fluid (see Equation 2.5) and plugging this metric into Einstein’s
equations, we obtain the Friedmann equations, which define the temporal evolution of matter
and energy as (

ȧ

a

)2

= H2(t) =
8πG

3
ρ− k

a2
, (2.7)

ä

a
= −4πG

3
(ρ+ 3p) , (2.8)

with ȧ = da
dt

= H(t), H(t) the Hubble parameter (which determines how fast the Universe
expands), ρ represents the amount of matter considered, and p denotes the pressure. To measure
distances and time (since we are defining c ≡ 1), we often use the concept of redshift z. The
redshift is related to the expansion factor according to a = 1/(1 + z).

From the Friedmann equations, we can derive the continuity equation, which states the
conservation of the total energy

dρ

dt
+ 3H (1 + ω) ρ = 0, (2.9)

where
ω =

p

ρ
(2.10)

represent what we call as equation of state. The total amount of matter correspond to the sum
over the different components of the energy content in the Universe: ρ =

∑
i ρi, where i refers

to radiation (γ), matter (m), and dark energy (Λ). Radiation include photons, cosmic background
radiation, gravitons, and neutrinos, i.e., particles satisfying pγ = ργ/3. Matter refers to the
baryonic matter and dark matter, the later being a type of matter that does not interact with
1 The curvature parameter k classifies the Universe as follows: closed with positive curvature (k = 1),

plane without curvature (k = 0), and open with negative curvature (k = −1).
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electromagnetic radiation and has negligible pressure compared to its density: pm = 0. Finally,
we have dark energy, an unknown form of energy that uniformly fills the Universe and mimics
vacuum energy. It is often regarded as the cosmological constant Λ, with the equation of state
given by pΛ = −ρΛ.

Figure 2 – Matter evolution of the Universe according to the expansion factor a. We
represent by the colored shadow regions the phase of domination for each content,
where the vertical dotted lines correspond to the intersection point of domination
between the different eras.

Returning to Equation 2.7, we observe that the expansion of the Universe is determined
by the contributions from the different components of matter and energy. Firstly, we define
the critical density, denoted by ρcrit(t), by considering the density of a flat Universe (k = 0),
which is experimentally confirmed through observational measurements such as those found
by Planck (14). Thus, we have

ρcrit(t) =
3H2(t)

8πG
and ρcrit,0 =

3H2
0

8πG
, (2.11)

where ρcrit,0 is its value today, defined according to the Hubble parameter today H0. Secondly,
we define the cosmological parameters related to the amount of each matter component in the
Universe as

Ωi(t) =
ρi(t)

ρcrit(t)
and Ωi =

ρi,0
ρcrit,0

, (2.12)

where, again, i correspond to matter (m), radiation (γ), and dark energy (Λ). Thirdly, noting
that we can combine Equations 2.9 and 2.10, we can express how each component evolves with
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the scale factor as

ργ = ργ,0a
−4, (2.13)

ρm = ρm,0a
−3, (2.14)

ρΛ = ρΛ,0. (2.15)

Therefore, finally returning to Equation 2.7, we obtain

H2(t) = H2
0

[
Ωγa

−4(t) + Ωma
−3(t) + ΩΛ

]
. (2.16)

In addition to describing the evolution of the Hubble parameter (see Equation 2.16), the
components of the Universe lead to another interesting property: their time-dependence, which
can be expressed in terms of the scale factor a, the redshift z, or time t. This dependence defines
what we call the matter evolution of the Universe or its cosmic timeline, which can be divided
into different eras according to the dominant matter contribution. By utilizing Equations 2.13,
2.14, 2.15, along with the current values for Ωm = 0.315, Ωγ = 2.473 · 10−5, and ΩΛ = 0.685,
as in Reference (80), we can visualize the matter evolution of the Universe in Figure 2. In the
primordial Universe, the scale factor dependence ∝ a−4 is the largest one, corresponding to
the radiation era. This persists up to ∼ 10−4 when matter starts to dominate with ∝ a−3 in the
matter era. Finally, as a approaches 1, we enter the current era, the dark energy era, where the
amount of matter evolves constantly with the scale factor.

Today, the ΛCDM model stands as the most successful model in Cosmology, described
by only 6 independent parameters: Ωbh

2, Ωch
2, Θs, τT , ns, and As (14, 81). Here, Ωb and Ωc

represent the amount of baryons and cold DM, respectively, with Ωm = Ωb + Ωc. h is the
dimensionless Hubble parameter: H0 = 100h km s−1 Mpc−1, which has become the focus of
attention due to the so-called Hubble tension (82) that confronts the supernovae measurements
(19) and the CMB inference for that parameter (14).Θs is the angle given by the ratio between the
sound horizon rs and the angular diameter distance at decoupling. τT represents for the optical
depth. Meanwhile, ns (scalar spectral index) and As (amplitude of the primordial spectrum)
are related to the features of the primordial spectrum of density fluctuations (presumably
from inflation). In principle, all the other mentioned parameters can be derived from the ones
presented here.

2.2 The history of the Universe in a nutshell

We have already been through a brief history of the Universe whilst using Classical
Cosmology to differentiate between the different eras. Now it is time to delve deeper into this
journey, specifying some details about the relevant epochs and the transitions between them.
A pictorial version of cosmic history can be found in Figure 3, and its main cornerstones are as
follows:
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Figure 3 – Overview of the cosmic history of the Universe in an infographic. Source:
NASA (83).

• The early Universe: Big Bang, Inflation, and Radiation Era. As we have already
seen, it is believed that the Universe originated from an event called the Big Bang (12).
The subsequent epoch, many believe, is called inflation, representing the phase during
which the Universe began a period of accelerated expansion: a ∼ eHinf t, where Hinf is
the Hubble parameter during inflation. Throughout the inflationary period (until 10−32

seconds), the energy content of the Universe was dominated by a scalar field. The small
curvature (and density) fluctuations produced during this period created the seeds for
the structures we can observe today (84, 85). At the end of inflation this field decayed
into other particles and radiation, initiating the radiation era, when the Universe entered
a phase where it could be very well described by a hot, dense, and homogeneous plasma
in thermal equilibrium.

• Primordial Nucleosynthesis and Matter Era. Following this equilibrium, the expan-
sion of the Universe, together with the resulting cooling down, led to the progressive
decoupling of some components from the cosmic plasma. At about 3 minutes after the Big
Bang, protons and neutrons were cold enough that they could combine and produce the
earliest light elements–hydrogen and helium (86, 87). Following this phase of primordial
nucleosynthesis, around 104 years after the Big Bang, due to the mentioned scaling
dependencies (see Equations 2.13, 2.14, 2.15), we reach the matter-radiation equality,
where matter becomes equally important as radiation. After that point, radiation is still
important but the Universe’s expansion is dominated by non-relativistic species, which
marks the beginning of the matter era.

https://universe.nasa.gov/resources/251/history-of-the-universe/?category=universe
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• Recombination and CMB decoupling. Two fundamental processes occurred at ∼
3.8 · 105 years into the history of the Universe. The first is called recombination, which
resulted from the progressive cooling of the cosmic plasma, to the point where photons do
not have the energy required to keep electrons ionized from the positively charged nuclei
anymore, resulting in the formation of the first neutral atoms (88). Small perturbations in
the fluid of baryons and photons then began to propagate as acoustic waves, characterized
by their sound speed cs and sound horizon rs. This last parameter corresponds to the
maximum distance that acoustic waves could have traveled since the Big Bang up to that
time, given their sound speed and the expansion history up to that point. The sound
horizon is the origin of the baryon acoustic oscillations (BAO), a characteristic length
scale imprinted on all density perturbations which is a key observable that modern
galaxy surveys seek to detect (89). The second process is the CMB decoupling: after
recombination, the decreasing number of free electrons reduced the rate of interactions
between photons and the baryons of the cosmic plasma, which kept the baryonic matter
coupled to radiation. As a result, photons decoupled from baryons, evolving separately
thereafter. The released photons now form what we observe as the CMB, representing
the oldest light observable in the Universe (the first light) (90).

• Dark ages, the First Stars, and the First Galaxies. From the appearance of the CMB
until ∼ 2 · 108 years, the Universe was basically neutral (no free electrons apart from a
small fraction left out by recombination). Due to the absence of light sources at that time,
this epoch is called the dark ages – a period that is particularly challenging to observe,
apart from possibly 21cm observations of neutral hydrogen at extremely high redshifts
(91). However, during this time the growth of structures was already becoming significant:
inhomogeneities were being magnified, leading to the collapse of matter into the first
DM halos. In other words, at this time the Universe witnessed the emergence of the first
large-scale structures. From 2 · 108 to 4 · 108 years, gas and dust began to condense into
stars within these massive halos, initiating the formation of the most ancient galaxies
(and kick-starting the complex relationships involved in the halo-galaxy connection).
These first light sources emitted ultra-violet (UV) and X-ray radiation, potentially leaving
imprints in the 21cm observations of that era as well.

• Reionization and Dark Energy Era. From approximately ∼ 5 · 108 to 9 ∼ 108 years,
the Universe experienced the reionization period (92). Gradually, UV light from the first
stars ionized the hydrogen atoms into electrons and protons. By the time the Universe
reached approximately ∼ 109 years, it had already been almost completely reionized by
star formation, and it started to resemble the Universe that we observe today. Around
1010 years after the Big Bang we reached equality between matter and dark energy, and
we entered what is called the dark energy era. This era is marked by another phase of
accelerated expansion of the Universe, along with a change in the growth of density
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fluctuations that implies the progressive dampening of very large-scale structures.

This was just a glimpse of the history of the Universe – for a complete review, see the
References (75, 93).

2.3 Cosmology Toolbox

One of the goals of Cosmology is to transform astronomical observations into infor-
mation that can describe the evolution and structures that we see in the Universe. In this
section, we will summarize the main methods we use in this thesis, following the References
(2–4, 41, 76).

2.3.1 Transforming structure formation into structure information

Due to the nature of DM, observations allow us to access only one part of the matter
content of the Universe, namely tracers: galaxies, quasars and other objects that typically
correspond to large concentrations of baryonic matter. Since these tracers reside inside large
concentrations of DM, by measuring their positions we can trace the density field of DM,
denoted by ρ(r).

In order to understand not only the density but also the fluctuations of matter, we can
define the density contrast (2–4, 41)

δ(r) =
ρ(r)− ρ̄

ρ̄
, (2.17)

where ρ̄ represents the average density of DM. This quantity can be initially understood as
a Gaussian random field, with higher values indicating a greater concentration of matter in
some given region. By definition, its average value is zero and δ ∈ [−1,∞).

The density contrast also allows us to describe the distributions of objects such as tracers
in space. The information about the degree of inhomogeneity in the Universe can be better
understood by comparing the resulting distribution with a random but completely uniform
distribution. In this manner, we can define the correlation between two points separated by
a distance r by considering the probability of finding a pair of objects (or particles) in two
volume elements dr31 and dr32 around those points, given by

dP (r1, r2) = dr31 dr
3
2 ρ

2 [1 + ξ(r)] , (2.18)

where ρ is their density and ξ(r) = ⟨δ(r1)δ(r2)⟩ represents the two-point correlation function

(2, 3, 41). In the sense above, the correlation function is the excess probability (with respect to
the uniform distribution), per unit volume, of finding two objects separated by a distance r.

Simultaneously, another method to convey the same information is through the power

spectrum, denoted by P (k). It can be defined using the overdensity in Fourier space as

δ̃(k) =

∫
d3 re−ik·r δ(r), (2.19)
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such that
⟨δ̃(k1) δ̃(k2)⟩ = (2π)2 δD(k1 − k2) P (k). (2.20)

In the previous equation, δD(k1−k2) is the 3D Dirac delta function, and the scale of fluctuations
is given by λ, which is related to the wave number k = 2π/λ (2–4, 94). Therefore, the power
spectrum measures the amount of power in the fluctuations at different scales.

By definition, the correlation function and the power spectrum are related through a
Fourier transform:

P (k) =

∫
d3r e−ik·r ξ(r). (2.21)

Both quantities are extensively utilized in Cosmology. In this work, we primarily employ the
power spectrum as the summary statistic of choice for our analysis (see Chapter 4 and Section
5.3).

2.3.2 Linking observations to theory

One of the most crucial tasks in Cosmology is bridging observations with the theories
we develop to interpret them. While we understand that the Universe is primarily composed of
DM (as discussed in Chapter 1), this entity is not directly measurable (14). Instead, we observe
galaxies, among other things. Galaxies, in turn, “trace” the field of DM δm to which they belong
through a quantity called bias, denoted by bg , where the sub-index g was used here to indicate
that we refer to galaxies (3, 76, 95). This relation can be expressed as follows:

δg = bg δm, (2.22)

where δg represents the density contrast of galaxies. Thus, when b ̸= 1, signifies that the tracer
in question does not perfectly follow the total distribution of matter2 (2).

Another important aspect regarding galaxies is their discrete nature. We can represent
the spatial distribution of discrete objects as a number density of localized point-like particles:

ng(r) =
N∑
i=1

δD(r− ri) . (2.23)

The mean number of galaxies in a volume V is then given by

n̄g =
1

V

∫
V

d3r ng(r) =
Ng

V
. (2.24)

Therefore, the galaxy density contrast is expressed as

δg(r) =
ng(r)− n̄g

n̄g

, (2.25)

2 Note that with the presented definition of bias (and the subsequent one, see Section 2.3.4), we are
assuming the approximation of linear and scale-independent bias.
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where ng(r) = Ng(r)/∆V . We can model the (random) counts of galaxies in a given volume
in terms of the Poisson distribution, and the statistical fluctuations due to this random point
process contribute some noise to the power spectrum. With all these ingredients, the distribution
of galaxies can be measured using

Pg(k) = b2g Pm(k) +
1

n̄g

, (2.26)

where bg represents the galaxy bias, Pm(k) denotes the DM power spectrum, and 1/n̄g is
referred as shot noise or Poisson noise (2). As mentioned above, this noise arises because we are
connecting a discrete distribution (galaxies, following a Poisson distribution) to a continuous
distribution (DM, following a Gaussian distribution).

2.3.3 Computing the power spectrum

The power spectrum can be measured directly from the definition given by Equation
2.20. In other words, when we say we are computing the power spectrum, we are employing
Fast Fourier Transformations (FFT)3 of the density contrasts, taking their quadratic modulus,
averaging over the values of k in some bin, and removing the shot noise (if we happen to do
this in the case of discrete tracers).

However, this simple analysis does not necessarily achieve the lowest possible uncer-
tainties in the power spectra measurements: for that we need more sophisticated estimators of
the power spectrum, such as the FKP estimator (94). The FKP estimator, developed in 1994 by
Hume Feldman, Nick Kaiser, and John Peacock (2,94), measures the spectra in basically the way
we previously described, but with the crucial difference that regions with higher signal-to-noise
ratios are upweighted relative to regions with more noise. This is achieved by multipliying the
density field by a weight function ωFKP , known as the FKP weights, and which can be written
as:

ωFKP (r) =
1

1 + n̄(r)P0(k)
, (2.27)

where n̄(r) is the mean density and P0(k) is the power spectra corresponding to the desired
optimization region4. We make use of the FKP spectra estimation in Section 5.3.

2.3.4 The number density of objects and the halo model

The abundance of astronomical objects can be represented by their mass function, or
halo mass function in the case of DM halos. As we mentioned before, at a basic level the
3 FFT comprehend an algorithm that compute discrete Fourier transformations. Fourier analysis

means the conversion of a signal from its domain (usually time or real space) to its representation
in the Fourier space k. Then, a discrete Fourier transformation is obtained decomposing a sequence
of values on their components in different frequencies.

4 It can be odd the fact we need the power spectrum (at certain scale) to compute the power spectrum,
as the authors comment in the Reference (94). But, usually, this value is taken as a constant, assuming
a value of P0 ∼ 104Mpc3/h at z = 0 in galaxy surveys (96).
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Universe is composed of DM, and the halo model (97) provides a semi-analytical description of
the behavior of these entities. According to this model, most of the matter in the Universe is
contained in DM halos, which form a web of structures composed by nodes, voids, walls and
filaments.

Halos are gravitationally bound regions of radius R and mass

M =
4π

3
ρm(z)R

3, (2.28)

where ρm(z) = ρcritΩm(1 + z)3 and ρcrit is the critical matter density, Ωm = ρm
ρcrit

. Here R

represents the radius of the original region (at z ∼ 103) that eventually collapsed to form the
halo.

The mass function describes the probability of having a number of halos in a certain
redshift z for a specific mass interval [lnM, lnM + d lnM ]. It is given by

dn (z,M)

d lnM
= f(σ)

ρ̄m0

M

d lnσ−1

d lnM
, (2.29)

where n is the halo number counts per unit volume, f(σ) is the multiplicity function, ρ̄m is
the matter density, and σ is the variance of the density fluctuations smoothed on the sphere of
radius R which corresponds to the mass M . The multiplicity function can be analytically (or
semi-analytically) computed using the spherical collapse model (98, 99), ellipsoidal collapse
(100), or it can be inferred from numerical fits using N -body simulations (101,102). The general
behavior of this equation is such that the number of halos decreases with mass, in agreement
of the general idea of a hierarchical scenario of structure formation.

On the other hand, the position and relative abundance of the halos are also related to
their linear bias b, which can be expressed as the ratio of the halo power spectra Phalos(k) to
the linear5 DM spectrum Plin(k) (76, 103)

b2(k) =
Phalos(k)

Plin(k)
. (2.30)

This quantity can be derived analytically, starting from the mass function (98), or it can be
obtained from numerical fits based on N -body simulations (102, 103).

We will compute and then compare the halo mass functions, as well the halo bias,
in Section 2.5.1.8 and in Chapter 4, where we also show that more massive halos are (i) less
abundant and (ii) more clustered (i.e., they have higher bias).

2.3.5 Bayesian statistics, parameter inference, and cosmological covariance matrices

Bayesian statistics and its associated methods start with the premise that statements
expressed through probabilities are not limited to data alone, but should extend to our choices
5 We will present the idea behind this nomenclature (linear spectra) while presenting the linear

perturbation in Section 2.4.
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for different models and their parameters as well (41). Cosmology has benefited immensely
from these ideas, given the fundamental fact that we have only one observable Universe. The
Bayesian toolbox has become an essential part of our model-testing and statistical inference
pipelines for constraining model parameters, in particular in the area of large-scale structures
(104).

The starting point is of course Bayes theorem, which can be written as (2, 41):

p(θθθ|D,M) =
p(D|θθθ,M)p(θθθ|M)

p(D|M)
. (2.31)

It states that we can compute the probability distribution of parameters p(θθθ|D,M) (or posterior),
given the parameters θθθ conditioned on the data D, following a model M . This is a function
of three components: p(D|θθθ,M), the probability of having the data D conditioned on the
parameters θθθ, following the model M (known as the likelihood); p(θθθ|M), the probability of
having the parameters θθθ conditioned on the model M (known as prior); and p(D|M), the
probability of having the data D conditioned on the model M (i.e., the marginalization).

This theorem is used to obtain the best set of parameters that can represent a data
set, given a model. In other words, the likelihood is maximized by exploring an interval of
theoretical parameters, allowing us to find the set that best fits the data (105).

When the search requires a large number k of parameters for a model M(θθθ), with
a parameter array given by θθθ, Markov Chain Monte Carlo (MCMC) methods are used (41).
These methods are based on algorithms that compute the probability distribution based on
Markov chains – i.e., points in parameter space whose likelihoods are known. These chains are
constructed by means of an interactive process where future states (the points in the chains)
depend only on the present state, not on the past.

The basic idea is to express the likelihood L as a distribution χ2, as follows (2, 3)

L ∝ e−χ2/2. (2.32)

Here, χ2 accounts for the difference between the data and the model, defined as the trace:

χ2 = [D −M(θθθ)]T Cov−1 [D −M(θθθ)] . (2.33)

In this equation, D represents the data vector, M(θθθ) denotes the model vector, and Cov is
the covariance matrix of the data vectors, whose inverse is denoted by Cov−1. The MCMC
algorithms search for stationary distributions of the parameters by minimizing this parameter,
thereby finding the best model description for the given data set.

2.3.5.1 Covariance matrices

The concepts of covariance and correlation can be applied to any variables of interest, in
order to measure their inter-dependency (41). Here, we will define them in terms of the power
spectrum P (k), as it is the summary statistic used in Chapter 4.
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Computing the covariance for the power spectra means measuring the dependence
between each bin k in Fourier space, which is here represented by indices i and j. Therefore, the
sample covariance matrix, denoted by Covij , is a square positive-definite matrix that measures
any linear relationships that may be present between the spectra at different bins, and can be
written as:

Cov
(N)
ij [P (ki), P (kj)] =

1

(N − 1)

N∑
l=1

[
P (ki)l − P̄ (ki)

] [
P (kj)l − P̄ (kj)

]
, (2.34)

where N is the number of spectra in the data vector (the sample size), P (ki)l is the value of
the l-th spectra for the i-th bin, and P̄ (ki) is the mean power spectrum. It is worth noting
that the covariance matrix contains elements with a wide range of values, which often makes
comparisons and visualization challenging. To address this, we define the correlation matrix

Corrij =
Covij
normij

, normij =
√

Covii Covjj , (2.35)

where normij is a normalization factor for bin pairs {ki, kj}. The correlation matrix can be
seen as an adimensional, renormalized version of the covariance matrix whose diagonal values
are unity. In fact, we can normalize any covariance matrix through the normij factor, and we
can also refer to the result as the normalized covariance matrix.

One of the main issues that often affect sample covariances is the limited size of the
samples: the number of data points available may be small for a number of reasons. In particular,
with only a small number of spectra we may fail to capture the true correlations between
different values in the different bins. Therefore, we must be able to collect a large amount of
data in order to obtain well-estimated covariance matrices, which, in turn, will lead to more
accurate parameter estimations. We will address this problem in Chapter 4.

2.4 Cosmology in the linear regime

The Universe behaves as a homogeneous and isotropic fluid at large scales (distances
≳ 100 Mpc/h), as evidenced by observations such as the CMB (13, 14). However, on smaller
scales, we observe galaxies and clusters forming what is known as the cosmic web, indicating
that the Universe is not locally homogeneous. Understanding the evolution of deviations from
the background is crucial for comprehending the formation of galaxies and structures which
are visible today. Ultimately, these objects originate from quantum fluctuations during inflation,
emerging as small perturbations on top of a homogeneous and isotropic background (75).

Initially, these fluctuations were very small, allowing them to be treated as linear per-
turbations. They grow over time, eventually shaping the cosmological structures observed
today. Even for current observations, for scales larger than ∼ 100 Mpc/h, the observed inho-
mogeneities are very small (when density perturbations are very small, i.e., δ ≪ 1). Thus, on
large scales the Universe can be described using linear perturbation theory, which includes
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perturbations in both matter (dark and baryonic) and radiation. In this section we will provide
a brief overview of this model – for a complete discussion see Reference (3).

We can start the overview of linear perturbation theory by considering a matter fluid
with small perturbations. For example, we can write the density field as

ρ (x, t) = ρ̄ (t) + δρ (x, t) , (2.36)

where ρ̄ (x, t) represents the background quantity (see Equations 2.13, 2.14, 2.15 for each matter
component), and δρ (x, t) represents the density perturbation. Our goal here is to understand
how an ensemble of density fluctuations evolve with time. This can be achieved by considering
perturbations to the energy density and pressure off all matter components and using the
Boltzmann equations together with the FLRW metric that describes this nearly homogeneous
and isotropic spacetime.

Due to the density and pressure perturbations the metric itself must also present
deviations from perfect homogeneity and isotropy. The linear density perturbations in the
FLRW metric are taken into account by considering the so-called scalar metric perturbations,
given by

ds2 = − [1 + 2Ψ (x, t)] dt2 + a2(t) [1 + 2Φ (x, t)] dr2, (2.37)

where Ψ(x, t) represents the Newtonian gravitational potential, Φ (x, t) represents the curva-
ture potential, and dr2 represents the spatial component of the metric.

While this expression may appear simple, it is important to note that it is connected
to all the matter components in the Universe (due to the energy-momentum tensor in the
Einstein’s equations – see Section 2.1). The challenge arises from the way these components
interact with each other. For instance, we have to account for Compton scattering between
photons and free electrons, as well as Coulomb scattering between electrons and protons
(3). The Boltzmann equation can handle these interactions along with all the perturbations
in the energy density and pressure. Schematically, the Boltzmann equation tells us how the
distribution function fi of some matter component i evolves with time:

dfi
dt

= C (fi) . (2.38)

In this expression, C is the collision term, which carries information about the interactions
and may take a complicated form depending on the type of interactions.

For DM, the variables of interest are the density contrast δ(x, t) = δρ(x, t)/ρ̄(t) and
the velocity v(x, t). The equivalent perturbation for baryons is represented by δb(x, t) and
vb(x, t). In the case of photons, the perturbation in the Bose-Einstein equilibrium distribution
function is characterized by Θ(k, µ, η) = δT/T , which may depend both on the spatial position
through the Fourier wave vector k, as well as the photon momenta (or direction) p through
its projection µ ≡ p̂ · k̂. The temperature fluctuation can also depend on time, which is here
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expressed by conformal time η where dη = dt/a(t). For neutrinos, the distribution function is
given in terms of their temperature as well: N (k, µ, η) = δTν/Tν . Regarding the polarization
fraction of the photon field, we denote it as ΘP .

Notice that the momentum dependence of the photon field (both in terms of its tem-
perature and polarization) is included in δT through its projection µ. In order to include the
degree of anisotropy of the photon field it is useful to split these quantities into multipoles of
the photon temperature distribution, expanded in terms of Legendre polynomials Pℓ:

Θℓ =
iℓ

2

∫ 1

−1

dµ Θ(t, k, µ) Pℓ(µ). (2.39)

Let’s consider the main channel for interaction between baryonic matter and radiation
– Compton scattering. The rate of interactions depends not only on the availability of free
electrons, expressed by their number density ne, but also on the baryon velocity vb, and of
course the Thompson cross-section σT . The probability that photons will interact with free
electrons via Compton scattering is usually encapsulated by the optical depth:

τ ≡
∫ η0

η

dη ne σT a. (2.40)

In other words, the probability per unit (conformal) time that a photon is Compton-scattered
by a free electron is dτ/dη = ne σT a.

The Boltzmann equations connecting all the matter components, the photon tempera-
ture (Θ) and polarization (ΘP ), dark (δ) and baryonic (δb) matter, and neutrinos (N ), are given
by (3):

Θ̇ + ikµΘ = −Φ̇− ikµΨ− τ̇

[
Θ0 −Θ+ µvb −

1

2
P2(µ)Π

]
, (2.41)

Θ̇P + ikµΘP = τ̇

{
−ΘP +

1

2
[1− P2(µ)] Π

}
, (2.42)

Π = Θ2 +ΘP2 +ΘP0 , (2.43)

δ̇ + ikv = −3Φ̇, (2.44)

v̇ +
ȧ

a
v = −ikΨ, (2.45)

δ̇b + ikvb = −3Φ̇, (2.46)

v̇b +
ȧ

a
vb = −ikΨ+

τ̇

R
(vb + 3iΘ1) , (2.47)

Ṅ + ikµN = −Φ̇− ikµΨ. (2.48)

Notice that Equation 2.47 takes into account the ratio of photon to baryon densities, defined by:

1

R
≡ 4ργ

3ρb
. (2.49)
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As for the gravitational dynamics, it is found by using the perturbed FLRW metric in
Einstein’s Field Equations, expanding to first order in the perturbations, and then coupling
that to the (perturbed) energy-momentum tensor. We end up with equations for the potentials
given by:

k2Φ + 3
ȧ

a

(
Φ̇−Ψ

ȧ

a

)
= 4πGa2 (ρmδm + 4ρrΘr,0) (2.50)

k2 (Φ + Ψ) = 32πGa2ρrΘr,2 . (2.51)

Here, the subscript m includes all matter (baryons and dark matter), and the subscript r denotes
the entire radiation content (neutrinos ν and photons γ):

ρmδm = ρδ + ρbδb (2.52)

ρrΘr,0 = ργΘ0 + ρνN0 (2.53)

ρrΘr,1 = ργΘ1 + ρνN1. (2.54)

Before attempting to solve these coupled equations we must settle on the initial con-

ditions (ICs), which are usually assumed to be given in terms of a primordial spectrum of
fluctuations that results from some inflationary model (3, 84, 85, 106). Although explaining
inflation is outside the scope of the present thesis, it remains the most plausible explanation
for the mechanism that underlies the near-uniformity of the density and temperature of the
Universe, as well as the origin of the perturbations.

The complete set of Equations 2.41-2.50 can be solved analytically only for certain scales
and up to certain moments in time (3). In order to simplify this analysis we can schematically
write the solution for the potential Φ as:

Φ(k, a) = Φp(k) T (k) D(a), (2.55)

where Φp(k) is the primordial value of the potential, T (k) is a transfer function, and D(a) is
the growth factor. The transfer function describes the relative growth (or damping) of different
modes from one instant in time to another. In particular, in this context it will express the evo-
lution of perturbations through the epochs of horizon crossing and radiation/matter transition,
a period which is called the transfer function regime

6. It is useful to define the transfer function
in such a way that it is equal to unity on the largest scales, which leads us to:

T (k) ≡ Φ(k, alate)

ΦLarge−Scale(k, aearly)
, (2.56)

where alate denotes an epoch well after the transfer function regime, and ΦLarge−Scale(k, aearly)

is the primordial value of Φ. This quantity can be obtained using numerical fits such as Bardeen,
Bond, Kaiser and Szalay (BBKS) (107) or that by Eisenstein and Hu (108).
6 It represents the period just after inflation, throughout the epoch of horizon crossing, to the epoch

of matter-radiation equality. Horizon crossing is when the wavelength of a mode becomes smaller
than the Hubble radius, k < aH .
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On the other hand, the growth function describes the wavelength-independent growth
of perturbations (which is especially useful at late times). It is also named as D1 when defined
for a > alate:

D1(a) ≡ a
Φ(a)

Φ(alate)
. (2.57)

In fact, in a matter-dominated Universe, D1(a) = a. With these conventions, the potential is
rewritten as

Φ(k, a) =
9

10
Φp(k) T (k)

D1(a)

a
, (2.58)

where the factor 9/10 takes into account the transition from the radiation to the matter era,
which boosts the potential on large scales by a factor 10/9.

It should be stressed now that the potential Φ cannot be directly measured. We employ
the power spectra of the density fluctuations to measure the matter distribution, and then
compare the observations to the linear theory and the coupled predictions for the density and
Φ. In order to draw this correspondence we can relate the matter density constrast δ to the
potential Φ using the Poisson equation:

Φ =
4πGρma

2δ

k2
. (2.59)

After some manipulation, we get that, at late times:

δ(k, a) =
3

5

k2

ΩmH2
0

ΦP (k) T (k) D1(a) . (2.60)

Assuming that ΦP (k) is drawn from a Gaussian distribution such that PΦ = (50π2/9k3)

(k/H0)
n−1 δH [Ωm/D1(a = 1)]2, the power spectrum of the matter perturbations is given by

P (k, a) = 2π2 δ2H
kn

Hn+3
0

T 2(k)

[
D1(a)

D1(a = 1)

]2
, (2.61)

where δH is the density constrast at the horizon crossing.

Indeed, the description of the power spectrum provided by Equation 2.61 is not straight-
forward, but it leads to the well-known result for the scaling of the power spectrum:

P (k) ∝ kn . (2.62)

The scale-invariant Harrison-Zeldovich spectrum corresponds to case n = 1 (109, 110). An-
other interesting point is that, by considering the BBKS transfer function (107), we get a fair
approximation of the shape of the spectra as

P (k) ∝ kT 2(k) =

{
k, k < keq
ln2 k
k3

, k > keq
, (2.63)

where keq = aeqH(aeq) represents the horizon scale at matter-radiation equality (see Section
2.1).
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To accurately predict the linear evolution and exact shape of the power spectrum
for different cosmological models, numerical codes are required to solve the entire set of
perturbation equations, such as CAMB (Code for Anisotropies in the Microwave Background)
(111). With the linear spectrum at hand, we can even compute the halo abundance and the
linear bias (see Section 2.3.4).

2.5 Nonlinear Cosmology

Figure 4 – Linear and nonlinear power spectrum comparison. The spectra are presented
for today’s values (z = 0), and were obtained with CAMB for the Quijote fiducial
Cosmology. The impact of nonlinearities is evident starting from k ≳ 0.1h/Mpc.

Linear perturbation theory is all we need for studying large-scales (k ≲ 0.1h/Mpc).
However, by the time fluctuations reach order unity, δ ∼ 1, linear perturbation theory has
already broken down. This breakdown becomes evident in the power spectrum, depicted
in Figure 4 – here we adopt the Quijote fiducial Cosmology: Ωm = 0.3175, Ωb = 0.049,
h = 0.6711, ns = 0.9624, σ8 = 0.834, Mν = 0.0eV , and ω = −1 (112), also in accordance with
Planck (14). The power spectra shown in the figure were computed using CAMB (111), where
we also highlight the scale k = 0.1h/Mpc with a dotted vertical line, which marks the onset of
nonlinearities. The two presented spectra start to diverge approximately at this scale, with the
power of k modes enhanced for small scales in the nonlinear case.

There are several branches that attempt to address the limitations of linear theory. One
approach involves considering nonlinear terms in the perturbation theory, similar to what
we have seen in the previous section, referred to as N -order perturbation theory (N−PT)
(113,114). Another approach involves non-perturbative methods, such as the halo model, which

https://camb.info/
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we briefly discussed in Section 2.3.4, but only in the context of linear theory. In the context of
the halo model, the linear power spectrum is expressed by the 2-halo term, while the “shoulder”
at small scales arises from the 1-halo term (115). Alternatively, simpler approaches like the
Zeldovich approximation (110, 116) are also used. Each of these methods has its advantages
and disadvantages. For example, while some may require higher-order perturbation terms
or additional parameters (117), others (like halo model) may not guarantee exact recovery of
perturbation theory results on large scales (118).

To predict clustering on small scales, the main approach is through numerical simula-

tions. These simulations employ high-resolution, multi-scale schemes and are routinely used on
massively parallel computers to increase their size and complexity, aiming to better describe the
Universe. Given the complexity of the Universe and its various components, these numerical
solutions can be classified into two main categories: N -body (or DM-only) simulations and
hydrodynamical (or DM plus baryons) simulations. N -body simulations involve solely DM,
with gravity being the only force acting on the particles. On the other hand, hydrodynamical
simulations incorporate both DM and baryonic matter (e.g., gas), allowing for the inclusion of
phenomena such as feedback from supernova explosions and supermassive black holes (BH),
magnetic effects, and more. Since these simulations form the core of the data sets used in the
present thesis, this section will briefly cover both types. Additionally, we will briefly discuss
some approximate methods developed to yield results similar to these simulations, but in a
faster manner.

2.5.1 N-body simulations

N -body (or DM-only) simulations are numerical solutions of a very high number (N )
of DM particles interacting gravitationally within a finite volume, and evolving over a long
period of time (or a large range of redshifts) (119, 120). Essentially, they provide an alternative
path to solutions of the collisionless Boltzmann equations coupled with Poisson’s equation.
Examples of such simulations include the Millennium (121), Dark Sky (122), and Bolshoi (123)
simulations, which are widely used by the scientific community to study large-scale structures
and the behavior of DM on large volumes. Another notable example is the Quijote project
(112), which consists of a collection of 43, 100 full N -body simulations designed to provide an
extensive data set of cosmological simulations for ML applications. These simulations employ
DM-only particles and utilize the TreePM code GADGET-III, which is the third generation of
the well-known GADGET-II algorithm (124). These simulations are instrumental in validating
the robustness of the work presented in Chapter 4.

In this Section we will present one of the techniques employed to solve the problem
of simulating cosmological structures: the particle mesh (PM) algorithm. Other methods, such
as particle-particle schemes or hybrid schemes, also exist, each with its own advantages and
disadvantages, which are detailed in References (125, 126).
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The PM method is a relatively simple approach that I used myself when first delving into
Cosmology. I coded my own version of the method, largely following the principles outlined
in Reference (127). PM codes utilize a mesh to represent density and potential fields, with the
resolution of the simulation limited by the size of this mesh. Despite its simplicity, the PM
method offers several advantages. It is fast, requiring fewer operations per particle per time
step, compared to other methods. Additionally, PM simulations can handle very large numbers
of particles efficiently.

Numerical N -body algorithms allow the study of nonlinear gravitational evolution
of complex particle systems. These simulations model the time evolution of a given system
by determining and tracking the trajectories of particles, taking into account their mutual
gravitational interactions (128). Thus, a PM code solves both the Poisson equation,

∇2Φ = 4πGΩm,0 ρcrit a
−1δ , (2.64)

as well as the equations of motion of the particles,
dx

da
=

p

ȧ a2
(2.65)

dp

da
= −∇Φ

ȧ
. (2.66)

These equations are written in terms of comoving coordinates, i.e., x = r/a, where r represents
the proper particle’s fluid position, and p = av = a2ẋ denotes the particle momenta, where

v = u−Hr = aẋ (2.67)

is the peculiar velocity, and u is the proper velocity (including the Hubble flow).

It is convenient to define code variables, i.e., dimensionless variables, that we will
denote with tildes according to:

x̃ ≡ x

r0
=

r

ar0
, (2.68)

p̃ ≡ p

v0
=

av

v0
, (2.69)

Φ̃ ≡ Φ

ϕ0

, (2.70)

ρ̃ ≡ a3
ρ

ρ0
. (2.71)

The quantities with subscript zero correspond to physical variables responsible for removing
the units from the code variables and are defined as

r0 ≡
LBOX

Ng

, (2.72)

t0 ≡
r0
t0
, (2.73)

ρ0 ≡ ρcritΩm,0, (2.74)

Φ0 ≡
r20
t20

= v20, (2.75)
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where LBOX is the box size, measured in Mpc/h, Ng is the number of grid cells in each direction,
and NT

g = N3
g is the total number of grid cells. In dimensionless variables, Equations 2.64-2.66

can be rewritten as

∇̃2Φ̃ =
3

2

Ωm,0

a
δ̃, (2.76)

dx̃

da
= f(a)

p̃

a2
, (2.77)

dp̃

da
= −f(a)∇̃Φ̃, (2.78)

where δ̃ = ρ̃− 1 and f(a) ≡ H0/ȧ.

The main idea of the PM code is to solve the Equations 2.76-2.78 in three main steps:

1. Solve the Poisson Equation 2.76 using the density field, estimated with current particle
positions;

2. Advance momenta p̃, using the potential computed in the first step;

3. Update particle positions x̃, using the advanced momenta.

2.5.1.1 Implementation stage: solving the equations

The PM method exploits the fact that the Poisson equation for gravitational potential
(see Equation 2.76) can be found in real space by convolving the density contrast with the
Green’s function

ϕ̃(x̃) =

∫
d3x̃′ G(x̃− x̃′) δ̃(x̃′). (2.79)

The choice of the particular Green’s function G is driven by the fact that we use periodic
boundary conditions (PBC) – see below, Equation 2.85. In Fourier space, the convolution is
then replaced by a simple multiplication:

ϕ̃(x̃) = G(k) δ̃(k). (2.80)

To obtain the density contrast δ̃(k) in Fourier space, first it is necessary to obtain δ̃(x̃) in real
space, which arises from the density in real space ρ̃(x̃) (129).

2.5.1.2 The density field

In PM algorithms, particles are assumed to have a certain size, mass, shape, and internal
density. This determines the interpolation scheme used to assign densities to grid cells (127,129).
A common choice is the Cloud In Cell (CIC) method, where particles are represented as cubes
(in 3D) of uniform density and of one grid cell size.

The algorithm described above is relatively computationally cheap, accurate, and is
commonly used in PM codes. In this method, the shape function of a particle in 1 dimension is
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defined as

S(x̃) =
1

∆x̃

{
1, |x̃| < ∆x̃/2

0, otherwise
, (2.81)

for a cell size of ∆x̃. Then, the mass fraction of particle at x̃p, assigned to a cell at x̃ijk, is the
shape function averaged over this cell:

W (x̃p − x̃ijk) =

∫ x̃ijk+∆x̃/2

x̃ijk−∆x̃/2

dx̃′ S(x̃p − x̃′). (2.82)

In 3 dimensions this process generalizes to

W (x̃p − x̃ijk) = W (x̃p − x̃ijk)W (ỹp − ỹijk)W (z̃p − z̃ijk) , (2.83)

such that the density ρ̃ijk in the corresponding cell is given by

ρ̃ijk =

Np∑
p=1

m̃pW (x̃p − x̃ijk), (2.84)

where NT
p = N3

p is the total number of particles, Np is the number of particles “on each
direction”, and mp is the particle mass7. In practice, this is achieved by looping over particles
and assigning their density to neighboring cells, rather than summing over all particles for
each cell individually.

2.5.1.3 The density contrast field and its Fourier transform

With the grid densities ρ̃i,j,k(x̃) on hand, the next step is to obtain the grid density
contrasts δ̃i,j,k(x̃) and convert them to Fourier space (127). This transformation is typically
accomplished using FFT algorithms, which efficiently compute the discrete Fourier Transform
and its inverse. By applying the FFT to the grid density contrasts, we obtain the them in Fourier
space, denoted as δ̃i,j,k(k̃).

2.5.1.4 The gravitational potential

According to Equation 2.80, now we only need the Green function to obtain the gravi-
tational field Φ̃(k). The Green function, derived in detail in Appendix A, is given by

G(k) = −3Ωm,0

8a

[
sin2

(
kx
2

)
+ sin2

(
ky
2

)
+ sin2

(
kz
2

)]−1

, (2.85)

where
kx =

2πl

LBOX

, ky =
2πm

LBOX

, kz =
2πn

LBOX

, for the components (l,m, n). (2.86)

These equations are in code units, hence LBOX = Ng . Then, the gravitational potential is solved
by transforming the result back to real space to obtain Φ̃(x̃) discretized at cell centers. Note that,
when using these gravitational potentials, there is an artifact, a singularity at l = m = n = 0,
which is avoided by setting Φ̃000 = 0.
7 Note that the particle mass m̃p can be computed in code units as m̃p = NT

g /N
T
p , using ˜̄ρ = 1. Thus,

in the comoving units, the particles mass is mp = m̃pr
3
0ρ0.
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2.5.1.5 The acceleration

After obtaining the gravitational field in real space Φ̃(x̃), discretized at cell centers, it
is time to obtain the acceleration at each grid point (127). This is simply given by

ã(x̃i) = −∇̃Φ̃(x̃i) . (2.87)

This step precedes the updating of the particles’ positions and momenta, because it requires
the accelerations at each particle’s position. Thus, to obtain the accelerations at the particle
positions g̃p, we interpolate the acceleration at grid points ã(x̃i) onto the particle positions x̃p

j ,
using the CIC interpolation. During the density assignment, for a given particle, the acceleration
at each point is interpolated from the cells to which the particle contributed to the density.

2.5.1.6 Updating particles positions and momenta

We arrive now at the final stage of the PM method: updating particle positions and
momenta. This is achieved using leapfrog integration (127,128), which is a numerical method for
integrating differential equations in a dynamical system. Leapfrog integration updates positions
and velocities (or momenta) at interleaved time points (or scale factor points), staggered in
such a way that they “leapfrog” over each other.

Thus, using the leapfrog integration, we have updated momenta and positions as

p̃n+1/2 = p̃n−1/2 + f(an)g̃n∆a (2.88)

x̃n+1 = p̃n + a−2
n+1/2f(an+1/2)p̃n+1/2∆a, (2.89)

where n represents the “time” step, f(an) is computed at an, ∆a is the step in the scalar factor,

an = ai + n∆a (2.90)

is the evolution in the scale factor according to the “time” steps, and an+1/2 = an +∆a/2. In
the present case, we always update the momentum first, in a half time step before update the
positions.

Therefore, the Particle Mesh (PM) method involves repeating a series of steps for each
time step of the simulation. The main scheme of the PM method typically consists of the
following three blocks, which are repeated iteratively:

1. Find density on the mesh using the Cloud-In-Cell (CIC) technique. This step
involves assigning the density of particles to grid cells using the CIC interpolation
scheme.

2. Solve the Poisson equation using two 3-dimensional Fast Fourier Transforms
(FFTs). After obtaining the density distribution on the mesh, the Poisson equation is
solved in Fourier space using FFTs to calculate the gravitational potential.
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3. Advance momenta and positions of the particles. Finally, the momenta and po-
sitions of the particles are updated using leapfrog integration based on the calculated
gravitational potential.

These blocks are repeated for each time step of the simulation to evolve the system over time.

The simulations were conducted using the following cosmological parameters: H0 =

73.0 km s−1 Mpc−1, Ωm = 0.311051, and ΩΛ = 0.68887. We ran four simulations, which
explains the error bars seen in the final products, as presented in the subsequent sections on
the realizations over these four boxes. We simulated a box of side LBOX = 128 Mpc/h, with
1283 particles and 2563 cells. The simulations started from a = 0.02 or z = 49, up to a = 1.0

or z = 0. The ICs were set using the Multi Scale Initial Conditions (MUSIC) code (130). To define
the initial spectra using MUSIC we utilized CAMB (111).

2.5.1.7 N-body power spectrum

The primary outcome obtained from the N -body simulation was the power spectrum,
denoted as P (k), at various stages and configurations of the simulation. This quantity was
estimated using Equation 2.20, following the prescription presented in Section 2.3.1. Specifically,
we computed the power spectrum based on FFTs performed on the density contrasts. We then
calculated the quadratic modulus of these transformations and averaged the results over the k

values:

P (k) = ⟨|δ̃(k)|2⟩ = 1

Nk

Nk∑
i=1

|δ̃(ki)|2, (2.91)

where i represents the bin index of k, i.e., ki lies within the interval [k, k+∆k], k =
√

k2
x + k2

y + k2
z ,

and Nk represents the number of points where ki falls within the respective bin.

The power spectrum was computed for two distinct epochs: a = 0.02 and a = 1.0,
to capture the evolution of the simulation. The results are illustrated in Figure 5, where a
comparison is made with the linear and nonlinear spectra from CAMB. Error bars in the
plots represent the standard deviation of the obtained spectra for four realizations of the
simulation conducted under the fiducial Cosmology. Additionally, ⟨std⟩ denotes the average of
these standard deviation values. The vertical lines denote the confidence interval of k values,
computed as

kmin =
2π

LBOX

and kmax =
πNp

2LBOX

, (2.92)

where LBOX is the size of the box of the simulation, kmin is the minimum value of k (also
related to the simulation resolution), and kmax is the maximum value of k, representing the
Nyquist scale, which expresses the minimum separation between the particles, according to
the Reference (131).

The overall trend of the power spectra aligns well with the model obtained from CAMB.
Particularly, at a = 0.02, the spectrum matches exactly with the linear spectrum (and nonlinear

https://www-n.oca.eu/ohahn/MUSIC/
https://camb.info/
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Figure 5 – DM power spectrum from N-body simulation. The power spectrum is presented
on the left, for a = 0.02 (or z = 49) and on the right for a = 1.0 (or z = 0). Both
spectra were obtained for a box of side LBOX = 128 Mpc/h, with NT

p = 1283

particles, and NT
g = 2563 cells. The vertical dotted lines indicate the maximum

and minimum values for k. They are respectively: kmin ≃ 0.05h/Mpc and kmax ≃
1.57h/Mpc. In both plots we compare the obtained power spectrum to the theoretical
linear and nonlinear spectra from CAMB (111).

as well, given the absence of structures at this stage). Conversely, at a = 1.0, the resulting
spectrum closely resembles the nonlinear spectrum across all scales, indicating the emergence
of structure and the breakdown of linear theory on small scales.

2.5.1.8 N-body halo finder, mass function, and bias

We have already seen some details about the halo model in Section 2.3.4. In this model,
DM halos are the basic units into which DM particles collapse, starting the process of struc-
ture formation. N -body simulations are then used as a data set to what these structures are
“identified” with prescriptions that are called halo finders. There are many such search meth-
ods (including spherical overdensity (SO), friends-of-friends (FOF), and phase-space based
algorithms), and we will check some direct effects of some different choices in Section 6.1.1.2
(132, 133). Currently, SubFind (134, 135), Rockstar (136), and VELOCIraptor (137, 138) stand
out as the most widely used halo/subhalo finders within the community. A notable distinction
among them is that Rockstar and VELOCIraptor incorporates object velocities in its structure
identification process.

In this section we will explore the workings of one the most common straightforward
halo-finding methods, known as spherical overdensity (SO). This method finds spherical objects
made up of DM particles that surpass a certain density threshold. This was the chosen approach
for halo identification in the work of this section, primarily following the References (98,99,101).
When applied to a simulation, the SO method finds spherical regions having a density which is
expressed as

ρ =
N inside

p mp

4
3
πr3

. (2.93)
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Here, N inside
p represents the number of particles within the sphere, mp is the mass of the

particles, and r is the radius of the sphere. ∆ = ρ/ρ̄ represents the overdensity threshold (here
set to 200) used to determine whether or not an object has collapsed. This threshold value is
commonly used in the Tinker mass function and halo bias (101, 103).

The general procedure of the SO method can be outlined as follows:

1. Take the positions of the particles and apply the CIC scheme to compute the grid over-
densities;

2. Sort the grid cells based on their densities;

3. Select the grid cell with the highest density as the initial candidate center for the first
sphere;

4. Begin with an initial sphere radius r → r0 around this center;

5. Update the center of mass of the particles within this sphere and increase the radius by
∆r (r → r0 +∆r) until the density falls below the threshold ρ = ∆ρ̄;

6. Remove all particles found inside the identified halo from the list of particles to ensure
no halos are nested within others.

7. Repeat the process by selecting the next grid cell with a higher density.

It is important to note that we set r0 = 0.5 and ∆r = 0.1. Additionally, the process continues
until we encounter a grid cell with fewer than 10 particles. Finally, the position, mass, density,
and radius of each halo are saved for further analysis.

At redshift z = 0 (or scale factor a = 1), halos were identified with particle masses of
approximately mp ≃ 8.6 · 1010M⊙/h. The total number of particles found within these halos
was approximately Nhalos ≃ 1119, accounting for roughly 20.1% of all particles. Furthermore,
the observed halo sizes ranging from an average of ⟨rhalomin ⟩ ≃ 0.3Mpc/h up to a maximum
average of ⟨rhalomax⟩ ≃ 2.3Mpc/h.

One of the primary tests conducted on the identified halos involved assessing their
halo mass function and bias, as discussed in Section 2.3.4. To validate these measurements,
we compare them to a fitting model – in this case we opted to use Tinker’s model (101, 103),
employing a multiplicity function with a threshold of ∆ = 200 (see Equation 2.29). The
halo mass function and bias were computed based on the definitions outlined in Equations
2.29 and 2.30, respectively, at a = 1.0 (or z = 0), considering halos within the mass range
M ∈ [1013, 1014.5]M⊙/h. Overall, the comparison indicates that the identified halos align well
with Tinker’s fitting functions. However, a slight deviation is notable in the halo mass function
for halos at the higher end of the mass spectrum, likely attributable to fewer halos present in
those bins.
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Figure 6 – Halo mass function and bias from N-body simulation. On the left: halo mass
function. On the right: bias obtained by comparing the spectra of halos and DM.
All these quantities were computed at z = 0 or a = 1 for a box of side LBOX =
128Mpc/h and mass range within Mhalo ∈ [1013, 1014.5]M⊙/h, and compared with
the Tinker mass function and bias (101, 103).

2.5.1.9 Approximated methods for DM simulations

N -body simulations are the state-of-art of gravitational dynamics for DM particles.
However, their computational demands often limit their utility for extensive runs required for
comparisons with real surveys, such as parameter estimation and covariance matrices (see
Section 2.3.5.1). To address this challenge, numerous approximate methods have emerged to
expedite results. Techniques like PTHalos (139), EZMocks (140), PINOCCHIO (141), PATCHY
(142), HALOGEN (143), LogNormal (144), ICE-COLA (145), ExSHalos (146), BAM (147, 148),
and others aim to generate DM halo catalogs using semi-analytical approximations or by emu-
lating N -body simulations. For a comprehensive review of these methods and their comparison
to N -body simulations for power spectrum analysis, we recommend Reference (149).

In Chapter 4 of this thesis, we utilize an approximate method known as ExSHalos
(Excursion Set Halos). This approach presents a novel, simple, fast, and parameter-free tech-
nique for generating DM halo catalogs (146). Basically, ExSHalos implements the notion of
excursion sets (150,151) and, subsequently, corrects the positions of the peaks using Lagrangian
perturbation theory (LPT) (114,152). The method requires only a fiducial Cosmology, the linear
matter power spectrum, and the threshold density for halo formation in linear theory (either
constant or ellipsoidal collapse barriers) as inputs.

2.5.2 Hydrodynamical simulations

Hydrodynamical simulations play a pivotal role in comprehending galaxy formation
and evolution in the Universe. Unlike DM-only simulations, hydrodynamical simulations
incorporate ordinary matter, encompassing all components discussed in Section 2.1. As a result,
they serve as the foundation of what we refer to as the halo-galaxy connection, directly bridging
the information content between two key components: DM halos and galaxy properties. This
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integration is essential for deciphering a wide array of observed galaxy characteristics, including
spatial clustering, mass distribution, stellar mass, size, color and star formation rate, among
other properties (125, 153).

Numerous recent initiatives are pushing the boundaries of hydrodynamical simula-
tions, introducing new variations such as Astrid (154), SIMBA (155), IllustrisTNG (156),
Magneticum (157), and SWIFT-EAGLE (158). A remarkable project is the CAMELS (Cosmology

and Astrophysics with MachinE Learning Simulations) suite, comprising 12, 903 cosmological
simulations – 5, 164 N -body and 7, 712 state-of-the-art (magneto-)hydrodynamic simulations.
Primarily designed to serve as a data set for ML analyses, CAMELS encompasses all the afore-
mentioned simulations, focusing on small boxes of 25 Mpc/h. Additionally, these simulations
are utilized in two key contexts in this thesis: halo-galaxy connection (IllustrisTNG) and
cosmological parameter inference from galaxy/halo catalogs (Astrid, SIMBA, IllustrisTNG,
Magneticum, and SWIFT-EAGLE), detailed in Chapters 5 and 6, respectively.

Indeed, while N -body simulations focus on the gravitational evolution of DM particles,
hydrodynamical simulations encompass the evolution of all components, including the grav-
itational evolution of matter and the hydrodynamical evolution of gas. In some cases, these
simulations also account for the interaction of gas with evolving radiation and magnetic fields
(153). Initially, the baryon component, representing the visible Universe, consists mainly of gas,
primarily hydrogen and helium. Some of this gas material ends up in stars during the process
of structure formation. However, at the core of hydrodynamical simulations lie numerical
solutions governing ideal, collisional, and non-conducting gases. Modeling the cosmic gas
can be approached through three main branches: the Eulerian formulation, the Lagrangian
formulation, or a hybrid of both (125). In the Lagrangian formulation, the following equations
govern the fluid dynamics

Dρ

Dt
= −ρ∇ · v, (2.94)

Dv

Dt
= −1

ρ
∇P, (2.95)

De

Dt
=

1

ρ
∇ · pv, (2.96)

where D/Dt ≡ ∂/∂t+ v · ∇ denotes the Lagrangian derivative, ρ is the density, v denotes de
velocity vector, P = (γ − 1)ρu (with γ being the heat capacity ratio and u being the internal
energy) denotes the thermodynamic pressure, and e = u+ v2/2 is the total energy per unit
mass. This formulation assumes an observer that follows an individual fluid part, specified
by its properties such as density ρ, as it moves through space and time. It can also be viewed
as a mesh-free technique for approximating the continuum dynamics of fluids by samplings
particles (an interpolation of points) (159).

Due to limited numerical resolution of hydrodynamical simulations, which are among
the most computationally expensive simulations in Cosmology and Astrophysics, certain
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physical processes must be “included by hand”. These processes are known as subgrid physical
processes or sub-resolution models. They bridge the gap between the scales that can be treated
numerically, typically above interstellar medium structure scales (around 3 kpc), and those
addressed by these subgrid routines, which extend below the scale of star clusters (around 0.3

kpc). It is precisely at this point where the main differences between the different simulations
arise, a topic we will explore in Section 6.1.1.1. These subgrid models are a critical component
of hydrodynamical simulations, introducing different parameters that must be tuned to ensure
that their final products align with observational data (125, 153).

It is not within the scope of the present thesis to delve into all the intricacies of subgrid
physical processes. However, we can mention some of them, including:

• Gas cooling. This process dissipates the internal energy of gas through mechanisms
such as ionization processes. It is often tabulated as a function of density, temperature,
redshift, and composition for phenomena like photoionization (160, 161). It is used by
EAGLE and IllustrisTNG (153).

• Element abundance evolution. This process tracks the time release of individual
elements from various nucleosynthetic channels. It is employed in simulations like
SIMBA (162), Magneticum (163), EAGLE, and IllustrisTNG (164).

• Feedback processes. These processes involve the balance of inflows and outflows that
regulate phenomena such as supernovae (SN) and active galactic nuclei (AGN) activity.
They may be influenced by mechanisms like stellar winds and radiation pressure.

• Magnetic fields; cosmic rays; dust and others.

These subgrid processes play crucial roles in shaping the evolution of galaxies and the inter-
galactic medium in hydrodynamical simulations (125, 153).

All these subgrid physical components require calibration, which is typically based on
either physical arguments or observations – i.e., calibration aims at reproducing properties
of galaxy populations. The most commonly used galaxy property for this calibration is the
galaxy stellar mass, which is employed to calibrate feedback associated with stellar evolution.
However, in simulations like EAGLE, galaxy size has also been used to reproduce galaxy scaling
relations (158). Additionally, properties such as star formation rate and halo gas fractions are
utilized in simulations like IllustrisTNG (156). It is important to note that the values chosen
for these parameters may vary depending on the resolution of the simulation being considered
(153).

In Figure 7 we present a comparison of the galaxy stellar mass function from hydrody-
namical simulations, including EAGLE (165), Horizon-AGN (166), IllustrisTNG (167), SIMBA
(168), and FIREbox (169), with measurements from the Sloan Digital Sky Survey (SDSS) and
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Figure 7 – Galaxy stellar mass function comparison. The comparison is done for hydrody-
namical simulations such as EAGLE (165), Horizon-AGN (166), IllustrisTNG (167),
SIMBA (168), and FIREbox (169) with measurements from SDSS and GAMA surveys
(170, 171). Source: Reference (153).

Galaxy and Mass Assembly (GAMA) surveys (170, 171). It is important to note that the authors
of the figure have omitted the error bars of the real measurements. This plot exemplifies the
agreement between simulations, which have box size of L ≃ 100 Mpc and mass resolution
of mg ∼ 106M⊙, and observational data across the mass range of [108, 1011]M⋆/M⊙ for SDSS
and GAMA (170,171). While EAGLE, IllustrisTNG, and SIMBA simulations were calibrated to
achieve this level of agreement, success is not guaranteed due to the limited freedom afforded
by their subgrid models. Nevertheless, the results are consistent within the highlighted mass
range. In contrast, FIREbox and Horizon-AGN simulations exhibit a high number of galaxies
at fixed stellar mass. This discrepancy could be attributed to feedback mechanisms (such as
AGN) inadequately regulating galaxy growth, poor sampling of energy injection events, or
the injection of too little energy per feedback event (153). Consequently, this test serves as
compelling evidence of the success of hydrodynamical simulations when compared to real
observations.

2.5.2.1 Approximated methods to galaxies and halo-galaxy connection

As we have seen, hydrodynamic simulations represent the best of current simulation
capabilities, as they provide a direct reproduction of observable properties of galaxies, which
are (for the most part) the objects actually observed in the sky. Unlike DM halos, galaxies
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are baryonic entities, making hydrodynamic simulations invaluable for understanding their
formation and evolution. However, these simulations are also the most computationally ex-
pensive, surpassing even N -body simulations in terms of computational resources required.
Given their significance, there has been a concerted effort to develop approximate methods
for predicting galaxy properties based on DM halo information. This subfield, often referred
to as the halo-galaxy connection, aims at extracting galaxy-related information from DM halo
simulations (or vice-versa). For a comprehensive overview of these efforts, we recommend
consulting Reference (172).

The halo-galaxy connection refers to the relationship between the multivariate distri-
bution of galaxy and halo properties derived from observations and simulations (172). Galaxies
form and evolve within DM halos, and many of their properties are intrinsically related to the
halo environment and clustering properties. For example, red galaxies tend to populate the
centers of halos and are generally older, while blue galaxies are more often found in the outskirts
of halos, and are typically younger. Modeling approaches to establish this link generally fall
into two categories: physical and empirical models. Physical models include hydrodynamical
simulations and Semi-Analytical Models (SAMs), which aim to capture the underlying physical
processes governing galaxy formation within halos. On the other hand, empirical models such
as Subhalo Abundance Matching (SHAM) and Halo Occupation Distribution (HOD) models
are more data-driven and rely on statistical correlations between galaxy and halo properties
observed in simulations or surveys.

SAMs approximate various physical processes using analytic prescriptions that can be
tracked through the merger history of DM halos, and many codes are examples of this idea,
such as Santa Cruz (173), GAEA (174), and L-Galaxies (175). SHAMs, on the other hand,
establish a relationship between the mass of a galaxy and the abundance of the DM halos it
typically inhabits (176). Finally, Decorated Halo Occupation Distribution models (decorated
HODs) introduce additional halo properties besides mass, such as concentration, to determine
the probability density distribution for the number of galaxies within their hosting halos (177).

In the present thesis we make use of the IllustrisTNG hydrodynamical simulation
to give our contribution for the halo-galaxy connection. We achieve this by presenting a new
category of solutions, using ML techniques in order to reproduce galaxy properties based on
halo information. This work will be presented in Chapter 5.
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3 MACHINE LEARNING BACKGROUND

This thesis is also firmly grounded upon the principles of Machine Learning (ML),
which serves as the primary set of techniques utilized throughout the work presented here.
This chapter provides a concise overview of various ML methods, laying the basis for the
developments of subsequent chapters. For a more comprehensive understanding of the topics
covered here, we recommend References (41, 178, 179).

We begin with a brief review of fundamental ML concepts in Section 3.1. Section 3.2
presents some traditional ML approaches. k-Nearest Neighbors (kNNs) are seen in Subsection
3.2.1, as an example of clustering methods. Tree methods are presented in Subsection 3.2.2,
including Extreme Randomized Trees (ERTs) and Light Gradient Boosting Machines (LGBMs).
Symbolic Regression is addressed in Subsection 3.2.3. Transitioning to Deep Learning (DL),
Section 3.3 introduces key concepts for all neural networks (NNs) seen through the thesis. As
the first examples of NNs, we present the seminal idea of Multi Layer Perceptrons (MLPs) in
Subsection 3.3.1. Expanding on the foundation laid by MLPs, Section 3.3.2 introduces Convolu-
tional Neural Networks (CNNs) and their constituent blocks. In Section 3.3.3, we explore image
denoising techniques utilizing CNNs. Section 3.3.4 focuses on Graph Neural Networks (GNNs),
also rooted on MLPs, covering topics such as graph definition and construction, GNNs layers,
and what we coin as “GNNs variations”, including also a non GNN architecture, the deep sets.
Alternatives to the usual maximum-likelihood algorithms are found in Section 3.4, with the
probabilistic methods, where we discuss Moment Neural Networks (MNNs) and Regression to
Classification, presenting NNClass algorithm. Finally, Section 3.5 addresses the challenge of
imbalanced data sets, techniques for combining different ML predictions, and concludes with a
discussion on hyperparameter search strategies.

3.1 From the beginning: machine learning notions

In essence, classical programming derives answers based on predefined rules and data.
Artificial intelligence (AI) encompasses the field of computer science dedicated to creating
systems that can perform tasks that typically require human intelligence. Within AI, ML is a
subset focused on developing algorithms and models that enable computers to learn patterns
and make predictions or decisions based on data without being explicitly programmed. In other
words, ML formulates rules based on data and can generalize these rules to handle unseen
samples. The term “machine learning” is often attributed to Arthur Samuel, with his research
about the game of checkers (180). Central to the motivation behind ML is the question: “How
can computers learn to solve problems without being explicitly programmed?”. Consequently,
ML emerges as a tool specifically designed to tackle large and intricate data sets, uncovering
nonlinear relationships within high-dimensional feature spaces (41).
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Traditional ML involves algorithms trained on structured data
1, often requiring manual

feature engineering to extract relevant patterns. Deep learning (DL), a subfield of ML, employs
artificial neural networks, or simply neural networks (NNs), with multiple layers (hence “deep”)
to automatically learn hierarchical representations of data directly from raw input, eliminating
the need for manual feature engineering. While DL offers advanced capabilities for learning
complex patterns, traditional ML algorithms remain vital for structured data and tasks where
interpretability or small data sets are essential.

ML tasks can be broadly categorized into three main types: supervised, unsupervised,
and reinforcement learning (41,179). In the first two cases, these methods aim to learn a function
F(x → y) from input data x to output data y. Supervised learning involves learning the
relationship between input data x and output data y, where examples of output data are
provided for learning. On the other hand, unsupervised learning aims at uncovering patterns
and features present in the input data x without access to corresponding output data y. While
reinforcement learning involves agents learning optimal behavior by interacting with an
environment, receiving feedback in the form of rewards or penalties for their actions. Each
method addresses different learning scenarios: supervised learning for labeled data prediction,
unsupervised learning for pattern discovery in unlabeled data, and reinforcement learning for
decision-making in dynamic environments.

Within the realm of supervised learning, tasks are further subdivided into regression

and classification. Regression tasks involve predicting a continuous variable for the output data
y, while classification tasks entail predicting a discrete variable. In all cases, these methods are
designed to handle (N,M)-dimensional data for both input x and output y, respectively. It is
quite clear, then, that the larger these dimensions are, the harder it is to train the model.

A common practice in supervised ML tasks is to partition the input x and output y
data sets into training, validation, and testing sets. These sets are utilized in the corresponding
stages of the learning process: training, validation, and testing. During the training stage, the
algorithm learns the underlying patterns and rules using only a portion of the data set known
as the training set. Simultaneously, to monitor the training progress and ensure the model can
generalize well to unseen data, a separate fraction of the data set, the validation set, is used. This
validation set serves to evaluate the performance of the model on data it has not been trained
on. Finally, the performance of the trained algorithm is assessed on yet another independent
portion of the data set, known as the testing set, used to benchmark the model. Various metrics
and scores can be calculated at this final stage, depending on the nature of the problem at
hand, such as mean squared error for regression tasks, and accuracy for classification tasks. In
addition to organizing the data set into training, validation, and testing sets, each of these sets
can be further subdivided into smaller portions called batches. Batches represent subsets of the

1 Structured data refers to data that is organized in a well-defined manner, typically arranged in rows
and columns, e.g., tabular data.



71

data used to train the model incrementally, with the model’s internal parameters updated after
processing each batch of samples. This batch-wise training approach helps improve efficiency
and scalability, particularly for large data sets.

Figure 8 – Examples of underfitting (left panel), balanced model (middle panel), and
overfitting (right panel). The idea is to assess the ability of the model (red curve) to
describe the data set (green dots). In the case of underfitting, the model oversimplifies
the data set, providing a poor fit that fails to capture the underlying pattern exhibited
by the data points. Conversely, in the optimal balance scenario, the model aligns well
the data, capturing its general trend without overcomplicating the representation.
However, in the case of overfitting, the model conforms excessively to the data,
attempting to pass through each data point. Source: Analytics Vidhya (181).

The primary objective of monitoring the algorithm performance on both training and
validation sets (and, subsequently, on the testing set) is to identify “ill models”. Specifically,
we aim to assess the algorithm’s ability to generalize its predictions beyond the training set
by evaluating its performance on the validation and testing sets and comparing the results.
Overfitting occurs when a model learns to capture noise or random fluctuations in the training
data, rather than the underlying patterns or relationships. As a result, the model performs
well on the training data but fails to generalize to the validation or testing sets. Conversely,
underfitting occurs when a model is too simplistic to capture the underlying structure of the
data, resulting in poor performance on the training, validation, and testing sets. A visual
representation of these phenomena, depicting underfitting, optimal balance, and overfitting,
can be observed in Figure 8. While there are various approaches to address these issues, the
general strategy involves adjusting the model’s complexity based on the amount of training
data available. In summary, by carefully monitoring algorithm performance and identifying
cases of overfitting or underfitting, we can refine our models to achieve better generalization
and more accurate predictions on unseen data.

Another important aspect of ML algorithms, which will be emphasized in Chapters
4 and 6, is robustness. While it is a common practice to evaluate the generalization power of
a model, ensuring it can effectively handle unseen samples from the same data set used for
training (on the validation and testing sets), it is equally important to measure their ability to
extrapolate predictions to different data sets that share similar properties with the training set.
These data sets may vary due to factors such as the underlying physical model used to generate

https://editor.analyticsvidhya.com/uploads/52858bias-and-variance-in-machine-learning3.png
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them or some evolution of samples over time. Unfortunately, ML models often struggle with
this extrapolation task due to inherent differences across data sets. To address this issue, one
common approach is to retrain the model on a larger data set that includes the new samples. In
Cosmology, where different simulations or unique realizations of the Universe are prevalent,
it is crucial to develop models that exhibit robustness across a wide range of data sets. This
robustness enables the model to generalize effectively to various simulation scenarios and,
eventually, extrapolate predictions to real observational data. By aiming for robustness, we can
enhance the reliability and applicability of ML techniques in cosmological studies, facilitating
insights into the underlying physics of the Universe.

However, in all relevant applications of ML techniques, even the most robust and high-
performing methods are not perfect. In ML, errors in predictions can be categorized into two
main types: epistemic (systematic) and aleatoric (statistical) uncertainties. The epistemic error
stems from the inherent limitations of the model itself, which propagate to its predictions. Since
it arises from an incomplete knowledge or understanding of the complexity of the data set as
captured by the model, it can often be reduced by increasing the size of the training data set. In
other words, epistemic errors reflect uncertainties associated with the model’s parameters and
structure, and as more data is accrued, the model’s predictive capability improves, and those
uncertainties tends to decrease.

Unlike epistemic uncertainties, aleatoric uncertainties arise from inherent randomness
(or variability) in the data itself. It is associated with measurement errors, or some inherent
stochasticity in the observed phenomena. Aleatoric uncertainties cannot be eliminated by
increasing the size of the data set: they persist regardless of the amount of data available for
training. Therefore, aleatoric errors reflect the intrinsic statistical fluctuations or variability in
the observed phenomena.

By considering both epistemic and aleatoric uncertainties (resulting in the total pre-
dictive uncertainty for each sample), ML practitioners can gain a more comprehensive under-
standing of the predictive capabilities and limitations of their models.

Throughout this thesis, we focus on supervised learning algorithms tailored for regres-
sion tasks. Our approach encompasses various methodologies across different chapters. In
Chapter 4 we employ a computer vision technique – a denoising autoencoder – as an image
denoiser to tackle regression tasks. This involves utilizing the autoencoder architecture to
reconstruct clean images from noisy inputs. In Section 5.3 we explore multiple regression
methods and employ ensemble techniques, such as stacked ML models, to combine them. Addi-
tionally, we compare their performance on both the original data set and an augmented data set.
This augmentation forces the models to make predictions in under-represented regions of the
data set. In Chapter 6 we delve into the use of graph neural networks (GNNs) for performing
global inferences. These GNNs are specialized neural network architectures designed to operate
on graph-structured data, allowing us to extract insights from complex relational data sets. In
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each of these methodologies, we make use of the fundamental principles of ML outlined in this
section. By leveraging these principles, we aim to develop robust models capable of effectively
addressing regression tasks across various domains and data sets.

3.2 Traditional Machine Learning Methods

In this section we make an overview of some of the traditional ML approaches. We
commence with one of the simplest algorithms, the k-Nearest Neighbors (kNN), in Section
3.2.1. Following that, we introduce the most easily interpretable methods, the tree methods, in
Section 3.2.2. Here, we elaborate on Random Forests, Extreme Randomized Trees (ERTs), and
Light Gradient Boosting Machines (LGBMs). Then, in Section 3.2.3, we delve into Symbolic
Regression (SR), a valuable method for interpretability.

3.2.1 k-Nearest Neighbors

The k-Nearest Neighbors (kNN) algorithm is a non-parametric learning method that
calculates the distance from a new data point to all other training points, assigning the point
to the class to which the majority of the k neighbors belong. Specifically, given a matrix X

with dimensions (N ×D), being N the number of points and D is the number of dimensions,
and xi represents the i-th point of X with D components, the Euclidean distance is computed
as follows

∆(x, xi) =

√√√√ D∑
d=1

(xd − xi,d)
2. (3.1)

The purpose is to find the value x⋆ = argmin∆(x, xi).

kNN is predominantly used as an unsupervised ML method, i.e., as a clustering algorithm,
but can also be framed as a supervised ML method to tackle classification and regression
problems. In the case of classification, it performs “voting” step to determine the class label
of the new instances. While in regression problems, the final predictions is given by local
interpolation (or averaging) of the targets associated with the nearest neighbors (41, 182). This
method has been used in References (183, 184) for studying the halo-galaxy connection. In this
thesis, we employ the SkLearn K Neighbors Regressor library (182).

3.2.2 Tree methods

Tree methods are commonly employed for classification tasks, but they also have regres-
sion variants, both based on Decision Trees (DTs) (41, 182). The name stems from the model’s
representation, which adopts a “tree structure” (see Figure 9). The initial node, known as the
root node, contains the entire data set. At each branch of the tree, the data is partitioned into
two child nodes, or subsets, based on a predefined decision boundary. One node holds data
below the boundary, while the other contains data above it. This splitting process recurs until
a predefined stopping criterion is met. The leaf nodes represent the final decision or prediction

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html
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Figure 9 – Scheme of a decision tree. It starts from the root node, achieves the internal nodes,
and ends up in the leaf nodes. Source: IBM (185).

of the model. In regression problems, the predictions are averaged over discrete responses,
approximating a continuous function.

DTs are a straightforward method that is intuitive to visualize and interpret. They
naturally reflect the way we might analyze a data set manually, employing a hierarchy of
increasingly detailed questions. Additionally, DTs serve as the foundation for other tree-based
methods, which we will briefly discuss in this section.

A DT is constructed by selecting a feature and defining a value to split the data. If we
base this criterion on the information content of the data set, we can define the entropy E as

E(x) = −
∑
i

pi(x) ln [pi (x)] , (3.2)

where x represents the data set, i is the class, and pi(x) is the probability of that class given the
training data. Another useful quantity defined in terms of this criterion is the information gain

IG, which corresponds to the reduction in entropy due to the split. Essentially, it represents
the difference between the entropy of the parent node and the sum of entropies of the child
nodes

IG(x) = E(x)−
1∑

i=0

Ni

N
E(xi), (3.3)

where we consider a binary split with i = 0 representing the points below the split criteria, and
i = 1 representing the ones above it. Ni is the number of points xi in the i-th class, and E(xi)

is the entropy for that class. Then, the value of the feature to split the data (the threshold) is
defined by maximizing the information gain for a given split point s. Other splitting criteria,
such as the Gini coefficient or Gini impurity, can be used in a similar fashion.

https://www.ibm.com/content/dam/connectedassets-adobe-cms/worldwide-content/cdp/cf/ul/g/df/de/Decision-Tree.png


75

If a stopping criterion is not defined, the tree could continue growing until there is
only a single point per node in the splitting set. This is highly computationally expensive and
usually leads to overfitting. Therefore, the stopping criterion is often defined as pruning the
tree or limiting its depth, thus also limiting its complexity.

There are two main derivations of DTs that employ ensemble learning, which consists
of combining the outputs of multiple models:

• Bagging. This method averages the predictive results of a series of bootstrap samples

(a randomly drawn subset of a data set created by sampling with replacement) from a
training set of data. Specifically, for a training set x of N samples, bagging generates
K equally bootstrap samples, with some estimate function fi(x). The final estimator
defined by bagging is

f(x) =
1

K

K∑
i

fi(x). (3.4)

This ensemble approach often leads to more robust and accurate predictions compared
to a single model.

• Random Forests (RF). They expand the concept of the bootstrap and bagging by
generating a set of DTs from the bootstrap samples (186). The features to generate the
tree are selected randomly from the complete set of features in the data. Additionally,
they consider a random subset of features at each split instead of considering all features
and selecting the best one per split, as in usual DTs. The final task, classification or
regression, involves determining the majority or averaging the results of the individual
DTs, respectively. This method addresses two limitations of DTs: (i) overfitting the
data, as trees are now shorter, and (ii) limited extrapolation capability, as it explores
the correlation of different features and nonlinear decision boundaries by combining
the predictions of multiple decision trees, each trained on different subsets of data and
features in data sets.

Nowadays, we have many other variations of DT methods, which allow improvements
in model expressiveness and result in faster models. This is related to the fact that many
applications of DTs date back to the early 2000s. For instance, Reference (187) employs DTs
with bagging on SDSS data. Meanwhile, we have many applications of RF, as sees in the
References (64, 188), in the context of halo-galaxy connection. There are many other methods
built upon the basic ideas of DTs, and we will present some of them in the next sections.

3.2.2.1 Extreme Randomized Trees

Extreme Randomized Trees (ERTs) comprise an ensemble method where individual
“weak” learners (in this case, DTs) are combined to build a powerful estimator. They sample
the entire data set and randomize the splitting process of the individual DTs, making them
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different from RF and faster (due to this random nature). While a single DT is likely to overfit,
their random nature reduces the variance of the estimator. The final prediction of the model is
the average over the predictions from all individual DTs (189).

ERTs have already been successfully employed in the context of halo-galaxy connection
studies (53, 56, 190). In this thesis, we use the SkLearn ensemble Extra Trees Regressor
library (182).

3.2.2.2 Light Gradient Boosting Machines

Light Gradient Boosting Machines (LGBMs) represent a gradient boosting framework
that implements gradient boosting decision trees (GBDTs) (191). Gradient boosting means
implementing a “boosting” technique where “weak learners” (simple DTs) are transformed
into “strong learners” by minimizing a loss function

2 associated with the weights given by
the leaf nodes of multiple DTs (192). In this scenario, the trees do not grow independently;
each new tree is designed to improve the previous one based on knowledge learned from the
previous trees (previous leaf scores). The reason for the word “light” in the name comes from
the leaf-wise method used to grow the trees. This means the algorithm chooses the leaf with
the maximum variation in the loss to grow. Additionally, it makes use of other strategies to
reduce the number of features and samples.

LGBMs have been used in a variety of applications, including in Astronomy and Astro-
physics (193–196). Here we have used the LightGBM package.

3.2.3 Symbolic Regression

While NNs excel at providing precise and accurate approximations of complex data
relationships, interpreting them can be challenging due their use of a large number of param-
eters, rendering them as “black boxes” in many cases. Therefore, there is a need to extract
mathematical expressions that describe or approximate the relationships learned by NNs, as
understanding these relationships in such forms can be more straightforward. Symbolic regres-

sion (SR) is a ML algorithm specifically designed to discover symbolic expressions that fit data
from a function. This can be achieved in two ways: by directly deriving a symbolic expression
from the correlation between the input data and output data of a data set, or by training a
ML algorithm to uncover this latent representation (which can involve a variety of methods,
including MLPs, GNNs, or others) and subsequently translating it to an equation (197, 198).

The primary objective of these algorithms is to utilize an optimization framework to
minimize both prediction error and model complexity. Specifically, SR methods employ genetic

2 A loss function is a mathematical measure to quantify the discrepancy between the predicted values
of a model and the actual ground truth values in a data set. It represents the penalty incurred by
the model for making incorrect predictions. We will see a better definition of loss function, with
examples, in Section 3.3.1.

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://lightgbm.readthedocs.io/en/stable/
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Figure 10 – Scheme of mutation (left panel) and crossover (right panel) operations into
a symbolic regression algorithm. Mutation involves replacing one operator,
such as + → − in a tree structure, while crossovers mix branches of two trees,
bringing the operators and values together to the other tree. Source: Reference (198).

programming, which searches for the optimal analytical expression by creating combinations
of given operators and input variables arranged in a tree structure. During training, the regres-
sor can utilize standard mathematical operators such as: "add", "sub", "mult", "div", "pow",
"abs", "log", "log10", "sqrt", "1/x" (representing addition, subtraction, multiplication, division,
exponentiation, absolute value, natural logarithm, base-10 logarithm, square root, and inverse
of a variable, respectively). Subsequently, a standard loss function is selected to optimize the
fitting process.

The expressions discovered in each generation are evaluated, and the most accurate ones
are preserved to the next generation. This iterative process involves mutations and crossovers to
explore the entire equation space and find an accurate expression. Mutation involves replacing
an operator in a tree structure, while crossovers entail mixing branches of two trees, replacing
one part of the operation with another operator (see Figure 10 for a comprehensive example).

During training, the algorithm produces a list of equations identified by the regressor.
For each equation, usual SR algorithms provides three metrics to assess its fit: complexity, an
user predefined metric, and a score. The complexity of the equations accounts for the number
of operators, constants, and variables utilized. The metric and the complexity are combined
to generate an overall score for the equations. The algorithm arranges the equations from
the least to the most complex. Then, for each equation, it computes the fractional decrease in
complexity, relative to the next one. The score is maximized if this fractional decrease is large.
The symbolic expression is selected by evaluating multiple candidate equations on a test set,
aiming to optimize the trade-off between complexity and accuracy.
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Through this work we have used PySR library (199) for SR applications.

3.3 Deep Learning Methods

This section is devoted to dive into some of the deep learning (DL) algorithms used in
the present thesis. First, we describe in details the simplest neural network, the Multi Layer
Perceptron (MLP), in Section 3.3.1. Second, in Section 3.3.2, we explain about convolutional
neural networks (CNNs), accounting for image denoising techniques in Subsection 3.3.3. Third,
we present the networks specialized to deal with graph data, the graph neural networks (GNNs),
in Section 3.3.4.

3.3.1 Multi Layer Perceptrons

Figure 11 – Representation of a MLP. Each circle represents a neuron, lines symbolize the
connections between the neurons, and each vertical sequence denotes a layer. Each
connection is associated with a weight represented by ωi. Each neuron carries
its activation value denoted as xi (input value), ai (hidden values), and yi (output
value). The first layer (represented in the figure by the orange neurons) carries
on the input vector (with x). This is followed by the hidden layers (shown in the
figure as the columns of green neurons), which perform the general transformation
fµ (bµ +

∑
ν ωµνaν) (see Equation 3.5). At the end, the output layer (represented

by the red neuron) delivers the output vector y.

Multi Layer Perceptrons (MLPs) draw inspiration from biological neural systems, such
as the brain, to process information. These algorithms propagate information through a layered
architecture composed of activation units called “neurons” and their connections (see Figure 11).
Each neuron maintains its activation state, while the connections carry weights that multiply the
input signals as they propagate through the network. The first layer, known as the input layer,
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receives the initial input values (denoted as x), and subsequent layers process this information
through transformations. The final layer, known as the output layer, produces the network’s
prediction (denoted as ŷ). The training process of the neural network involves learning the
optimal values for the connection weights (denoted as ωi). These weights collectively form a
weighting matrix (denoted as W ), which encapsulates the learned information and is utilized
to make predictions on new data samples (41, 178, 179). In MLPs, layers are often referred to
as dense layers (also known as fully connected layers), and the MLP architecture is typically
structured as a sequence of such layers (200–202).

Figure 12 – Representation of different activation functions. Rectified Linear Unit (ReLU),
Leaky Rectified Linear Unit (Leaky ReLU), Sigmoid (Sigmoid) and hyperbolic
tangent (Tanh).

Basically, each neuron in the hidden layers within a MLP carries the neuron value ai

and each connection is characterized by a weight ωi. Then, each hidden layer is responsible
by performing a transformation in the neurons values. This transformation is composed by
two parts: the application of an activation function fµ(·) and the addiction of a bias b. The
activation function is a nonlinear transformation that can assume different forms. Common
activation functions include Rectified Linear Unit (ReLU), Leaky ReLU, Sigmoid, and hyperbolic
tangent (Tanh) – see Figure 12. These functions determine whether the neuron’s information is
transmitted to the next layer based on the functional form of the function, thereby activating or
deactivating the neuron. Additionally, every hidden layer µ includes a bias vector bµ, which is a
linear and an additive parameter, which is added to each neuron in the layer. It serves to shift the
output values of each neuron, introducing a linear degree of freedom to the layer transformation.
Then, we can define a input array for each layer as aµ = (aµ,0, aµ,1 . . . , aµ,k) ∈ Rk+1 and a
weight matrix W ∈ Mm×(k+1)(R), given an intermediate output array yµ ∈ Rm for each layer
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µ as

yµ = fµ

(
bµ +

∑
ν

ωµνaν

)
. (3.5)

The primary objective of these transformations is to enhance the nonlinearity of MLP predic-
tions (41, 178, 179). We can have as many layers m as we wish like, but the price may be an
increasing complexity of the network. The same argument applies for the number of neurons
k per layer (which, in principle, can be different for each hidden layer) (200–202).

Before moving on to the optimization process, it is important to address the initialization
of the network weights. At the very start of the training, the weights of the network are set
using a process known as initialization. This step involves defining the initial weights either
with constant values or by sampling from a specified distribution (200–202). These initial
weights provide the starting point for the optimization process, which seeks to adjust the
weights in a manner that minimizes the network’s loss function and improves its performance.

The optimizer plays a crucial role in finding the weights such that a certain function,
called the loss function L, is minimized. The loss function quantifies the disparity between the
predicted values ŷ and the true values y. In regression tasks, a commonly used loss function is
the mean squared error (MSE), given by

MSE =
1

m

m∑
i=1

(yi − ŷi)
2. (3.6)

This function is designed to always yield non-negative values, with smaller values (closer to
zero) indicating better performance. By computing the squared differences, the MSE penalizes
large disparities between yi and ŷi more severely than smaller differences. Hence, the model is
incentivized to minimize larger errors while still addressing smaller discrepancies. Alternative
loss functions, such as the Mean Absolute Error (MAE) for regression, or categorical cross-entropy
for multilabel classification problems, can also be defined depending on the requirements of
the specific task at hand (200–202).

Different optimizers, such as Adam (Adaptive Moment Estimation), SDG (Stochastic
Gradient Descent), RMSProp (Root Mean Square Propagation), and others, share the fundamen-
tal principle of searching through the parameter space of weights until reaching a (hopefully
global) minimum for the loss function (41,178,179). This process involves taking iterative steps,
often referred to as training epochs, where the loss function is computed and evaluated. The
goal is to determine whether the loss decreases with each step or not. Training continues for a
defined number of epochs, or until a stopping criterion is met – e.g., when the error falls below
a certain threshold. The size of each step is determined by a parameter known as the learning

rate (denoted as ℓ).

In the case of the foundation optimization algorithm, known as gradient descent, the
weights are updated according to the derivatives of the loss function with respect to the network
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parameters:
Wij → Wij − ℓ

∂

∂Wij

L(W |a, ŷ). (3.7)

An optimizer refers to a specific variant or extension of the gradient descent algorithm that
incorporates additional features or modifications to improve its performance or efficiency (as
the ones mentioned previously). In the networks developed for this work, the Adam optimizer
was primarily used. This optimizer incorporates a technique called momentum, which utilizes
fractions of the updated parameter vector to adjust the current one. For further details on
the Adam optimizer and other optimization algorithms, we refer the reader to References
(200–204).

To find the best configuration of weights, MLPs utilize a technique called backpropaga-

tion (205). This method involves the following steps:

1. Perform forward propagation: process the input data through the network to generate
predictions.

2. Compute the difference between the true labels and the predictions for the last layer.

3. Backpropagate this difference through each hidden layer, computing the error gradients
for each layer.

4. Evaluate the partial derivatives of the individual errors per layer with respect to the
weights per layer.

5. Combine the errors to obtain a total gradient related to the weights of the network.

6. Update the weights according to the learning rate and the total gradient, similar to the
gradient descent algorithm.

Backpropagation allows the network to adjust its weights based on the error calculated during
forward propagation, gradually improving its performance over multiple iterations. For a
detailed explanation of this method, see References (178, 179).

MLPs are extensively employed for solving regression and classification tasks involving
tabular data, where there exists a correlation between the input data x and the output data y.
For example, in Reference (42), MLPs are utilized for making inferences on cosmological and
astrophysical parameters using various summary statistics as input data, while in Reference
(61), they are employed to predict total subhalo mass based on other properties of the subhalos.
Additionally, MLPs were utilized in the present thesis in Section 5.3 (where we are specifically
naming them as neural networks (NNs)) and Section 5.4, and throughout Chapter 6. It is
important to note that the libraries used in the thesis to implement the MLPs were Keras (200)
and PyTorch (202), which are widely adopted frameworks for building and training MLPs in
Python.

https://keras.io/
https://pytorch.org
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3.3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are networks specifically designed to handle
matrix data, more specifically regular data3. Images are a prime example of such data, repre-
sented as matrices of pixels, with dimensions for height, width, and color channel (typically,
RGB images have three color channels corresponding to red, blue, and green). This feature has
made CNNs immensely popular in computer vision applications (179). In this section we will
explore the fundamental building blocks of CNNs, and in the subsequent section we will delve
into how they can be effectively utilized in image denoising algorithms.

3.3.2.1 Convolutional Neural Network Blocks

The term CNN is applied to architectures that include at least one convolutional layer,
although they often incorporate various other components (different kinds of layers), each one
with a different purpose (200–202).

3.3.2.1.1 Convolutional Layers

Figure 13 – Visualization of the local patterns learned by convolutional layers. We can
see the handwritten digit 4 with parts of it extracted by small square windows.
Source: References (179, 206).

The operation enacted by convolutional layers is akin to that of dense layers, but with
a crucial distinction. Whereas dense layers are specialized to discern global patterns within
their feature space (e.g., patterns involving all vector entries or all image pixels, if compressed
into a 1D array), convolutional layers specialized in detecting local patterns

4. These patterns
3 Images are regarded as regular data due to their structured representation as two-dimensional grids

of pixels with fixed positions and homogeneous channels.
4 Note that this does not mean that dense layers can not learn local patterns. Depending on the

architecture and the amount of data available to train the model, dense layers can be used to learn
them.
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are identified within small 2D windows of an image, known formally as kernels. For example,
in Figure 13 we observe a handwritten5 image of the digit 4 with certain segments highlighted
by small 2D windows (the kernels). The fundamental concept is that these convolutional layers
can recognize the image as representing the digit 4 based on its edges, textures, and other
localized patterns. Essentially, by segmenting the image into small sections, the kernels are
tasked with capturing the entirety of its visual information (179).

Convolutional layers are adept at learning patterns within specific regions of images,
thereby incorporating spatial translation invariance. This means that once a pattern is learned,
networks featuring these layers can recognize it irrespective of its position within another
image. Moreover, convolutional layers facilitate the creation of a hierarchy among these learned
patterns. As a result, different layers become specialized in detecting distinct patterns, ranging
from various parts (of different sizes) of an image to different textures and features (179).

To be precise, 2D convolutional layers are characterized by two essential parameters:

• Number of filters. These are the units responsible for learning various characteristics
from the images (edges, textures, or shapes). The number of filters determines the depth
of the output volume produced by the convolutional layer. Each filter learns to detect
different features or patterns in the input data.

• Kernel size. This refers to the dimensions of the small windows or patches responsible
for extracting patterns from localized regions of the input image. In other words, the
kernel size specifies the spatial dimensions of the filters.

These convolutional layers transform an input image with dimensions (N ×M ×C), where C
represents the color channels, into structures with a new set of dimensions determined by the
convolutional operation. This operation involves a dot product between the kernel and the input
data. The movement of the kernel across the input data is determined by a parameter known
as the stride, which specifies how many pixel units the kernel shifts at each step. This process
generates the final output matrix or feature map. For instance, if we have an input matrix with
dimensions (6× 6× 3), a (3× 3) kernel, a stride of (1× 1), and 64 filters, the resulting feature
map would be (4× 4× 64). Adjusting the stride parameter allows for the effective reduction
of the dimensions of the 2D output data.

In Figure 14 we show an input matrix represented as a feature map with dimensions
(5×5×2), where (5×5) denotes the spatial dimensions and 2 represents the depth (or number
of channels). The convolutional layer applies a set of kernels to this input matrix. These kernels
are smaller patches with dimensions (3× 3) in this example. As the kernels move across the
5 The image shown in Figure 13 was taken from a library of handwritten digits, the MNIST (Modified

National Institute of Standards and Technology) data set (206), which is one of the most popular
databases for image applications in ML.
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Figure 14 – Scheme of a general spatial transformation of a convolutional layer. A
(5×5×2) input image is processed by the convolutional operation using (3×3×2)
input patches (extracted by the kernels, of shape (3×3)). They extract transformed
patches of size (1× 1× 3), where 3 is related to the number of filters used in the
operation, retulting in an output feature map of dimensions (3× 3× 3). Source:
Reference (179).

input matrix with a unit stride, they extract local patterns and features. Each kernel produces a
transformed patch, resulting in vectors of dimension (1× 1× 3), where 3 corresponds to the
depth due to the number of filters. The final output feature map is constructed by combining
all these transformed patches. It contains information about each portion of the original image
corresponding to each filter used in the convolutional layer. The dimensions of this output
feature map are (3× 3× 3), where (3× 3) represents the updated spatial dimensions, and the
last 3 represents the depth (number of filters). This process demonstrates how convolutional
layers effectively extract features from input images, allowing for hierarchical learning and
representation of visual information.

Padding is also an important feature in convolutional layers, being often used to control
the spatial dimensions of the output feature maps (179). When padding is applied, additional
pixels are added around the borders of the input matrix before the convolution operation takes
place. This ensures that the spatial dimensions of the output feature map remain the same as
those of the input image, helping to preserve the information in the borders of the image. In
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Figure 15 – Example of padding operation. An input image (on the left) of shape (3× 3) is
filled with an unit border, in order to process the padding operation. Defining an
stride of 1 and a (3× 3) kernel, the output feature map (on the right) has its shape
of (3× 3) (composed by the result of each kernel through the input image). Source:
Reference (179).

Figure 15 we can visualize how padding works: by adding extra pixels (white pixels) around
the borders of the input matrix (depicted as gray pixels), the convolutional operation results in
a set of portions which, taken together, keep the original shape of the input image.

As mentioned previously, the convolutional layers are similar to the dense ones, having
the addition of a bias and the application of an activation function. More specifically, after the
convolutional operation, a bias term is added to each output feature map. Then, a nonlinear
activation function is applied to the resulting feature maps. This transformation is done for
each filter in the layer. Moreover, CNNs can be initialized with constant values, or sampled
from predefined distributions for their initial weights.

Transposed convolutional layers, also known as deconvolutional layers, serve the opposite
purpose of standard convolutional layers. While standard convolutional layers are used to
reduce the spatial dimensions of input feature maps, transposed convolutional layers are
employed to upsample, or to increase the spatial dimensions of the input. These layers achieve
upsampling by applying a reverse convolution operation, where each pixel in the input feature
map is expanded to a larger region in the output feature map. This expansion is controlled by
the size of the kernels, the number of filters, and the stride used in the transposed convolutional
operation. For example, consider a (2× 2× 3) input matrix, a (2× 2) kernel, 32 filters, and
a (1× 1) stride. After applying the transposed convolutional operation, the resulting feature
map would have dimensions of (3× 3× 32), where each pixel in the input matrix has been
“increased in size” according to the dimensions of the kernels and strides.

3.3.2.1.2 Pooling Layers

Pooling layers play a crucial role in downsampling the size of input feature maps while
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preserving important spatial information. These layers operate by selecting either the maximum

or average value within each kernel-sized window, depending on whether it is a max-pooling

or average-pooling layer. By specifying the kernel size and stride, pooling layers summarize the
features present in local regions of the input data, effectively reducing the spatial dimensions
of the feature maps. Additionally, pooling layers can aid in preventing overfitting by reducing
the number of parameters and summarizing the most salient features of the input data. It is
important to note that pooling layers preserve the depth size, which corresponds to the number
of channels in the input feature maps. These layers are typically applied after convolutional
layers in CNN architectures.

Conversely, UpSampling layers are used to increase the size of input matrices by repeat-
ing the values in the rows and columns. Similar to pooling layers, UpSampling layers allow
for the manipulation of spatial dimensions in the feature maps, but in the opposite direction.
By specifying the kernel size and stride, UpSampling layers enable the enlargement of feature
maps, which can be useful for tasks such as image super-resolution or increasing the resolution
of feature maps before further processing.

3.3.2.1.3 Dropout Layers

Figure 16 – Dropout example of 50%. The dropout operation preserves the shape of the
input matrix by setting a designated fraction of pixels to 0 value. Source: Reference
(179).

Dropout layers are a crucial tool for preventing overfitting in CNNs (179). They address
this issue by randomly dropping a fraction of the output values during training. The dropout

rate determines the fraction of output values that are set to zero in the output feature map. For
example, a dropout rate of 50% means that half of the output values will be randomly set to
zero (see Figure 16). Importantly, dropout layers preserve the spatial dimensions and number
of channels of the input feature maps. This means that the height, width, and depth of the
feature maps remain unchanged after the dropout operation. By retaining the spatial structure
of the feature maps, dropout layers effectively regularize the network while preserving spatial
information.
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The flexibility of employing different flavors of layers to build CNNs allows them to
excel in a wide range of tasks. For example, in the field of Astronomy, CNNs have been applied
to tasks such as classification astronomical objects in images (207) and for detecting galaxy
morphology (208). Moreover, CNNs have been employed in the analysis of hydrodynamical
simulations by converting simulation data into structured fields, such as matrices containing
information related to different components, with the goal of performing parameter estimation
(209).

3.3.3 Image denoising techniques

The goal of image denoising is to recover a clean version of an image x from a noisy
observation y, where the noise ννν is typically modeled as Gaussian with zero mean µ and
standard deviation σ. Mathematically, this relationship is described by:

y = x+ ννν . (3.8)

An image denoiser should be able to produce a cleaned version x̂ that closely resembles the
original clean image x, by effectively reducing the noise present in the observed image y. It is
crucial for the denoiser to preserve the essential properties and features of the original image
without introducing new artifacts or distortions. Various methods have been developed to
tackle the problem of image denoising, ranging from traditional image filters tailored to specific
types of noise, to more sophisticated ML techniques. For comprehensive reviews on image
denoising techniques, we suggest References (210–212).

Figure 17 – Example of image denoising applied to the digit 2, from the handwritten
digits of MNIST. The noisy image is showed on the left panel, the target image
on the middle panel, and the denoised image is on the right panel.

Figure 17 illustrates the process of image denoising using a simple autoencoder, applied
to an image of the digit 2 from the MNIST data set. The main idea is to observe that the
algorithm takes the noisy image and, based on the target version, it is able to remove the noise
from the peripheral regions of the image and enhance the true features. Depending on the
application, the denoised image can be quite close to the target one.

Auto-encoders represent one of the main methods chosen in terms of performance for
this task, mainly because they are purely data-driven, with no assumptions about the nature of
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the noise (179, 211–213). For this reason, it was the method chosen in the work presented in
Chapter 4. These methods take a pair of images: a noisy image y (input) and a clear image x

(target). Given many such pairs, they learn to recognize what is signal, what is noise, and how
to remove that noise, predicting images which are closer to the ones used as target – i.e., as
close as possible to the ground truth images x.

Usually, a basic auto-encoder has two parts: an encoder, followed by a decoder. First, the
encoder takes an input image y, of dimensions d× d̄, and maps it into a hidden representation
z, of dimensions d′ × d̄, performing a mapping z = fΘ(y) = f(Wy + b), parameterized by
Θ = {W,b}. Here, W is a weight matrix and b a bias, both with dimensions d′ × d. Then,
the decoder takes z and maps it back into x̂ = gΘ′(z) = g(W′z+ b′), using another weight
matrix W′ and another bias vector b′. Hence, the reconstructed/denoised image x̂ has the same
dimensions as the input/noisy image y. In this way, the auto-encoder comprises a sequence of
convolutional layers that are responsible for extracting features from the images, capturing the
abstraction of their content, and then recovering the features at the end of the process. This is
performed with the requirement that the loss function is minimized:

minΘ,Θ′ [L (x̂,x)] = F (y,Θ,Θ′) , (3.9)

where F (·) is the function learned by the CNN in order to remove the noise of the images,
Θ and Θ′ represent the set of parameters of the CNN, and L(·) is the loss function (211, 214).
The idea is that the loss measures the difference between the network predictions x̂ and the
target images x, such that the minimization of the loss function optimizes the function F that
removes the noise.

Figure 18 – General scheme of a denoiser auto-encoder. It shows a noisy image of the
digit 2, which feeds the auto-encoder and produces a clean version of it. The
encoder is depicted reducing the shape of the image, followed by the compressed
representation and the decoder, responsible for decompressing the image, returning
it to the input dimensions.

Auto-encoders are therefore built with: (i) the encoder, a sequence of 2D convolution
layers (which can incorporate pooling and dropout layers as well), (ii) the compressed represen-
tation, consisting of a flattened layer followed by a dense layer and a reshaping layer (to obtain a
compressed representation of the image, which goes into the latent space); and (iii) the decoder,
a sequence of the 2D transposed convolutional layers (which can also include UpSampling and
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dropout layers). A general scheme of an image denoising auto-encoder can be seen in Figure
18. The compressed representation is not mandatory: in those cases the implementations are
called fully convolutional and deconvolutional, as they consist of a sequence of 2D convolutional
layers followed by a sequence of 2D transposed convolutional layers. This was precisely the
architecture implemented in the code used for the work presented in Chapter 4. The training is
done by backpropagation, choosing the number of epochs to train, and finally obtaining the
final set of weights (179, 200).

Image denoising techniques are often used for denoising and enhancing astronomical
images – see, e.g., UNets (215). There are numerous other ML denoising techniques that are
beyond the scope of this thesis, as we are solely employing this method to clean cosmological
covariance matrices (see Chapter 4). However, interested readers may explore further this
issue in References (210–212). In the work conducted in Chapter 4 we also employed another
architecture called Residual Encoder-Decoder Network (REDNet) (213). REDNet follows the
basic scheme of the auto-encoder presented here, symmetrically linking convolutional layers
(belonging to the encoder) and de-convolutional layers (belonging to the decoder). However, it
employs what is called by residual implementation because the information from a previous
layer is added to the next one. Also, they do not consider the compressed representation. All
the denoising methods presented in this thesis were implemented using the Keras library
(200).

3.3.4 Graph Neural Networks

Graph Neural Networks (GNNs) constitute another category of neural networks, de-
signed for processing structured and irregular data6, which can be represented as graphs.
Almost everything can be translated into a graph, which is one of the primary reasons behind
the success of GNN applications in various domains such as chemistry (particularly in dealing
with molecules), computer vision, natural language processing, and particle physics. Here, in
Sections 6.1 and 6.2, we explore their capabilities for dealing with galaxy and halo catalogs.
Specifically, GNNs can be used for tasks such as graph or node classification, link prediction,
community detection using graph structures, prediction of global properties (graph embedding),
or even graph generation (216–218). For comprehensive reviews on GNNs, readers can see
References (216–220).

GNNs are distinguished by their ability to capture symmetries such as permutational

invariance and equivariance
7, which make them even more attractive for science-related appli-

6 Graphs can be structured data in the sense that they have well-defined relationships between entities
represented as nodes and edges. On the other hand, graphs can also exhibit irregular characteristics.
Graphs can vary widely in terms of size, connectivity, and topology. Some graphs may be densely
connected, while others may be sparse. Additionally, the distribution of node degrees (i.e., the
number of edges connected to a node) within a graph can be highly variable.

7 A function f(X) is permutational invariant if, for every permutation matrix P, we have f(PX) =
f(X). If this function acts as f(PX) = Pf(X), it is said to be permutational equivariant.

https://keras.io/
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cations (219). Firstly, by construction, GNNs preserve the graph symmetries while remaining
permutational invariant. This means, for instance, that global attributes do not depend on
the node ordering. Secondly, their architecture is permutational equivariant, in the sense that
reordering the input nodes produces the same permutation in the outputs. Thirdly, it is easy
to incorporate graph attributes that account for other symmetries, as we will see in Section
6.1.1.3 (50).

3.3.4.1 Graphs

Figure 19 – Example of a graph. Here we show the nodes, along with each node attribute ni,
as well as the edges, along with their attributes eij . Note that the global attributes
are not represented in this figure.

Graphs are mathematical structures defined by three main components: nodes, edges,
and global properties. Each element of the graph can be described by a set of characteristics: ni

represents the properties or attributes of node i, eij represents the features of the edge between
node i and j, and g contains the global properties of the graph. Therefore, a graph can be
denoted as G(n, e,g) (217, 220, 221). A simple visualization of a graph can be seen in Figure 19.

Nodes i and j are considered neighbors if they are connected by an edge. We can
represent all the connections in a graph using the adjacency matrix Aij , which takes the value 1
if the pair is connected, and 0 if it is not. These connections can be either direct (with connections
from the node i to the node j only) or undirected (with connections between nodes i and j, and
vice versa). In the latter case, we say that we are considering reverse edges. A graph can also
contains loops, representing edges that connect a node to itself. A fully connected or complete

graph is one in which all nodes are connected by an unique edge. Otherwise, nodes can be
connected by multiple edges and may even be “orphaned” (nodes that are not connected to any
other node).

The neighborhood Ni of node i includes every node j that shares an edge with it, such
that

Ni = {j|Aij = 1} . (3.10)

This property will be used for defining the GNN architecture when updating the graph units
(see Section 3.3.4.2.1).
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In many ML applications (with the exception of those involving graph data sets, such
as those described in Reference (222)), the use of GNNs necessitates the definition of graphs.
This involves translating the data set at hand, often a tabular data set, into graphs. This process
typically entails defining the data properties, whether relational or spatial, which determine
the connections between objects (nodes), and subsequently defining node and edge attributes.
In the context of Section 6.1, for example, galaxy catalogs are transformed into graphs, with
galaxies serving as nodes along with their associated properties serving as node attributes. The
edges between nodes are determined in terms of the galaxies’ 3D spatial positions, with the
possibility of additional properties being defined for the edges.

When considering a spatial property to establish connections between nodes, and to
construct the neighborhoods of each node, various approaches can be employed (222). One
such approach involves linking neighbors within a fixed radius (denoted as rlink) around each
node. An alternative approach is to select the k nearest neighbors for each node. Both methods
require the specification of an external parameter (either rlink or k) to establish connections
between nodes, and the resulting graphs will vary depending on that parameter. However,
different applications may favor one approach over the other. In the context of the applications
discussed in Sections 6.1 and 6.2, we opted for the former approach – for more details, see
Section 6.1.

3.3.4.2 Graph Neural Network Blocks

Figure 20 – Scheme of an updated graph, after a GNN block, with their node and edge
attributes updated. The colors of the nodes are changed to represent this update,
but the structure of the graph (the edge connections) is still the same.

GNNs are neural models designed to capture the relationships within graphs through
a process known as message passing scheme among the graph components (217). This entails
taking a graph as input and producing an updated graph as output, with various methods
available to update the attribute values of the graph elements (nodes, edges, and global proper-
ties). In essence, the values of node, edge, and global attributes evolve throughout the process,
while maintaining the connectivity among the nodes (i.e., the graph structure). We refer to
the scheme depicted in Figure 20 in order to illustrate the scheme. This process of updating
from one layer to another across different parts of the graph resembles the passing of messages
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through the network, hence the name. Similarly to what is done in the case of CNNs, GNNs can
be constructed using different layers or blocks, which we will explore further in this section.

3.3.4.2.1 Meta Layer

The meta layer (MetaLayer) serves as the foundational layer for constructing any GNN.
It draws inspiration from Reference (220) and finds application in the PyTorch-Geometric
library (222) for crafting other kinds of layers (e.g., graph convolutional and SAGE convolutional
layers). Moreover, it constitutes the core layer utilized in the GNN architectures outlined in
this thesis. This involves the user specifying what is referred to as the node model, edge model,
and global model. These models are responsible for updating node, edge, and global attributes
within the graph, according to the message passing scheme. Such updates are executed based
on the values of the previous layer (or even the input graph values).

Since all these models depend on user specifications, and this model was employed in
Section 6.1, we will now outline the specific choices made by us within that architecture. The
layer ℓ+ 1 is updated using information from the layer ℓ according to:

• Edge model:
e
(ℓ+1)
ij = E (ℓ+1)

([
n
(ℓ)
i ,n

(ℓ)
j , e

(ℓ)
ij

])
, (3.11)

where E (ℓ+1) is the message function, a differentiable function representing a MLP;

• Node model:

n
(ℓ+1)
i = N (ℓ+1)

([
n
(ℓ)
i ,
⊕
j∈Ni

e
(ℓ+1)
ij ,g

])
, (3.12)

where Ni represents all neighbors of node i (see Equation 3.10), N (ℓ+1) is the message

function (a MLP), and ⊕ is the aggregator, a multi-pooling operation responsible for
concatenating several permutation-invariant operations:

⊕
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e
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[
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e
(ℓ+1)
ij ,

∑
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e
(ℓ+1)
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∑
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e
(ℓ+1)
ij∑

j∈Ni

]
. (3.13)

The use of the multi-pooling operation in the equation above was made because it has been
argued that several aggregators can enhance the expressiveness of GNNs (223) – but we can
use only one of these operations (maximum value, sum, or average). Note that, in this example,
we do not have a global model. However, this can be implemented in the same fashion as the
other models, using the node, edge, and global attributes from the previous layers.

These layers are particularly useful when designing graphs that incorporate all their
components, i.e., node, edge, and global properties, as they enable the updating of all these
attributes, resulting in an updated version of the entire graph.
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3.3.4.2.2 Graph Convolutional Layers

Graph Convolutional Layers are inspired by the work in the References (224,225). These
layers are designed to perform the convolution operation, akin to matrix multiplication, on
graphs, while updating node attributes using primarily node or edge information. We will
discuss each one of them in detail below.

• Graph Convolutional Network Layer

Graph Convolutional Network (or GCN) layers, as described in References (222, 225), are
mathematically defined as

nℓ+1
i =

∑
j∈N(i)∪i

1√
deg(i) ·

√
deg(j)

·
[
WT · n(ℓ)

j

]
+ b, (3.14)

where nℓ
i represents the node attributes at layer ℓ, W is a learnable weight matrix,

deg(i) = |Ni| represents the degree of node i, b is an additive bias, and the sum is
over the neighboring node features in the aggregator operation. The weight matrix is
responsible for transforming the neighboring attributes, and the degrees of the nodes
work as normalization factors.

• Edge Convolutional Layer

Edge Convolutional (EdgeConv) layers, as described in References (222, 224), process
graphs as follows

n
(ℓ+1)
i = maxj∈Nj

H(ℓ+1)
([
nℓ
i ,n

ℓ
j − nℓ

i

])
, (3.15)

where max is an aggregator operation, H(ℓ+1) represents a MLP, and nℓ
i represents the

node attributes at layer ℓ. Note that the node n
(ℓ+1)
i has their values changed using its

previous value nℓ
i , and the edge information is captured by the relative source node

features nℓ
j − nℓ

i , for each edge (j, i).

Together, GCNs and EdgeConv layers can update the graph node attributes exclusively,
in contrast to the MetaLayer discussed in Section 3.3.4.2.1, which updates both node and edge
attributes. Therefore, they are particularly useful for GNNs designed to handle graphs with
only node attributes.

3.3.4.2.3 SAGE Convolutional Layer

SAGE Convolutional layers, or GraphSAGE convolutional layers, are inspired by Ref-
erence (226). The main concept behind this layer is to update node information based on the
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neighborhood of each node. The update for layer ℓ+ 1 is performed using information from
layer ℓ as follows:

nℓ+1
i = W1n

ℓ
i +W2 · meanj∈Ni

nℓ
j , (3.16)

where W1 and W2 are learnable weight matrices that can be viewed as learnable functions
of the node values and their neighborhoods, respectively. Additionally, the mean aggregation
function can be substituted with any other aggregation function (e.g., maximum, average, etc).
Two alterations can be used to enhance the expressive power of the GraphSAGE layers, both
related with the application of a nonlinear operation/activation function σ as:

• Before aggregation and conjunction with a linear operation (similar to MLPs) (226), as

nℓ
j → σℓ

(
W3n

ℓ
j + b

)
. (3.17)

This includes an additional learnable weight matrix W3 and a bias vector b to the
Equation 3.16.

• Applied to each layer (66):
nℓ+1
i → σ

(
nℓ+1
i

)
. (3.18)

Similar to convolutional layers, GraphSAGE layers are useful when applied to graphs
where edge and global attributes are not considered, meaning only the node properties are
updated using information from neighboring nodes.

In summary, the message passing scheme forms the core of GNNs, enabling them to
handle structured and irregular data structures represented as graphs, which contain richer
information compared to simple arrays. GNNs can be constructed using various building blocks,
such as those discussed in this section or others. Many GNN architectures are composed solely
of a sequence of MetaLayers (updating node, edge and global graph attributes), while others
combine GCN, EdgeConv, and GraphSAGE layers, especially when focusing on updating
node attributes exclusively. It is important to note that the MLPs within these layers must be
accompanied by an activation function, and their architecture parameters, such as the number
of neurons and layers. Optimizing these architectures involves selecting these hyperparameters
as well. Likewise, the choice of the number of GNN blocks or layers is crucial for the overall
performance of the model.

3.3.4.3 GNN variations

There are some other architectures that we have explored in the work of Section 6.1 to
assess the network’s importance for some of the galaxy properties employed, which can be
seen as “variations” of GNNs. They are known as deep sets and no initial node attributes, and
we will describe them here.
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3.3.4.3.1 Deep sets

Deep sets are a type of neural network architecture designed to operate on sets of
unordered data. These architectures are most similar to traditional MLPs. Their main difference
is that they operate on sets with vectors of same dimensions in number of features and different
number of objects, which are invariant to permutations. Similarly to GNNs, their operations
are equivariant. In some sense, while compared to GNNs, they can be seen as an architecture
made to deal with “graphs without edges”, i.e., only nodes are present along with their node
attributes (227). We stress that deep sets are not a type of GNNs.

Essentially, one of their implementation options is done employing MetaLayers, where
node attributes are updated per layer with a node model defined as follows:

n
(ℓ+1)
i = N (ℓ+1)

(
n
(ℓ)
i

)
. (3.19)

In the case of the test employed in Sections 6.1.2.1 and 6.1.6.3, we used this architecture to
measure the importance of the distribution of the galaxy velocity field.

3.3.4.3.2 No initial node attributes

We can also build graphs initially without node attributes and with edge and global
properties. Additionally, we can use the same MetaLayer model as presented in Section 3.3.4.2.1
to update the graph after having a first layer defined according to the models:

• Edge model:
e
(1)
ij = E (1)

(
e
(0)
ij

)
, (3.20)

• Node model:
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e
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(0)

])
. (3.21)

Then, after this first layer, we will end up with node attributes, which will be updated. This
approach can be used while measuring the influence of node contributions to predictions. In the
case of the tests employed in Sections 6.1.2.1 and 6.1.6.3, we used this architecture to measure
the importance of the distribution of the galaxy clustering information.

GNNs have been extensively used in Cosmology for converting galaxy and halo catalogs
into graphs, as demonstrated in References (50–52,228,229), and this will be further explored in
Sections 6.1 and 6.2. They have also been employed for inferring halo masses (63, 67), speeding
up semi-analytic models (66), and rediscovering Newton’s law (197). The implementation of all
the architectures presented in this work was done using PyTorch Geometric (222).

https://pytorch-geometric.readthedocs.io/en/latest/
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3.4 Probabilistic Methods

Through all these previous sections, while dealing with a regression problems, we
have primarily focused on ML methods designed to provide point estimations or single-value
predictions. These methods are capable of making inferences by obtaining a single-value
prediction y – in the case of an N -dimensional array, they provide single-value predictions
for each entry in the array. Additionally, they are often referred to as maximum likelihood
estimators, as they aim to predict point values while minimizing the loss function (see Equation
3.6).

However, there are methods to offer a different approach by estimating moments of a
probability distribution, or they can even estimate full probability distribution functions8. In
the subsequent discussion we will explore Moment Neural Networks, which are used to predict
the first and second moments of the posterior distribution (µ and σ), as well as methods for
predicting full probability density distributions, such as converting a regression problem into a
classification one, using a method called NNClass (69).

3.4.1 Moment Neural Networks

Moment Neural Networks (MNNs) are designed to address the challenge known as the
“curse of dimensionality” when dealing with high-dimensional probability density estimators
(232). This concept refers to the increasing computational complexity associated with obtaining
full probability density distributions, which grows with the number of dimensions in the
problem. Since in many inference problems it may not be necessary to obtain the complete
probability density distribution, we can achieve our goals by extracting only certain moments of
that distribution. MNNs are particularly useful in this context, as they enable us to approximate
the desired distribution in terms of its moments. This approach not only reduces computational
expenses, but also facilitates the prediction of higher-dimensional properties. Even when
focusing on a single property, such as estimating the density parameter Ωm, MNNs can provide
valuable insights, as demonstrated in Sections 6.1 and 6.2.

For instance, given data D, and the goal of predicting the marginal posterior mean µ

and standard deviation σ without making any assumption about the posterior, the task can be
formulated as follows:

y(D) = [µ(D), σ(D)], (3.22)

8 There are other methods used with this same purpose, such as Bayesian Networks (230) or the
generative Normalizing Flows (231). These other methods can achieve similar or better results,
depending on the application problem. Describing these methods, however, is outside the scope of
the present thesis, because they have not been used.
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where

µ(D) =

∫
y

dy y p(y|D), (3.23)

σ2(D) =

∫
y

dy (y − µ)2 p(y|D) . (3.24)

Here, p(y|D) represents the marginal posterior distribution. To train a MNN for this task, a
specific loss function can be utilized, as described in Reference (232):

L = log

[ ∑
j∈batch

(yj − µj)
2

]
+ log

{ ∑
j∈batch

[
(yj − µj)

2 − σ2
j

]2}
, (3.25)

where j represents the samples in a given batch. By taking the logarithm of each term, the loss
function effectively rescales both terms to the same order of magnitude, ensuring equal weight
is given to predicting both the first and second moments (209).

MNNs have found applications being associated to any NN architecture (since direct
used in MLPs to GNNs) in parameter estimation tasks (42, 48, 70) and in halo mass estimation
(63, 67), for example. Their usage will be presented in detail in Sections 6.1 and 6.2, along with
a GNN architecture.

3.4.2 Regression to Classification: NNClass

In this section we explore a technique for converting a regression problem into a
classification one using MLPs (here coined as neural networks or NNs), which we refer to
as NNClass (69). The objective of this method is to introduce uncertainties in the output
predictions by transforming the task from predicting single values to estimating probability
density distributions.

The process starts with defining K classes, by partitioning the predicted property y

into K intervals (or bins). During training, the true values are categorized into appropriate
bins based on their range. By employing a SoftMax activation function in the last layer of
the network and using Categorical Cross Entropy as the loss function, similar to typical
classifications tasks, the model assigns a score to each class (bin). The scores are normalized
such that they sum up to one, providing a probabilistic interpretation of the output (even if the
scores are not true probabilities).

This approach has been widely utilized in various domains, such as photometric redshift
estimation (233–235). It was also employed in the research that is presented in Section 5.4.

3.5 Other Machine Learning Tools

In this section we explore some ML approaches that are not traditional ML methods,
but that are sometimes employed to address some of the challenges commonly encountered
in ML applications. In Section 3.5.1 we delve into a technique for handling imbalanced data
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sets, particularly for regression problems with typical tabular data. Following that, in Section
3.5.2 we explore strategies for scenarios where multiple algorithms are available to solve the
same problem, but selecting the best one is not straightforward. Then, in Section 3.5.3 we
explain feature importance analysis, as a way to measure the influence of input features in
predicting target variables. Finally, in Section 3.5.4 we present a method for navigating the
hyperparameter space in order to identify the optimal set of hyperparameters for a specific
problem.

3.5.1 The problem of Imbalanced Data Sets

In ML, imbalanced data sets can often be challenging. In these data sets, regions of the
data space that are relatively underrepresented may carry equal or even higher importance
within the scientific context of the analysis compared with the majority of the distribution.
As a result, predicting these data points becomes more challenging for ML models, which
typically end up focusing their learning in the regions around the peaks of the distribution
in parameter space. In regression problems, there are two primary approaches to address this
issue: pre-processing and model processing techniques.

Pre-processing techniques involve manipulating the data set before training the model.
They often involve applying over-sampling and/or under-sampling techniques to increase or
reduce the amount of data in specific regions of the distribution.

Alternatively, the importance of these regions can be weighted, which is the approach
followed by the second set of techniques. One such method is the Synthetic Minority Over-

Sampling Technique for Regression with Gaussian Noise (SMOGN), which primarily functions
as an over-sampling technique (236). Specifically, SMOGN operates by combining random
under-sampling with two over-sampling techniques: SmoteR (an adaption for regression of
SMOTe9 (237)) and Gaussian noise. The algorithm begins by binning the data based on a given
target variable, dividing the resulting distribution into “rare” and “normal” bins. Rare bins are
augmented, while normal bins are under-sampled. During augmentation, an object within a rare
bin is selected, and its k nearest neighbors are identified using Euclidean distances. A neighbor is
then randomly chosen, and if it is close to the the initial object (based on a predefined threshold,
i.e., half the median distance of all k neighbors), a new object is generated by interpolating
between them. This process ensures a “safe distance” (following the nomenclature of Reference
(238)) from the initial object to its neighbors, preventing outliers from affecting the sampling.
Gaussian noise is added during this process to create new objects closer to the original sample.
Under-sampling follows a similar approach, randomly removing objects from the original bins.

9
Synthetic Minority Over-sampling Technique (SMOTe) is a data augmentation method that improves
imbalanced classification data sets. It works by over-sampling some minority class and under-
sampling the majority class, using the kNN method. The main difference between SMOTe and
SMOGN is that the first is build to predict discrete results, while the second is able to provide
continuous predictions.
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The result is a distribution with an increased number of objects in previously underrepresented
regions and a decreased number of objects around the bulk of the distribution.

In the work presented in this thesis, the SMOGN library was utilized (239).

3.5.2 Combining different methods

One approach for combining many ML methods used to address the same problem
with the same data set, based on their individual performance scores, is to utilize ensemble

algorithms. We have already seen ensemble methods in the context of tree methods (see Section
3.2.2). These algorithms leverage the outputs of multiple methods to enhance the predictions
made by each individual method.

One such ensemble method is stacking regression, which involves forming combinations
of predictions from various predictors (240). Essentially, this technique aggregates predictions
from diverse “weaker learners” in parallel, treating them as features and outputs for a more accu-
rate single prediction by blending or meta-learning the model (241). By integrating predictions
from different models, each with its own strengths and weaknesses, stacking regression can
yield superior predictions with reduced variance compared to using a single model alone. This
approach helps to mitigate overfitting, enhance model robustness, and minimize potentially
inflated model performance scores.

In the work presented in Section 5.3, we combine the predictions for four individual
ML methods using the LinearRegression module from SkLearn (182).

3.5.3 Feature Importance

Feature importance (FI) refers to the relative contribution or influence of input features
in predicting the target variables. Understanding feature importance is crucial for interpreting
the behavior of a ML model, identifying which features are most informative, and gaining
insights into the underlying relationships in the data. Hopefully, a physical interpretation of
the success of the model.

There are various techniques to measure feature importance. For instance, we already
mentioned that tree methods are straightforward and intuitive to visualize and interpret.
Because of these characteristics, they are naturally used to perform FI. In the most general case,
a DT, the FI can be determined by examining how much each feature increases information gain
when it is used to split nodes in the tree. Features that lead to significant gains in information
are considered more important. The importance of a feature can be computed by summing
the gains in information over all nodes where the feature is used for splitting, weighted by the
number of samples in each node. The other tree methods follow similar principles.

One common method, which is not restricted to a category of algorithms (tree methods)
is the permutational feature importance. This method basically measures the relative decrease

https://pypi.org/project/smogn/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://scikit-learn.org/stable/
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in a particular score (in the case of regression problems, the MSE for example), measured for
different runs of the model after randomly removing one feature at a time (186). This can be done
removing one feature at time from the data set and re-training the model, checking the score.
However, this can be computationally intensive, especially considering a high-dimensional
feature spaces. To avoid re-training the estimator we can remove a feature only from the test
part of the data set, and compute score without using this feature. Because the model was
trained considering a specific dimension of features, what is done is to replace the feature for
random noise. The random noise is obtained shuffling values of the feature in question, i.e.
using other examples’ feature values while keeping the values of all other features unchanged.
This effectively destroys any meaningful relationship between the shuffled feature and the
target variable. Therefore, the performance is evaluated and compared to the performance in
the usual test set. A larger drop in performance suggests that the feature is more important,
as the model relies heavily on it for making prediction. In this thesis we have used Eli5 to
perform this task.

3.5.4 Hyperparameter search

ML methods aim at constructing models that are able to make the best possible pre-
dictions given some data set. But many common learning algorithms feature a set of hyper-
parameters that must be determined (fixed) before training even begins. These parameters
control aspects of the learning process itself, rather than being learned from the data. Examples
of hyperparameters include the learning rate in gradient descent, the number of layers and
neurons in NNs, the kernel size in CNNs, and many others.

The selection of hyperparameters can significantly influence the performance of the
resulting model, convergence speed, and generalization ability, but finding optimal values can
be challenging (242). Typically, this process involves manually adjusting these parameters and
observing their effects on various metrics or scores. However, this approach can be difficult
because changing one parameter at a time may not accurately reflect how the entire set of
parameters behaves when tested together.

To address this challenge, hyperparameter search, also known as hyperparameter op-

timization or tuning, involves exploring different combinations of hyperparameter values to
find the combination that results in the best performance of the model on a validation data
set. This process is typically performed using a search algorithm, such as grid search, random
search, or Bayesian optimization. Grid search involves specifying a grid of hyperparameter
values and evaluating the model’s performance for each combination of values in the grid.
Random search samples hyperparameter values randomly from predefined ranges and evaluates
the model’s performance for each sampled combination. Bayesian optimization models the
objective function (e.g., validation error) and uses probabilistic models to guide the search
towards promising regions of the hyperparameter space.

https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html?highlight=PermutationImportance
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Various frameworks have been developed for hyperparameter search, including Optuna
(243), which is employed throughout this thesis. Optuna provides an efficient implementation
of both searching and pruning strategies, and it is easy to setup with many ML methods
and libraries. Essentially, the user specifies the hyperparameters to be searched and their
ranges, as well as an early-stopping scheme that identifies the best set of hyperparameters
based on minimizing the validation error. Optuna then samples the hyperparameter space
using Bayesian optimization with Tree Parzen Estimator (TPE). This method can handle tree-
structured search spaces, including conditional parameters, and utilizes Parzen estimators (also
known as kernel density estimators, or KDE). In each iteration, TPE calculates the parameters
and selects the configuration with the best acquisition function value based on samples from
the KDE. This process continues until the early-stopping criteria are met. We suggest the
References (244, 245) for more details regarding this method.

https://optuna.org
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4 IMPROVING COSMOLOGICAL COVARIANCE MATRICES

Cosmological covariance matrices play a crucial role in parameter inference by prop-
agating uncertainties from data to model parameters. However, accurately estimating these
matrices for large data vectors requires a substantial number of observations or costly simula-
tions, which may not always be feasible (see Sections 2.3.5 and 2.3.5.1). In this work, we propose
a ML approach to address this challenge specifically in the context of covariance matrices used
in the study of large-scale structure.

Using only a small amount of data, composed of matrices built from samples of 50
to 200 halo power spectra, we demonstrate the capability to produce significantly improved
covariance matrices. These matrices closely resemble those constructed from much larger
samples, comprising thousands of spectra. To achieve this, we train CNNs to denoise the
covariance matrices, leveraging methods outlined in Sections 3.3.2 and 3.3.3. During training,
we utilize a data set consisting entirely of spectra extracted from simple and cost-effective halo
simulations (mocks).

Our results indicate that the denoising method effectively removes noise from the
covariance matrices of the inexpensive simulations. More importantly, it also successfully
denoises the covariance matrices of halo power spectra obtained from N -body simulations.
Through various metrics, we compare the denoised matrices with the noisy sample covariance
matrices, consistently finding significant improvements in the denoised matrices without any
spurious artifacts.

By employing the Wishart distribution we demonstrate that the denoiser’s output can
be likened to an effective sample augmentation in the input matrices. Additionally, we show
that using the denoised covariance matrices enables the recovery of cosmological parameters
with nearly the same accuracy as when using covariance matrices constructed from larger
samples. Notably, we observe a significant reduction in bias in the Hubble parameter H0 after
applying the denoiser.

The work presented in this chapter is related to the background seen in Sections 2.3.5
and 2.3.5.1 for parameter estimation using covariance matrices, and in Sections 3.3.2 and 3.3.3
for the ML methodology that was employed here. Additionally, the main achievements related
to this work are associated with the publications of References (40, 246, 247).

Future prospects from these efforts are predominantly in the application of image
denoising technique on real data. In that context, the approximated method already existing
for the fiducial Cosmology chosen for the survey can be used to train the machinery, and then
applied on covariance matrices from N -body simulations. These matrices can incorporate the
survey footprint, selection functions, redshift errors, redshift-space distortions and higher-order
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statistics.

4.1 Motivation

The culmination of cosmological data analysis is parameter inference, which plays a
crucial role in constraining our theoretical models. Covariance matrices serve as the bridge
between theory and data, as they quantify the expected fluctuations in our measurements
based on both the underlying physical phenomena and the conditions under which the data
sets are collected.

In the context of galaxy surveys, the physical phenomena encompass the Gaussian
random nature of the initial density fluctuations, while the observational conditions encompass
factors such as the total volume of the survey, the shape of that volume (referred to as the mask),
the mean density of detected galaxies, and potentially other real-life variables. While analytical
or semi-analytical methods may offer a reasonable initial approximation for the covariance
matrix, both the physical models and the observational conditions are often best represented
through simulations. By utilizing a set of independent simulations and a selection of summary
statistics for analysis, we can compute the sample covariance. This sample covariance should
accurately reproduce the statistical errors of these statistics, thereby providing constraints on
the underlying physical models. However, it is crucial that sample covariance matrices are both
precise and accurate (248). This necessitates not only well-designed models for the physical
phenomena and data acquisition but also requires large samples. Without a sufficient sample
size, there is a risk of biasing parameter estimation (37, 249).

However, the number of simulations necessary to properly characterize these effects,
and to allow for unbiased estimation of the parameters, is often very large, which represents a
daunting computational challenge (250), especially when it is important to properly model the
nonlinear scales (251). Using the power spectrum as our summary statistics, the sample size (the
number of simulations) that is typically required to fulfill those needs is around Ns ∼ n2

k, where
nk is the number of k bins (bandpowers), and this number can grow even more with different
tracers of the large-scale structure and all the resulting auto- and cross-spectra. This number
is now under pressure from two sides: on one hand, in order to test the physical phenomena
of interest we need to increase the dynamic range of our surveys to both larger and smaller
scales, but without losing resolution–and that means more bandpowers. On the other hand,
astrophysical surveys are increasingly able, either by themselves or in combination, to map
the universe with much greater completeness by detecting multiple tracers of the large-scale
structure. Therefore, it is of paramount importance to optimize methods that can estimate
efficiently, and with greater precision, these cosmological covariance matrices.

Several efforts have already been made with the goal of obtaining precise covariance
matrices using smaller samples – for a review see Reference (37). This problem does not exist if
we employ analytical approximations that try to codify the impact on nonlinear clustering (252).
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Analytical models can also help to enhance covariance matrices, e.g., by using χ2 distributions
from simulations, leading to a reduction in the number of realizations needed to achieve
a certain threshold in accuracy (253). In the absence of a large sample, a commonly used
technique is the Jackknife method (36), which relies on sub-sampling an original data set.
Another possible direction is data compression, which actually means reducing the size of the
data vector by maximizing the Fisher information, which can be done both in the context of
parameter-independent covariances (254), as well as parameter-dependent ones (250). A closely
related method relies on reducing the dimensionality of the observables (the parameters), which
then allows for a less noisy estimation of covariance matrices given the same sample size (255).
It is also possible to resample some specific modes or parts of the data vector (256).

Last but not least, we have approximate numerical methods (as we have seen in Section
2.5.1.9), which in the context of large-scale structure are provided by PTHalos (139), EZMocks
(140), PINOCCHIO (141), PATCHY (142), HALOGEN (143), LogNormal (144), ICE-COLA (145),
ExSHalos (146), BAM (147, 148) and many other techniques, which all attempt at generating
halo catalogs using semi-analytical approximations or by emulating much more expensive N -
body simulations. However, even if the results seem compatible with the numerical simulations,
as shown in Reference (149), covariance matrices derived from these approximation schemes
can lead to statistical deviations of up to ∼ 5% for the bias in the estimation of cosmological
and nuisance parameters, and of around ∼ 10% for the volumes in parameter space, when
compared with the true (N -body) estimations, which may fall short of the accuracy required
for precision cosmology from future surveys. Nevertheless, it is possible to use mocks in order
to reduce the number of simulations needed for characterizing the statistics of the matter
power spectrum or bispectrum, by exploiting the correlations between the mocks and N -body
simulations–see, e.g. CARPoll (257, 258).

From a different perspective, ML techniques offer alternative solutions to some of
these challenges. There are efforts trying to speed-up the process of producing high-resolution
N -body simulations, by starting from lower-resolution ones, and letting the ML fill in the
detailed structures on small scales (195, 259, 260). In References (261–263) the authors try to
emulate the full nonlinear evolution of N -body simulations by inputting only approximate
simulations of these.

In this work we propose a new approach, that employs CNNs, more specifically image
denoising techniques, as a tool to enhance sample cosmological covariance matrices that are
based on a small number of high-resolution simulations. As we will show, the final covariance
matrices (after denoising) become as precise and accurate as the ones obtained with a much
higher number of high-resolution simulations. The idea is to train the ML method using data
coming from halo mock generators, and then to apply that machinery to improve (“denoise”) a
sample covariance matrix that was constructed using a small sample of very accurate, high-
fidelity N -body simulations. In practice, we train the ML denoiser using covariance matrices for
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power spectra from halo mocks produced by ExSHalos (146), and then we apply the denoiser
to covariance matrices produced using matching halo catalogs extracted from the Quijote suite
of N -body simulations (112). This process shows, first, the robustness power of generalization
of the method, which is able to improve covariance matrices from a set of simulations that
the ML has never seen before. And second, that the ML denoiser can generate cosmological
covariance matrices that are in all respects equivalent to those produced from thousands of
N -body simulations.

4.2 Halo catalogs

In this work we have used two different halo catalogs: the ones obtained from a halo
mock generator, ExSHalos, are the “cheap” simulations, and the ones from the Quijote suite
are the “high-fidelity” N -body simulations. In this section we briefly explain some of their
main features, and our method for matching them so there is greater compatibility between
the data sets.

4.2.1 ExSHalos

We have already seen details about ExSHalos in Section 2.5.1.9. In order to utilize
this code into this work we used the input linear power spectrum from CAMB (111). Also, we
have chosen the second input, the threshold density for halo formation in linear theory, as the
constant barrier and used LPT to second order. The cosmology was chosen according to the
standard one in the Quijote suite, as well as the size of the box, of volume (1, 000Mpc/h)3,
for which we used cubic cells of 1(Mpc/h)3 volume at a fixed redshift z = 0. In total, we have
produced 30, 000 mock catalogs (hereafter, Nmax = 30, 000 for ExSHalos). It should be noticed
that not all the ML models used in this work needed to use this amount.

4.2.2 Quijote

The Quijote suite (112) was also quickly described in the beginning of Section 2.5.1.
Additionally, we can say that the initial conditions were generated at redshift z = 127, using an
input matter power spectrum and a matter transfer function computed with the help of CAMB,
and were evolved up to z = 0. All the Quijote simulations have a volume of (1, 000Mpc/h)3,
with 5123 cold DM particles. The suite has simulations for a range of cosmological models, but
the main (standard) fiducial cosmology follows the Planck best-fit model (14): Ωm = 0.3175,
Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834, Mν = 0.0eV and ω = −1.

We have downloaded 15, 000 halo catalogs, which is the maximum number of Quijote
simulations for the main fiducial Cosmology (hence, Nmax = 15, 000 for Quijote), all at
z = 0, with halos identified using the Friend-of-Friends (FoF) algorithm (264) with linking
length parameter b = 0.2. Those catalogs were downloaded using the Globus command line

https://camb.info/
https://docs.globus.org/cli/
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interface–however, we stress that this larger sample was only used to test and validate our ML
method: all the training was performed using the ExSHalos data set.

4.2.3 The match between the catalogs
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Figure 21 – Halo mass functions comparison. Quijote, ExSHalos, and Sancho Panza
simulations compared to the phenomenological halo mass functions of Tinker
(101) and Bhattacharya (102). The lower panel shows the relative change of the
simulations with respect to the Tinker halo mass function. Source: Reference (40).

In order to match the two different halo catalogs we ensured that both Quijote and
ExSHalos provided a similar numbers of halos, with approximately the same values for the
halo bias. We have analyzed the halo mass functions of both catalogs considering halos in the
mass range M ∈ [1013.12, 1014.6]M⊙/h, in intervals of ∆ log10M ≃ 0.25 log10(M⊙/h), which
corresponds to 6 bins of halo mass. We then compared the resulting halo mass functions from
the catalogs with fits from Tinker (101) (using ∆ = 200 and b = 0.2 to compare with Quijote
halos) and Bhattacharya (102), which were computed with the help of the Colossus library
(265).

The results of this comparison are shown in Figure 21. From that figure it is clear that
ExSHalos do not show a perfect agreement with the phenomenological fitting functions: the
lower panel shows a relative difference with respect to Tinker’s fitting function that hovers
around a deficit of ∼ 35% (which is represented by the dotted black line in the lower plot).
When compared to halos from real N -body simulations (Quijote), the results agree with both
Tinker and Bhattacharya halo mass functions on almost all scales, deviating only ∼ 10% at the
lower mass end. Even if the halos in ExSHalos and Quijote had the same bias, the different
abundances would have an impact on shot noise and in the covariance of the power spectra.
Hence, in order to improve the match between ExSHalos and Quijote, we randomly removed
halos from each mass bin in the Quijote catalogs in such a way that their final abundances

https://bdiemer.bitbucket.io/colossus/lss_mass_function.html
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match the same halo bins in ExSHalos–in that respect, see also Reference (149). We refer to
the resulting “clipped” Quijote catalogs as the Sancho Panza sample.

Not only the halo mass was matched, but we have tested the halo bias, for these same
mass bins, to compare the results between ExSHalos and Quijote/Sancho Panza maps and we
have observed that they were similar for each mass bins. The detailed comparison is presented
in Section 4.3.2.

4.3 The data set of covariance matrices

In this section we describe how we simulate a survey with a non-trivial mask, and show
the effects of that mask on the power spectrum of the tracers in the two simulations. We also
make a preliminary check that the bias in the two samples is nearly the same, as well as the
dynamical range of scales that we are able to analyze. At the end of the section we describe the
construction of the samples and the computation of the covariance matrices.

4.3.1 The power spectrum

Figure 22 – Slice of the mask of random ellipsoids. The inset shows a zoom in on three
ellipsoids, for a better visualization. Source: Reference (40).

For the sake of simplicity, in this work we chose as tracers the halos belonging to the first
mass bin discussed in Section 4.2.3, i.e., halos with masses between M ∈ [1013.12, 1013.37]M⊙/h,
with a mean mass ⟨M⟩ = 1013.245M⊙/h, both in ExSHalos and in Sancho Panza samples1.
This choice minimizes the differences in the halo mass functions of the two samples, which are
also closer to the mass functions by Tinker and Bhattacharya for that mass bin.

1 Note that the results presented here do not depend significantly on our choice of tracer, especially
for the parameter estimation. Nevertheless, different tracers have different cosmological covariance
matrices: e.g., shot-noise may affect the diagonal and off-diagonal terms of the covariance matrices
in different ways.
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The power spectrum is our chosen summary statistics, so that for each simulation
the data vector corresponds to a set of P (k), and that is what we use to build the covariance
matrices. In order to simulate real-life effects and power spectra which are closer to the ones
measured in realistic cosmological surveys, we have masked

2 the halo maps in a way that
attempts at emulating a mask covering some regions of the sky: this mask reflects the survey’s
footprint as well as bright stars, cloudy nights, regions with poor seeing, etc (266). The main
point of using a mask, in the context of this work, is to induce non-trivial correlations between
different spectral modes, in a way that resembles real surveys.

Figure 23 – Power spectra comparison. We compare the power spectra of ExSHalos (blue
lines) and Sancho Panza (green), presenting their masked (dotted) and unmasked
(solid) versions. The linear matter power spectrum is also shown as the solid black
line for comparison. Source: Reference (40).

Our mask was built using a single realization of randomly placed ellipsoids with random
sizes and orientations, in such a way that regions outside those ellipsoids were masked out
(i.e., regions outside the mask are assigned weight zero, while regions inside it have weight
1). The mask occupies approximately ∼ 50% of the total box volume, and we estimated the
spectrum on a grid of the entire box, with cells of 4h−1 Mpc on a side. Figure 22 shows a slice
of our mask, with the sizes and shapes of the ellipsoids as well as shapes of the mask edges
with respect to the cell size that we used in our simulations.

We computed the spectra of both the masked and unmasked catalogs, which are shown
(in terms of the mean for 100 maps) in Figure 23. It can be seen that the shapes of the power
spectra of the ExSHalos and Sancho Panza samples are similar on scales larger than k ≲

0.15hMpc−1. On smaller scales, although the shot noise for both samples are identical, the
differences start to become more evident, and are due to the approximate treatment of structure
formation in halo mocks such as ExSHalos. The effect of the mask can also be seen from this
plot, in terms of a suppression of the clustering amplitude on all but the smallest scales.
2 We will see another approach to mask effects in Section 6.3, while masking galaxy catalogs.



110

4.3.2 The bias

In order to check the similarity between the ExSHalos and Sancho Panza halo catalogs
we also computed the bias of the halos in our chosen mass bin. We have used the bias definition
from Tinker (103), the same used in Section 2.3.4, see Equation 2.3.4. The bias was computed
for 100 ExSHalos and 100 Sancho Panza catalogs, and averaged over scales in the range
k ∈ [0.015, 0.2625] h Mpc−1, where the small-scale cut-off corresponds to the value of k for
which shot noise becomes 80% of the power spectrum (267).

Table 1 – Bias for the halo catalogs. Comparison of ExSHalos, Sancho Panza, and fit bias
following Tinker and Bhattacharya (102, 103).

Catalog Bias Tinker Bhattacharya
ExSHalos 1.245 ± 0.037 1.208 1.096Sancho Panza 1.223 ± 0.057

The results of this comparison are presented in Table 1, where besides the mean and
standard deviation of the halo bias for our maps we also show the expected bias obtained
with the Tinker (103) and Bhattacharya (102) fits. We should stress that, when we perform our
cosmological parameter inference, we treat the bias as a nuisance parameter–see Section 4.5.

4.3.3 The covariance matrices

All the cosmological covariance matrices in this work were built by computing the
sample covariance for the power spectra in the data vector according to Equation 2.34 (see
Section 2.3.5.1). We should regard any sample covariance as a random matrix: given two
different samples of N data vectors, the two sample covariances will be different by an amount
that reflects the level of statistical fluctuations in the two samples. Larger samples are naturally
less subject to those fluctuations, but they require more simulations. Our goal here is to show
that ML techniques are able to identify (and correct) at least part of those patterns of statistical
fluctuations, even if they are trained using simplified simulations.

The data set of sample covariance matrices used to train the ML suite was built using
only the spectra from ExSHalos catalogs, whereas the data set used for the final validation of
the predictive power of the suite was built using spectra from Sancho Panza. In order to train,
validate and test our ML denoiser we used samples of different sizes. First, we constructed the
input covariance matrices, which correspond to small sample sizes (n spectra), and are the
ones we would like to enhance with our denoiser. Next, we computed covariance matrices
with larger sample sizes (N spectra, the target matrices), which serve to teach the ML denoiser
about how to clean the noise of the input matrices by performing the task n → N . Finally, we
compare the cleaned version of the input matrices with the best possible covariance matrix,
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which is computed using the maximum sample size (Nmax spectra), corresponding to the total
entire set of catalogs.

We have used target sample covariance matrices with N = 1, 000 spectra, and input
matrices with sample sizes in the interval n ∈ [50, 250], in increments of ∆n = 25. These
choices were informed both by the typical number of mocks used in the estimation of cosmolog-
ical covariance matrices, and by our goal to test what is the minimum number of input spectra
(n) that results in denoised matrices which are as accurate and precise as the ones computed
with samples of N = 1, 000 spectra. The underlying idea being that we can start with an input
covariance matrix constructed from a small number (n) of high-resolution N -body simulations,
and denoise that covariance using a ML method trained using a high (N ) number of simplified
mocks.

We simulated a grand total of Nmax = 30, 000 halo maps using ExSHalos, and we
downloaded a total of Nmax = 15, 000 Quijote simulations, which then became (after matching
with ExSHalos) our sample of Nmax = 15, 000 Sancho Panza halo catalogs. The spectra
from these very large samples were used to compute the best case scenario, corresponding
to the ideal cosmological covariance matrix for each simulation. It is important to say that
we do not necessarily use this total number of spectra to train the ML suites: in each training
we used 120 input matrices and 120 target matrices, however only the input matrices are
completely independent. In other words, some targets matrices may be correlated with other
targets, as a single target matrix can include many different input matrices. E.g., in the cases
of n = {50, 100, 200} input spectra we used {6, 000; 12, 000; 24, 000} spectra (of the “cheap”
simulation, ExSHalos) for the entire training process.

Since the Quijote/Sancho Panza simulations were already available, the main lim-
itation of our model was the computational cost associated with running the ExSHalos
simulations, but in a realistic application of our method the cost of producing the mocks would
be negligible compared with the cost of running the N -body simulations–and our denoiser is a
tool for beating down that second, much more onerous cost.

4.4 The ML suite

The ML suite we used in this work was an image denoising algorithm, as as seen in
Sections 3.3.2 and 3.3.3. Different ML models were constructed in order to deal with each
combination of input and target matrices with (n,N) spectra. The size of the data set was
composed with 120 matrices (240 in total, because each input matrix had its respective target).
For each model we monitored the loss function for the MSE using 40 epochs each. Considering
the size of the sets we have used 86 matrices in the train stage, 10 matrices for validation, and
24 matrices for test.

The CNN used as image denoising has its first two 2D convolutional layers, with
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64 and 32 filters, corresponding to the encoder part. The decoder was composed by two
transposed convolutional layers (respectively with 32 and 64 filters and their respective dropout
layers). Lastly, these layers were followed by one convolutional layer with only one filter. Each
convolutional layer, except for the last one, was followed by a dropout layer, for which we
have chosen a rate of 0.05. The activation function for each internal layer was the Leaky
ReLU (α = 0.001), and for the last layers we used the hyperbolic tangent activation function.
Finally, the batch size was 15, all the kernels have the size of (3× 3) pixels, we have used the
GlorotUniform initializer for the weights in each layer and, since we work with real-valued
matrices, the input data has a single channel. The entire method was implemented with the
help of the Keras library (200).

We did not use pooling or UpSampling layers in our network, since we verified that this
operation tends to discard useful image details, as was also found by Reference (213). On the
other hand, the use of dropout layers has indeed improved our results. Still in accordance with
the findings of the aforementioned reference, the use of a small number of layers improved the
model performance. Our choices of hyperparameters were made according to the best final
performance in terms of the lowest MSE values as loss function for the training and test sets.
We have tested other metrics as loss function (e.g. logarithm hyperbolic cosine, mean absolute
error, and mean squared logarithm error), but the best results were obtained using the MSE.
We also tested the denoising technique using a REDNet (213), as commented in Section 3.3.3,
but the results were significantly worse compared with our standard architecture.

Covariance matrices often reflect a hierarchy of observables with different signals and
different noises. In order to homogenize the entries of the covariance matrices in the training
stage, we normalized the rows and columns of all the matrices using the diagonal of the matrix
with the highest number of spectra available (i.e., Nmax = 30, 000 ExSHalos spectra) according
to:

Cov
(N)
ij →

Cov
(N)
ij√

Cov
(Nmax)
ii Cov

(Nmax)
jj

. (4.1)

For the ExSHalos catalogs, the normalized Cov
(Nmax)
ij becomes in fact the correlation matrix

for that sample. This was discussed in Section 2.3.5.1, see Equation 2.35. Also, this normalization
trick helped achieve a faster convergence of the ML method during the training stages3. We
train our ML denoised on these normalized matrices, and plug back the normalization to
recover the denoised covariance matrices. At the end of the whole process we have imposed
the symmetry of the covariance matrices, Covij → (Covij + Covji)/2.
3 We have tested different normalization methods, for instance, utilizing directly the correlation

matrices, or normalizations from the means of the diagonal of different matrices. However, the use
of a fixed normalization for all the matrices proved to be the best strategy for the denoising method.
We have also checked that it makes very little difference which precise normalization scheme is
used: the results in terms of the parameter estimation remain basically the same.

https://keras.io/
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Besides, for the different ML models for each combination (n,N) of input and target
covariance matrices, we used four different random seeds for each model, accounting for the
epistemic error. Therefore, we can account of at least part for statistical variations in our results,
which are due to different solutions (different CNN final weights) found during the training
process. In our tests we selected the best-performing of those solutions to apply on the input
matrices from the Sancho Panza data set.

4.5 Results

In this section, we highlight the primary outcomes of our research by contrasting the
input and denoised covariance matrices derived from the ExSHalos and Sancho Panza data
sets. Initially, we assess the denoiser’s efficacy in eliminating noise from the input covariance
matrices. Here, we exclusively employ the ExSHalos data set for training, validation, and
testing purposes. Subsequently, we move on to the pivotal step, wherein we apply the denoiser,
trained using the ExSHalos data set, to the input covariance matrices of the Sancho Panza
data set. We then compare the denoised matrices with the best-case scenario, which entails a
covariance matrix derived from a sample comprising thousands of Sancho Panza simulations.
This phase allows us to demonstrate the generalizing power of our approach, thereby illustrating
its robustness (refer to Section 3.1), and serves as a proof-of-concept for the method.

We commence, in Section 4.5.1, with a visual representation of the matrices in their
normalized form. Next, in Section 4.5.2, we quantify the MSE between the cosmological co-
variance matrices obtained during the training phase, which involves using the test subset of
the ExSHalos matrices and all the trained models. Additionally, we analyze the ranked eigen-
values and diagonal values of the matrices to assess the loss of coherence due to noise and its
recovery post-denoising in Sections 4.5.3 and 4.5.4, respectively. Furthermore, in Section 4.5.5,
we introduce an analytical approximation for the random process underlying the estimation
of sample covariance matrices, expressed in terms of the Wishart distribution. This analytical
tool enables us to quantify the enhancement of the covariance matrices resulting from the
denoiser’s application. Finally, towards the end of this section (Section 4.5.6), we present MCMC
estimations of the cosmological parameters under various scenarios. Through this analysis,
we showcase the extent to which the denoiser enhances the accuracy and precision of the
covariance matrices in terms of their ultimate product–the parameter constraints.

4.5.1 Visualizing the matrices

In Figure 24 we can already note the power of the ML method from the visual repre-
sentations of these matrices, by comparing the normalized matrices (according to Equation
4.1) against the target and the best-case scenario, where the covariance was computed with
many thousands (Nmax) of spectra. The first row represents, from left to right, the input, target,
denoised, and best covariance matrices of ExSHalos, for the model with input and target
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Figure 24 – Comparison of the (normalized) cosmological covariance matrices. We
present a comparison for ExSHalos (first row) and Sancho Panza (last row). In the
first column we have the input matrices with n = 50 spectra; the second column
shows the target matrices, with N = 1, 000 spectra; the third column contains the
respective denoised matrix, corresponding to the model for the combination of
input and target samples (n = 50, N = 1, 000); and the fourth column contains
the best matrices, built using all the available spectra Nmax. In each one of these
figures, the axes corresponds to values of k, representing the 42 Fourier bins of the
power spectrum. Source: Reference (40).

matrices of sample sizes (n = 50, N = 1, 000), respectively. The second row represents the
same, but for the Sancho Panza data set. We stress, once again, that the denoiser is exactly
the same as the one in the first row, since it was trained only with the ExSHalos data set.

It can be seen from the panels that the denoised matrices appear almost identical as
the best ones, which were obtained with all the spectra of the entire data set (Nmax = 30, 000

for ExSHalos and Nmax = 15, 000 for Sancho Panza). This last feature can be explained by
the choice of activation functions in the different layers, and because the ML models were
trained using a huge number of different spectra, which appears to retain this information in
the weights of the network. Therefore, the denoised matrices are visually smooth and noiseless,
especially when compared with the original, n = 50 covariance matrices. At least from a purely
visual standpoint, the power of the algorithm resides in the fact that the method is able to
learn how to remove the noise using only ExSHalos matrices, and to apply this learning to the
Sancho Panza ones.

A more accurate comparison of the matrices can be glimpsed from comparing slices
(rows/columns) of the normalized covariance matrices, in order to show both the diagonal and
off-diagonal elements (149). In Figure 25 we show a few fixed ki slices of these matrices as a
function of kj , with the corresponding values for the input, denoised, target and best normalized
covariances. Roughly speaking, all the matrices follow the behavior of the best-case scenario
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Figure 25 – Comparison of slices of the normalized covariances. This comparison was
done according to Equation 4.1. We present ExSHalos (left panels) and Sancho
Panza (right panels), for different fixed values of ki. The peaks correspond to points
along the diagonal. The plots show that the denoiser is able to remove the noise
(seen in the input matrices), without introducing new features, so the denoised
matrices match closely the targets and the best matrix (with a sample of Nmax

spectra). Source: Reference (40).

(Nmax), but it is clear that the input matrices are severely affected with noise, especially in
the off-diagonal elements and particularly for n = 50 and n = 100. However, after applying
the ML denoiser those fluctuations basically disappear, and the off-diagonal elements match
the behavior of the target and best matrices in all cases, even for n = 50. Moreover, from
these plots it can also be seen that the off-diagonal structures in the ExSHalos matrices scale
differently with k compared with those of the Sancho Panza matrices, especially on small
scales. However, the denoiser (which was trained only with the ExSHalos matrices) is able to
properly recover the off-diagonal behavior of the Sancho Panza matrices as well, which is
further evidence for the generalization power of the ML method.

4.5.2 The MSE between different matrices

Although the visual inspection of the previous subsection hints at the good performance
of the method, we have monitored improvements in the covariance matrices using the MSE
metric:

MSE =
1

N

N∑
l=1

1

n2
k

nk∑
i,j=1

(Covlij − Cov
(Nmax)
ij )2 , (4.2)

where Covlij are the input, target, or denoised covariance matrices, Cov
(Nmax)
ij is the best matrix

(produced with the entire data set), nk the number of bins of k in the data vector, and N is the
total number of matrices used in the evaluation. We computed the MSE only for the test subset
of the ExSHalos matrices, and the results are shown in Figure 26. The gray line corresponds
to the MSE for the original (input) matrices, the blue line corresponds to the denoised matrices,
and the error bars account for the standard deviation for the results for each random seed. As a
comparison, the black line represents the MSE of the target matrices (N = 1, 000), which is
a lower bound for the MSE of the original matrices and provides a useful sanity check. The
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Figure 26 – MSE comparison for the cosmological covariance matrices. This comparison
was done computing the best sample (Nmax = 30, 000) from ExSHalos and the
original (input) matrices, in gray, and the denoised ones, in blue. As the sample size
of the input matrices (n) grows, the agreement between the matrices improve and
the MSE becomes smaller. The MSE between the best matrix and the target matrix
(with N = 1, 000 spectra) is shown as the black line. The error bars account for
the values obtained for different seeds of the same model. The lower panel shows
the relative difference according to Equation 4.2. Source: Reference (40).

lower panel in Figure 26 shows the residue:

Relative Difference =
abs
(
MSEY×Nmax − MSETarget×Nmax

)
MSETarget×Nmax

, (4.3)

where Y stands for input or denoised.

Naturally, the MSE decreases when the sample size (n) grows. The decrease in MSE
that results from applying the denoiser is much larger: the mean values of the residue (⟨RD⟩)
show that the denoised matrices deviate by only ∼ 0.4 from the best matrices, compared
with approximately 7.0 for the original input matrices–a factor of more than 17 improvement.
Moreover, the MSE of the denoised matrices are weakly dependent on the original sample size,
which may be indicative that even with an original sample of only n = 50 spectra the denoiser
is already able to eliminate most of the noise of the covariance matrices, and increasing the
sample size does not significantly improve upon that noise reduction. Note that the black line
(MSE of the target matrix) is reached in some cases by the denoised matrices, which is not
completely unexpected since the training of the ML method includes more matrices than are
included in the targets.

4.5.3 The eigenvalues of the matrices

A complementary analysis to the one above can be made to compare the accuracy with
which we reproduce the cosmological covariance matrices, which relies on the eigenvalues



117

Figure 27 – Comparison of the ranked eigenvalues and their relative difference. The
ranked eigenvalues are presented in the main plot, while their relative difference
(with the respective values for the matrix with Nmax), in the subplot. For the
ExSHalos, the results are presented on the left, and for Sancho Panza on the right.
Source: Reference (40).

of those matrices. Typically, the eigenvalues that effectively carry information obey some
power law, and as we reach the lower eigenvalues the noise appears as an abrupt change in
the scaling of the eigenvalues (268, 269). In Figure 27 we show the ranked eigenvalues for
covariance matrices from ExSHalos (left panel) and Sancho Panza (right panel). We can see
that the eigenvalues of the denoised matrices are much closer to the target and best matrices,
while the original input matrices show clear signs of noise in the lower end of the spectrum
of eigenvalues, which become more important as we decrease the sample size. We quantify
the difference in eigenvalues with respect to the best covariance matrix in terms of the same
relative difference that was defined in Equation 4.3. For ExSHalos, the improvements are a
factor of more than ∼ 10, while for Sancho Panza the improvements are between ∼ 50 (for
n = 50) and more than ∼ 10 (for n = 100).

4.5.4 The diagonal values of the matrices

As an additional check to ensure that the denoised matrices match the target or the
best matrices, we have also looked at the values of the diagonals of those matrices. In Figure
28 we show that comparison for the best matrices (computed with a sample of Nmax spectra),
the target (N = 1000), as well as the input and denoised matrices in the cases of samples
n = [50, 100, 200]. In both cases (ExSHalos and Sancho Panza) the diagonals of the denoised
matrices are a much better match to the diagonal of the best covariance matrix, with relative
differences lower than 0.1. This is in contrast with the input (noisy) matrices, which even for
n = 200 still show deviations greater than 10% compared with the best matrix. This result,
combined with the comparison of the eigenvalues of Section 4.5.3, shows that the denoiser is
able to recover the key features of the matrices, leading to denoised covariances which are at
least as good as the target, and often come very close to the best case scenario.
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Figure 28 – Comparison of the diagonal values of the covariance matrices. The compari-
son is done for the best case scenario (Nmax spectra), target (N = 1, 000), input,
and denoised with n = [50, 100, 200]. The relative differences (lower subplot) are
computed with respect to the best matrices. Source: Reference (40).

4.5.5 An analytical comparison for the machine learning black box

Figure 29 – Wishart analysis. MSE comparison between the best ExSHalos (on the left panel)
and Sancho Panza (on the right panel) matrices with: matrices estimated from
the Wishart distribution, in black; the input, in circles (for n ∈ [50, 100, 200]); and
denoised matrices, in squares (from n ∈ [50, 100, 200] ⇒ N = 1000). The colors
corresponds to the number of matrices in the input and resulted denoised matrices.
The gray region corresponds to 1σ deviation for the mean values, in the case of
the Wishart matrices. The dashed lines have the intention to guide the reader to
see to which number of spectra n the input matrices were taken to their Wishart
comparison. Source: Reference (40).

The encouraging results above indicate that the denoiser is effectively learning about
the specific patterns of signal and noise, producing covariance matrices that are equivalent to
those computed with samples of a much greater size than the sample size of the covariance that
we plug into the denoiser. In other words, applying the denoiser seems equivalent to increasing
the sample size.

In order to check this conjecture we can compare the resulting (denoised) matrices
with a model for the probability distribution function behind covariance matrices, and which
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describes how their fluctuations depend on the sizes of the data vector and the sample size.
There is, in fact, such an analytical description for covariance matrices in terms of the Wishart

distribution (37, 270):

p(M̂ |M, ν, η) =

(
ννη/2|M |−ν/2|M̂ |γ/2

2νη/2Γη[ν/2]

)
exp

−νTr
(
M̂M−1

)
2

 . (4.4)

Here, M represents the statistical mean of the matrices, |M | is its determinant, and M̂ is the
random variable–in this case, the sample covariance matrix. The parameters of this distribution
are the size of the data vector η (the dimension of the matrices is η × η) and the number of
degrees of freedom ν (in our case, the sample size). In the formula above, γ = ν − η − 1 and
Γη[ν/2] is the multivariate Gamma function. Therefore, given an “ideal” covariance matrix
M , this distribution allows us to generate random covariance matrices corresponding to
different sample sizes. We should also point out that the Wishart distribution is unbiased, since
⟨M̂⟩ = M .

The Wishart distribution is useful in this context since it provides a model comparison
for the statistical fluctuations of covariance matrices as a function of sample size (ν → n). This
means that we can infer what is the effective sample size of the denoised matrices by analyzing
their MSEs, and comparing that with the result from the Wishart distribution where the “ideal”
covariance matrix is computed using the maximum number of spectra available (Nmax). In
Figure 29 we plot the MSE (mean and variance) between the input and covariance matrices,
compared with the covariance matrix obtained with all the spectra available (Nmax = 30, 000

for ExSHalos and Nmax = 15, 000 for Sancho Panza). The Wishart distribution (mean and
variance) is denoted by the black line and gray region. The input matrices are represented by
the circles and their respective 1 σ deviations, while the denoised matrices are represented
by squares, both in the cases n ∈ [50, 100, 200]. Since the mean MSE values for the denoised
matrices are significantly lower compared with the input matrices, according to the Wishart
distribution the denoiser is effectively taking matrices with samples of n = 50− 200 spectra,
and transforming them into covariance matrices with much larger samples.

For the matrices from ExSHalos, the denoised matrices with n ∈ [50, 100, 200] are
closer to the prediction from the Wishart distribution for n ∈ [450, 700, 940] spectra, respec-
tively. In the case of the Sancho Panza matrices, that effective sample size is even higher:
∼ 1550 − 2500. The denoised matrices also have a lower scatter, especially in the case of
Sancho Panza, which means that the chance that a denoised sample covariance ends up
producing a poorly estimated covariance matrix is lower than that for the equivalent effective
sample size without denoising.

It is also interesting to note that the Sancho Panza matrices benefit more from the
denoiser. This may be due to the fact that the matrices from Sancho Panza are already smoother
than the ExSHalos matrices, resulting in better estimations to begin with. We have made



120

tests changing the number of spectra in the normalization matrix of ExSHalos (to train the
models), but still, the Sancho Panza results were better than for ExSHalos. Therefore, the
normalization is not the cause behind this effect.

The interpretation presented in this section relies on a simple treatment of the co-
variance matrix, which is regarded as a quadratic combination of Gaussian random variables
(in our case, the spectra). A more thorough analysis can be made in terms of the likelihood,
which takes into account a marginalization over the inverse Wishart distribution, leading to
a modified multivariate t−distribution instead of a Gaussian distribution for the data (271).
Similarly, using the Wishart distribution to propagate the uncertainty in the theoretical model,
a Bayesian approach can be used to combine simulated and theoretical covariance matrices,
also reducing the number of simulations required to reach some threshold of precision and
accuracy (272).

4.5.6 Recovering the cosmological parameters

Finally, it is important to analyze the ability of the denoised matrices to recover the
fiducial simulated parameters and compare these estimation with the parameters coming from
the original matrices to validate our results. The analysis is presented in Figure 30. We have
explored the parameter space using the MCMC approach, implemented with the help of the
emcee library (273), utilizing as data points some random power spectrum vector, and using in
each case the different cosmological covariance matrices. Our goal is to study the multivariate
probability distribution function for the parameters: H0, Ωb, Ωc and the nuisance parameter
bias b, for the matrices built with the maximum number of spectra, target, denoised, and input
matrices. In all the analyses we have used 20 walkers and chains of 5, 000 length (except for
the input matrices, for which we have used 6, 000).

Overall, in all models (for n = 50 or n = 100, and N = 1, 000) and both sets of matrices
(ExSHalos and Sancho Panza) all the parameters were well constrained using the denoised
matrices. It is interesting to see that the inference considering the input matrices have a “false”
precision (the volumes in the parameter space are lower, when compared to all the other
matrices) and is very inaccurate, because the mean values estimated is sightly (for n = 100)
and highly (for n = 50, specially in the ExSHalos input matrix) shifted. Moreover the input
matrix with n = 50 and n = 100 spectra presents fluctuations on their contours, which are
improved/removed in the denoised matrix estimation.

Quantitatively, the improvements in the mean values becomes clear when we compare
the bias in the expectation value of a parameter in units of its variance:

∆ =
∆µ

σNmax

=
abs (µX − µNmax)

σNmax

, (4.5)

where µ corresponds to the mean of a parameter, X represents the input and denoised matrices,
and σNmax is the standard deviation of the parameter obtained using the best covariance matrix.

https://emcee.readthedocs.io/en/stable/
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ExSHalos

Sancho Panza

Figure 30 – Cosmological parameter estimation comparison. Comparison for different
covariance matrices from ExSHalos (upper panels) and Sancho Panza (lower
panels): matrices built using all the spectra available (with Nmax = 30, 000 spectra
for ExSHalos, andNmax = 15, 000 spectra for Sancho Panza); targets (N = 1, 000
spectra); input (usingn = [50, 100] spectra); and the denoised ones (n ⇒ N ). Source:
Reference (40).

The results for ExSHalos and Sancho Panza matrices are presented in Table 2, in the scenarios
where the input and denoised matrices are based on samples of n = [50, 100, 200] spectra.

In the case of ExSHalos, the results of this quantity from the bad to the denoised
matrices represent the improvements that is ∼ 128 times, in the case of Ωb, for models with
n = 50; ∼ 13.6 times, in the case of Ωc, for the models with n = 100; and ∼ 17.9 times, in the
case of H0, for models with n = 200. For matrices from Sancho Panza, the same comparison
follows to ∼ 68 times, for Ωc, for models with n = 50; ∼ 5.4 times, in the case of Ωc, for
n = 100; and ∼ 13.1 times, in the case of Ωb, for n = 200. The only parameters which are
not improved are: Ωb, in the case of the model using n = [50, 100]; and b, for the model using
n = 200, in the Sancho Panza analysis. Notwithstanding, it is clear the improvement power
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Table 2 – Bias in the estimated parameters. It is presented in units of the variance (∆),
measured with respect to the parameters determined using the covariance matrix
built using all the spectra available (Nmax).

Parameter ExSHalos Sancho Panza
Input Denoised Input Denoised

n = 50

H0 1.810 0.102 0.380 0.041
Ωb 1.754 0.014 0.107 0.112
Ωc 1.575 0.104 0.615 0.009
b 0.470 0.089 0.293 0.144

n = 100

H0 0.463 0.044 0.500 0.095
Ωb 0.118 0.021 0.002 0.043
Ωc 0.132 0.010 0.357 0.066
b 0.552 0.092 0.605 0.125

n = 200

H0 0.135 0.008 0.063 0.012
Ωb 0.151 0.054 0.125 0.010
Ωc 0.163 0.063 0.096 0.019
b 0.424 0.032 0.027 0.035

of the proposed suite: using only about a hundred spectra for an input matrix, the denoiser can
achieve results as if this matrix was made with thousands of spectra. Moreover, the results for
Sancho Panza completes the proof of the power of generalization of the proposed suite.

4.6 Discussion and Conclusions

The search for more efficient ways to compute the highly accurate cosmological covari-
ance matrices that are now needed in Cosmology has many different approaches (36, 37, 139–
146, 250, 252, 254–258). The main goal of this field is to provide precise matrices for parameter
inference, that can be used in MCMC explorations of the likelihood, and result in unbiased esti-
mates of the probability distribution function of the parameters. The results of these analyses
can lead to improved cosmological probes and/or experiments, for different parameters; they
can be used to break the tension of some parameters (as in the case of Hubble parameter (14));
as well as in the search for the nature of DE.

This work presents an efficient approach for the estimation of cosmological covariance
matrices. The main idea behind our method is that, starting from matrices built with only
hundreds of spectra, we are able to provide covariance matrices that are as good as if they were
built with thousands of spectra. We have implemented this method using CNNs as a denoising
algorithm, that cleans the noise in the input matrices. Visual inspection (see Figures 24 and 25)
already shows that the noise was removed, without the introduction of any visible artifacts
when compared with the best matrices.

The ML was trained in a data set of cosmological covariance matrices built with a
mock generator of halo catalogs, called ExSHalos (146). The reason behind this choice is the
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fact that this code was already designed to be extremely fast, when compared to other mock
generators or N -body simulations, and the ease of applying halo-finders in that context. We
were able to quickly generate many thousands of different maps, allowing us to build a very
large data set of power spectra with which we could build our covariance matrices. In practice,
the main limitation of our model comes from the computational cost associated with running
the ExSHalos simulations. However, we should also note that the number of catalogs that
were needed is rather small, since very good results can be obtained already for the model with
n = 50 ⇒ N = 1000, which needs only 6, 000 ExSHalos maps. Moreover, as long as the ML
models are trained, highly accurate covariance matrices from samples of N -body simulations
can be obtained in a matter of seconds.

Although the ML suite was built using matrices coming from an approximated method,
the main objective of this work was to test the generalization power of the suite when applying
the models to matrices coming from N -body simulations such as Quijote (112). Hence, we are
interested in taking the cleaning ML process learned with the covariance matrices from the
approximated method, and applying it to matrices coming from the best simulations available.
In this way, we expected to provide matrices that can even circumvent the well known errors
(up to 10%) in the parameter inference, that occur when using matrices that were derived only
from mocks or other approximated methods (149).

In order to check whether the resulting (denoised) covariance matrices were more
similar to the best ones, we performed a series of tests. We started by computing the MSE
(see Equation (4.2)) and verified that the denoiser is able to reduce that indicator by a factor
of ∼ 10–see Figure 26. We also compared the ranked eigenvalues and looked at the diagonal
values of the matrices, and showed that after denoising the input matrices we recover the main
features of the target and even of the best matrices, which are built using the maximum number
of spectra available (Nmax).

An interesting point of debate is whether the predictions of a ML model can be compared
with a simple mathematical model. We have shown that the proposed method can be matched
in terms of an extrapolation according to the Wishart distribution (37, 270), by effectively
augmenting the size of the sample that underlies the covariance matrix. Namely, in the case
of the ExSHalos data set, the denoised covariance matrices built from an initial sample of
n = 50 − 200 spectra are equivalent to the ones computed using ∼ [450 − 940] spectra.
In the case of Sancho Panza the denoised matrices are similar to the ones computed with
∼ [1550, 2500] spectra. The former result was expected, since the effect of the denoiser was to
bring the matrices very close to the target matrices (with samples of N = 1, 000). The latter
result can be explained by the fact that the best matrix built with Nmax = 15, 000 Sancho
Panza spectra has half as many spectra when compared ExSHalos (for which Nmax = 30, 000),
and because those matrices are, indeed, smoother than the ones from ExSHalos.

Ultimately, the strongest evidence for the power of the denoising technique is provided
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by the parameter estimation, in particular the plots in Figure 30, and the analysis of the bias
as expressed by ∆–see Equation 4.5 and Table 2. All the parameters (H0, Ωb, Ωc and b) were
well constrained in the case of the denoised matrices. We see improvements (when comparing
the input and denoised matrices) for all parameters in the case of ExSHalos, and for most
parameters in the case of Sancho Panza. In particular, the improvements achieved for H0

using the sample with n = 50 spectra were of a factor of ∼ 17.9 in the case of ExSHalos,
and of ∼ 9.4 in the case of Sancho Panza. Only when a parameter was already very well
determined using the input covariance matrices (∆ ≲ 0.1), the denoised matrices did not lead
to further improvements. These results form the basis for establishing the predictive power
of the proposed suite, as well as the generalization of the methods, which can be trained in
covariance matrices from mocks and applied to covariance matrices from N -body simulations.

To summarize, in this work we have demonstrated the power of image denoising
techniques as a new approach to improve sample cosmological covariance matrices. Our work
included some modeling of real-life effects that are analogous to observational conditions
(in terms of a non-trivial mask). Besides the architecture presented here, we have also tested
different network configurations, different methods to normalize the matrices, and even the
residuals from the encoder-decoder networks (213). In our tests, the architecture presented
was the one which provided the best results.

The next steps regarding this project are mainly related to the future prospects for
applying our methodology to real data. However, before doing so, some checks should be
performed: (i) test the machinery in matrices from different cosmologies besides the fiducial
one (which was used in the training stage), in order to check if the method can be generalized
in that sense; (ii) investigate whether other ML image denoising methods can result in even
better covariance matrices; and (iii) apply the ML suite to more complex, larger and more
realistic covariance matrices.
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5 MIMICKING THE HALO-GALAXY CONNECTION

Understanding the intricate relationship between the baryonic and DM components
of the Universe has increasingly become a focal point in Cosmology and galaxy evolution
research. Currently, the key questions revolve around characterizing the connections between
galaxy properties and the DM halos inside which they form and evolve, within the cosmological
framework of formation of the large-scale structures (172).

As briefly discussed in Section 2.5.2.1, various methods are employed to investigate
and characterize this connection. These include SHAMs (176), decorated HODs (177), SAMs
(173–175), and state-of-the-art hydrodynamical simulations (154–158). Despite the diversity of
these approaches, a method capable of quickly providing the detailed insights of hydrodynamical
simulations at the data handling level is still lacking.

In this context, ML techniques are emerging as a promising avenue (53, 53–56, 58, 60, 61,
64, 184, 190, 274, 275), which could be considered a halo-galaxy connection technique in itself,
given that the outcome of the analysis is a set of models characterizing those links. Predicting
stellar mass, which has a strong correlation with halo mass, is relatively straightforward.
However, other properties such as color or star formation rate (SFR), which are influenced by
numerous factors related to secondary halo properties (other than the mass itself), often in
non-trivial ways, remain challenging to reproduce even with sophisticated ML methods.

Many applications have employed the Illustris simulations as a data set, which has
only heightened the relevance of those challenges. For example, in Reference (56), authors
utilized ERTs to predict various simulated galaxy properties, including gas mass, stellar mass,
BH mass, SFR, and color. More recently, several studies have focused on predicting stellar mass
alone using CNNs (54,55, 58). These analyses have extended to measuring clustering properties
and comparing them with halo-galaxy connection techniques such as HODs. Additionally, in
Reference (53), ERTs were employed to predict both stellar mass and SFR. The trained machine
was then applied to the MultiDark DM-only simulation, and the results were compared with a
SAM to validate the extrapolation power of the model. However, these pioneering works failed
to reproduce accurately the diversity of the galaxy populations, or the way in which they are
related to their hosting halos.

In this chapter, we utilize the largest IllustrisTNG simulation box, TNG300 (with
a side length of 205h−1 Mpc), as our data set. The halo-galaxy connection is established by
predicting properties of central galaxies, including stellar mass, half-mass radius, specific star
formation rate (sSFR), and color, based on five halo properties: halo mass, concentration, spin,
age, and a proxy for the overdensity halo environment. We adopt two different approaches:

• Stacking raw and augmented models. We assess the performance of various ML meth-
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ods, including ERTs, kNNs, LGBM, and NNs (as discussed in Sections 3.2.2.1, 3.2.1, 3.2.2.2,
and 3.3.1, respectively). Instead of relying on a single method, we combine predictions
from different methods to generate a new data set. This combined data set is then used
to train another ML model, producing a new, integrated prediction for each galaxy prop-
erty. This “stacked” approach considers both the strengths and weaknesses of individual
models (see Section 5.3 for further details). Additionally, due to suboptimal predictions
for the tail of the distributions, we incorporate the SMOGN data augmentation technique
(also discussed in Section 3.5.1) into our pipeline. The main achievements related to this
work are associated with the publications of References (65, 276).

• Converting regression to classification. Recognizing the complex, interrelated pro-
cesses involved in galaxy formation and evolution, we acknowledge that galaxy properties
cannot be accurately determined solely by halo properties. To address this challenge, we
introduce a model that accounts for uncertainties arising from the stochastic aspects
of galaxy formation. Our approach aims to return joint probability distributions for
the galaxy properties, rather than a single estimate for their values, given a set of halo
properties. This is achieved using NNs by converting the original regression problem into
a classification problem (as outlined in Section 3.4.2). Additionally, this work is related to
the publication in Reference (69).

We present both these efforts in the Subsections 5.3 and 5.4, respectively.

While we propose to address the issue of stochasticity in the context of the halo-galaxy
connection primarily through various applications of ML, other authors advocate for the
use of alternative physical aspects such as merger trees (66, 277). However, neither of these
methods represents the definitive solution to the problem, necessitating a thorough comparison
between them (as discussed in Section 5.4.2.3). Furthermore, the majority of these methods
only estimate galaxy properties for central galaxies, lacking information about the clustering
of satellites and their properties, which are even more prone to scatter compared to their host
halo characteristics (172). Consequently, there remains much to be explored before asserting
ML methods as a comprehensive solution within the area of halo-galaxy connection.

5.1 The IllustrisTNG data

This analysis is grounded in the IllustrisTNG magnetohydrodynamic cosmological
simulation, extensively documented in References (278–284). Utilizing the Arepo moving-mesh
code (159), the IllustrisTNG suite represents an improved version over its predecessor, the
Illustris simulation (285–287). Notably, the updated IllustrisTNG subgrid models incorporate
a number of mechanisms such as star formation, radioactive metal cooling, and chemical
enrichment from various stellar sources including SNII, SNIa, and AGB stars. Additionally,
they incorporate feedback from stellar and super-massive BH activity. These models have been
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meticulously calibrated to match an array of observational constraints, encompassing the z = 0

galaxy stellar mass function, cosmic star formation rate (SFR) density, halo gas fraction, galaxy
stellar size distributions, and the black hole–galaxy mass relation.

In our study, we gauge the accuracy of our modeling by examining large-scale structure
galaxy clustering. Hence, we have opted to analyze data from the largest available box in
the database, IllustrisTNG300-1, henceforth referred to as TNG300. Spanning a side length
of 205 h−1Mpc with PBCs, TNG300 tracks the dynamical evolution of 25003 DM particles,
each with a mass of 4.0 × 107 h−1M⊙, and initially, 25003 gas cells, each with a mass of
7.6× 106 h−1M⊙. Renowned for its capability to replicate numerous observational measure-
ments, TNG300 serves as a valuable resource for galaxy formation and clustering research, as
demonstrated in References (278, 284, 288–293).

DM halos within the IllustrisTNG simulation are identified using a FoF algorithm,
employing a linking length parameter b = 0.2 times the mean inter-particle separation (264).
Subsequently, the gravitationally bound substructures, which we refer to as subhalos, are
identified using the SubFind algorithm (134,135). Subhalos that contain a non-zero stellar mass
component are categorized as galaxies.

5.1.1 Halo Properties

In this work, we consider the following halo properties from the TNG300 simulation
box:

• Halo Mass. Virial mass Mvir [h−1M⊙], computed by summing the mass of all gas cells
and particles enclosed within a sphere of radius Rvir. This sphere is defined such that the
enclosed density equals 200 times the critical density.

• Halo Age. Described in terms of a formation redshift z1/2, which is defined as the redshift
at which half of the present-day halo mass has been accreted into a single subhalo for
the first time. For this computation, we utilize the progenitors of the main branch of the
subhalo merger tree computed with SubLink, initialized at z = 6.

• Halo Spin. Defined as in Reference (294):

λhalo =
|J |√

2MvirVvirRvir
, (5.1)

where J is the angular momentum of the halo and Vvir is its circular velocity at the virial
radius Rvir.

• Halo Concentration. Defined in the standard way as:

cvir =
Rvir

Rs
, (5.2)
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where Rs is the scale radius derived from fitting the DM density profiles of individual
halos with a NFW profile (295).

• Halo Overdensity on a 3 h−1Mpc scale. Defined as the number density of subhalos
δ3 within a sphere of radius R = 3h−1Mpc, normalized by the total number density of
subhalos in the TNG300 box (288, 296).

5.1.2 Galaxy Properties

Galaxies (i.e., subhalos with non-zero stellar components in TNG300), are characterized
using the following properties:

• Stellar mass. M∗ [h−1M⊙], is defined here as the total mass of all stellar particles bound
to each subhalo.

• Specific star formation rate (sSFR). Star formation rate, SFR [yr−1M⊙] is computed
as the sum of the star formation rate of all gas cells contained in each subhalo. Then,
sSFR [yr−1h], is defined simply as the SFR per unit stellar mass: sSFR = SFR/M∗.

• Galaxy Radius. Stellar (3D) half-mass radius R(∗)
1/2 [h−1 kpc] is defined as the comoving

radius containing half of the stellar mass of each subhalo.

• Galaxy (g-i) color. Is derived from the magnitudes provided at the IllustrisTNG data
base. These magnitudes are computed by summing up the luminosities of all stellar parti-
cles of each subhalo (see Reference (297)). The IllustrisTNG magnitudes are intrinsic,
meaning the attenuation produced by dust is not included.

5.1.3 Data pre-selection

As mentioned previously, our analysis focuses exclusively on central galaxies from
TNG300, simplifying the modeling of the halo-galaxy connection. To avoid biasing our results
with unphysical values, we have applied several data cuts. Firstly, only halos with masses above
log10(Mvir [h−1M⊙]) = 10.5 are considered. Secondly, a minimum stellar mass of log10(M∗

[h−1M⊙]) = 8.75 is imposed, ensuring that halos contain at least 500 DM particles and galaxies
have at least 50 stellar mass particles. This selection process yields a final galaxy sample of
174, 527 objects. Among this sample, approximately 48% are designated for training, 12% for
validation, and 40% for testing.

However, analyzing the SFR and sSFR poses challenges in TNG300, as approximately
14% of galaxies at z = 0 have an SFR of exactly zero. This condition does not necessarily
indicate quiescent galaxies, typically defined with log10(sSFR[yr−1h]) ∼ −10.5 in TNG300. To
address potential numerical issues caused by these galaxies with null SFR, we assign them
an artificial SFR. This artificial value is randomly sampled from a Gaussian distribution with
parameters µ = −13.5 and σ = 0.5, as described in a similar approach in Reference (298).
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While this approach ensures a well-defined sSFR for all galaxies, predicting the assigned values
statistically remains challenging, as discussed in the following sections1.

5.2 Performance Metrics

The metrics provide a mean of measuring the difference between ML predictions ŷ and
the target values y. In this work we made use of MSE (see Equation 3.6) and:

• Pearson Correlation Coefficient (PCC):

PCC =
cov (ŷ, y)
σŷσy

(5.3)

which measures the Pearson correlation between the predictions and true values, being
as good as close to ±1 and as bad as close to 0.

• Kolmogorov-Smirnov test (K-S test):

D = max (|F1(x1)− F2(x2)|) , (5.4)

where Fi(x1) and Fi(x2) are two cumulative distributions (41). In essence, the K-S test
measures the maximum distance between them. It is also useful to compute the 2D
K-S test. The method is essentially the same as for the 1D K-S test, but accounting for
2-dimensional data. This algorithm, developed mostly for astronomical analyses, compute
the cumulative distributions along the coordinate axes of the two variables. More details
can be found in References (299, 300). In this work we have used the Reference (301)
repository. For both versions of this test, the values are as better as close to 0 they are.

5.3 Stacking raw and augmented models

The methodology of this approach, outlined in Figure 31 and also discussed in Reference
(65), consists of several steps. Firstly, the input data is prepared as described in Section 5.1.3.
Once the input data set is ready, two different paths are taken:

• Path 1 (top of Figure 31). In this path, established ML algorithms (ERT, kNN, LGBM,
and NN as detailed in Sections 3.2.2.1, 3.2.1, 3.2.2.2, and 3.3.1) are applied directly to the
input data set, resulting in what we term “raw” models.

• Path 2 (bottom of Figure 31). This approach utilizes the SMOGN data augmentation
technique (see Section 3.5.1). Initially, the data is augmented, and then the same ML
methods are applied to the augmented input data.

1 Note that we do not employ this solution for non star-forming galaxies in Chapter 6. Moreover, we
analyze these galaxies while accounting for observational effects in Section 6.3.
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Figure 31 – A schematic summary of the methodology followed by stacking raw and
augmented models. First, a data pre-selection is performed in order to generate
the input data set. Once this initial catalog is ready, our method takes two different
paths: in Path 1 (top), several ML algorithms are applied (ERT, kNN, LGBM, and
NN) to the input data set; these are the “raw” models. A separate approach, which
employs the SMOGN data augmentation technique, is shown in Path 2 (bottom).
Subsequently, the same ML methods are applied to the SMOGN input data set.
Both paths result in trained models for the galaxy properties. Finally, we have
also implemented a stacking ML technique separately for each path, where all
ML methods for the corresponding path are combined. The final output data
set comprises our predictions for the galaxy properties under analysis. Source:
Reference (65).

Both paths lead to trained models for the galaxy properties, which are provided as part of this
approach. Additionally, we have implemented a stacking ML technique separately for each
path, where all ML methods for the corresponding path are combined (see Section 3.5.2).

5.3.1 The SMOGN galaxy distributions

The SMOGN code was utilized by manually selecting regions of the distributions to be
over- and under-sampled, based on visual inspection and considering the chosen proportion
of normal and rare bins, as well as the specified number of k neighbors (see Subsection 3.5.1).
Figure 32 illustrates the distributions of galaxy properties (stellar mass, sSFR, radius, and color)
after applying the SMOGN data augmentation technique to the training and validation data
sets. In essence, SMOGN enables us to enhance the statistics for underrepresented populations,
such as those with high stellar mass, very low sSFR, very small and very large radius, and very
blue color. It is important to note that these augmented distributions differ from the original
ones because they are designed to compel the methods to learn how to predict properties in
previously underrepresented regions in parameter space. Once the model is trained, the test
data set (which is new to the machine and not augmented by SMOGN) is used to generate the
expected results: the “complete” distribution, or something close to it.
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Figure 32 – Augmented distributions by SMOGN. A comparison of the histograms for the
true and augmented SMOGN distributions for stellar mass, sSFR, radius, and color.
Source: Reference (65).

5.3.2 Results

In this section, we present the main results of our analysis, focusing on our predictions
of galaxy properties. We examine the frequency (see Section 5.3.2.1) and metric (in Section
5.3.2.2) performances, compare predicted values with true values (see Section 5.3.2.3) and
analyze the distributions of halo-galaxy properties (in Section 5.3.2.4). Furthermore, in Section
5.3.2.6 we delve into our clustering measurements obtained through power spectrum analysis.
Additionally, we explore the source of correlation between halo and galaxy property predictions
by conducting a feature importance study, in Section 5.3.2.5.

5.3.2.1 Frequency performance

Our main goal is to recover some of the main galaxy properties, which means, in
particular, to reproduce the frequencies (distributions) of each property. The true and predicted
distributions are shown in Figure 33 for stellar mass (first row of plots), sSFR (second row),
radius (third row), and color (fourth row). The true distributions are shown as the filled regions,
while the distributions for the predictions using the ML methods are shown as lines. The first
column shows the results for the “raw” ML models, which employ the original training set
drawn from the TNG300 catalog. The second column corresponds to the SMOGN models,
i.e., the ML models trained with the data which is augmented using the SMOGN technique.
Finally, the third column shows the distributions for the stacked models (using all the different
individual ML models) from the raw and SMOGN data sets.
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Figure 33 – Frequency performance: Raw and SMOGN comparison. A comparison of the
histograms for the true and predicted galaxy properties for all ML models. Each
row corresponds to a single galaxy property (stellar mass, sSFR, radius, and color).
The first column corresponds to the “raw” ML models (i.e., ML models trained with
the “raw” TNG300 data), the second column corresponds to the SMOGN models
(i.e., the ML models trained with the augmented data, after using SMOGN), and
the third column shows the distributions for the stacked models. Source: Reference
(65).

The plots in Figure 33 clearly show that our machinery is capable of recovering the
general distributions. As expected, stellar mass is the property that is better predicted by the
models, with only some small deviations in the distributions. For the rest of the properties,
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the performance of the machine worsens, indicating a more complex connection with the
properties of the hosting halos (potentially due to information that we are not taking into
account in our input sample).

The different individual algorithms provide similar results, mainly in the case of the raw
models, but less so in the case of the SMOGN results, where the predicted distributions indicate
that the tree methods still tend to privilege the peaks. This results in smaller improvements in
the predictions at the tails of the distributions.

However, very large deviations are found when the raw and the augmented stacked
models are compared. These differences are highlighted by the stacking ensemble models, which
combine all the different ML models. The raw models are slightly less efficient at reproducing
the scatter in the galaxy properties, especially towards the out skirts of the distributions, where
underrepresented populations lie. They are, however, better at recovering the regions around
the peaks of the distributions. Although the SMOGN methods are better at recovering the
overall shapes of the distributions, we also notice the appearance of some artifacts, such as the
small hump in the number of predicted galaxies around log10(M⋆[h

−1M⊙]) = 10.5, which may
be due to the SMOGN binning choices to under-sample low-mass objects and to over-sample
large-mass ones (see the stellar mass histogram for SMOGN distribution in Figure 32).

5.3.2.2 Metric performances

Figure 34 – Pearson correlation coefficient comparison. For each ML method and galaxy
property. The left plot corresponds to the raw models, while the right plot displays
the SMOGN models. Note that we have opted to connect the dots despite the fact
that the properties in the x-axis are not correlated. This format is employed in
order to facilitate the readability of the plots. Source: Reference (65).

In Figure 34, we show the PCC score (see Equation 5.3). This figure confirms that the
best predicted galaxy property is stellar mass, both in terms of the raw, the SMOGN and the
stacked models, reaching values of ∼ 0.98. The Pearson correlation coefficient drops to ∼ 0.80

for sSFR, ∼ 0.7− 0.77 for radius, and ∼ 0.57− 0.71 for color. The raw and SMOGN models
perform, in general, similarly. The main difference resides in the lower scores for kNN and NN
in the SMOGN models, particularly for color. This slightly worse performance of the SMOGN
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models for some of the galaxy properties is directly connected to the augmentation technique
itself. As mentioned before, the SMOGN method tends, by construction, to give greater weights
to the tails of the distributions, especially in the case of color and radius.

Table 3 – MSE and PCC scores. Obtained for galaxy properties (in the test subset) for the
raw and SMOGN models.

Property Raw SMOGN
MSE PCC MSE PCC

Stellar mass 0.017 0.98 0.018 0.98
sSFR 0.691 0.79 0.747 0.79

Radius 0.012 0.75 0.014 0.71
Color 0.032 0.71 0.036 0.67

Together with the PCC results, we present in Table 3, the exact values for MSE and PCC,
measured in the test subset for all galaxy properties, using the raw and SMOGN stacked models.
Those results summarizes the advantages of using the stacked models compared to other
works (e.g., PCC ∈ [0.92, 0.957], from References (56, 184, 190) for stellar mass; MSE = 0.126

from Reference (56) for stellar mass; PCC ∈ [0.745, 0.794], for SFR according to References
(56, 184, 190)).

5.3.2.2.1 1D K-S test

The 1D K-S test is presented in Figure 35. It is again clear that stellar mass is the most
easily predicted galaxy property, while the remaining properties are harder to determine just
on the basis of the halo properties. Interestingly, the results of the K-S tests also indicate that
the distributions of predicted radii and colors (and even sSFRs) for SMOGN reproduce better
the true distributions. This result, again, reflects the philosophy behind the SMOGN technique.
Finally, this clearly motivates the use of the stacked models (represented by the big markers
on the right-hand side of each panel), as their performances are often very good in terms of
recovering the true distributions. These results show that the stacked models are capable of
providing a fair combination of the predictions of the different models.

5.3.2.3 Predicted versus True distributions

Figure 36 displays the scatter plots of the true v. the predicted values, for 30, 000 galaxies
randomly chosen from the test sample. The color code represents the normalized density of
objects. From these plots, it remains clear that the galaxy property best predicted is stellar
mass, as the small scatter demonstrates. Our predictions become more uncertain for the rest of
the galaxy properties. For sSFR, the models, particularly the SMOGN-augmented ones, perform
relatively well towards the bulk of the distribution. However, despite our attempts to palliate
the effect of the null-SFR values, objects with very small sSFR are still problematic for the
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Figure 35 – 1D K-S test comparison. Between the true and the predicted distributions, as
described in Equation 5.4, for all galaxy properties and algorithms. Lower values
correspond to better fits. Note that we have opted to connect the dots despite the
fact that the properties in the x-axis are not correlated. This format is employed in
this and other subsequent plots in order to facilitate the readability of the plots.
Source: Reference (65).

Figure 36 – Predicted versus True distributions. For stellar mass, sSFR, radius, and color,
for raw (left) and SMOGN (right) stacked models. The color code indicate the
normalized density of objects. Source: Reference (65).

machine. In the case of galaxy radius, our predictions for the largest objects are good and
unbiased. For the smaller, more common objects, the raw model predicts a distribution that
is tilted with respect to the real one. This effect is due to the fact that the machine predicts a
narrower range of values for this property. Something similar happens for galaxy color, where,
again, the bimodality is well reproduced, but the predicted blue cloud is severely tilted as
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compared to the real data (an effect that is not as strong for the red sequence).

A very important advantage of SMOGN seems to emerge here. SMOGN tends to rectify
this problem, reducing the tilt in the distributions. This improvement, which is still not complete,
does suggest that using the augmented data set allows the machine to predict a wider range of
output values. The effect is particularly evident for color and radius, where the raw models are
unable to predict any galaxies with (g − i) < 0.3 and radii lower than 0.375h−1 Mpc, whereas
the SMOGN results do.

5.3.2.4 Halo-galaxy property distributions and the 2D K-S test

Figure 37 – Halo-galaxy property distributions. We present: stellar mass v. halo mass, radius
v. halo mass, sSFR v. stellar mass, color v. stellar mass, and sSFR v. color. For all
relations, the stacked raw (left) and SMOGN (right) models are compared. The
color code represents the normalized density of objects and the true distributions
are shown in black contours. Source: Reference (65).

It is important to analyze the ability of the method to reproduce the relations between
different galaxy and halo properties (which can be directly seen as the halo-galaxy connection).
Figure 37 shows the relations: stellar mass v. halo mass, radius v. halo mass, sSFR v. stellar mass,
color v. stellar mass, and sSFR v. color (in the same format of Figure 36). Generally speaking,
we have encouraging results, demonstrating that the machine produces fairly realistic relations
between properties. One of the main problems to overcome, as this figure illustrates, is the
scatter in these relations. By construction, ML models tend to concentrate on the bulk of the
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distributions, which hinders the prediction of scatter. A clear example of this is the mass–size
relation. Again, SMOGN works in the right direction, increasing the scatter in the relations.

Table 4 – 2D K-S test comparison. For the stacked raw and SMOGN models for the joint
halo-galaxy distributions.

Joint property D (raw stacked) D (SMOGN stacked)
Stellar Mass v. Halo Mass 0.065683 0.065417

Radius v. Halo Mass 0.228733 0.116850
sSFR v. Stellar Mass 0.272300 0.208417
Color v. Stellar Mass 0.224533 0.164350

sSFR v. Color 0.327667 0.282467

In order to quantify the results of Figure 37, we have computed the 2D K-S test between
the true and predicted joint distributions. The results of this test are presented in Table 4. For
all pairs of properties, the distances between the cumulative distributions are close to zero, and
here again the best result is for stellar mass v. halo mass. The decrease of the value for each
relation from raw to SMOGN models is remarkable, reaching its highest difference for radius v.
halo mass, followed by color v. stellar mass.

5.3.2.5 Feature Importance Analysis

The ultimate goal of our analysis is to establish relations that allow us to shed light
onto the intricacies of the halo-galaxy connection. One of the ways to address this aspect and
to gain some insight into the inner workings of the ML methods is to analyze the weights given
to each feature (i.e., halo property) which contributes to producing the desired output.

Although tree-based methods have been employed in our work, we are not utilizing
their inherent mechanisms to compute this statistic. This decision stems from our objective
of seeking a method applicable to all the ML methods under consideration, including kNN
and NNs. Therefore, to compare the relative weights of the input features across different ML
methods, we have opted to compute the permutation feature importance, as detailed in Section
3.5.3) (186). For this purpose, we utilize Eli5 to perform this computation. For clarity, all our
results have been converted to percentage of the feature importance for halo mass, which is
the predominant parameter for determining all galaxy properties.

Figure 38 shows the importance of the halo features for each individual ML model.
Here, a hierarchy emerges: on the one hand, the halo mass is clearly the most important
feature for the prediction of all the galaxy properties, as expected. On the other hand, the
environmental property δ3 had an almost negligible level of importance for all the galaxy
properties. Somewhere in the middle, age turns out to be quite important for color and sSFR,
but less so for stellar mass and radius. Galaxy radius is perhaps the most interesting case, where

https://eli5.readthedocs.io/en/latest/blackbox/permutation_importance.html?highlight=PermutationImportance
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Figure 38 – Permutation feature importance comparison for the different ML models.
For raw models (left panels) and SMOGN models (right panels). Each row corre-
sponds to the predictions for stellar mass, sSFR, radius, and color, respectively. This
plot shows the weights given to each individual halo property (mass, concentration,
spin, age, and δ3), normalized with respect to the feature importance of the halo
mass parameter. Source: Reference (65).

a number of halo features appear in a less hierarchical way, with concentration, spin, and age
contributing at about the same level (∼ 10% compared to halo mass).

We can also apply the idea of feature importance to the stacked models, measuring the
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Figure 39 – Permutation feature importance comparison for the stacked raw and
SMOGN models. For each of the predicted galaxy properties (stellar mass, sSFR,
radius, and color). This plot shows the weights given to each individual ML model
(NN, kNN, LGBM, and ERT) in the stacking procedure, normalized with respect to
the feature importance of the LGBM model. Source: Reference (65).

level of importance of the different ML algorithms. In that case, the features under analysis are
the predictions of the individual ML models. The results have been normalized to the LGBM
predictions, since that is the predominant model for determining the stacked predictions for
all galaxy properties (the same way that halo mass was the predominant feature before). The
results are shown in Figure 39, where the upper and lower panels correspond to the raw and
SMOGN models, respectively. Recall that, for the raw models, the best predictions are obtained
using the LGBM and NN methods, while the kNN and ERT methods return worse predictions,
depending on the galaxy property. The SMOGN methods behave differently, with LGBM and
ERT yielding the best results.

5.3.2.6 Power Spectrum

An important test to our methods is the clustering properties of the galaxies whose
properties we are trying to predict. By splitting those galaxies in two populations according to
those properties, and then computing the clustering of each population, we can check whether
our predictions are able to separate the galaxies correctly, according to the types of halos that
they inhabit. Furthermore, given that we have exactly the same DM halos, by splitting the
galaxy populations both in terms of their predicted properties, as well as their true properties,
we can assess some of the systematics that arise in the bias of those populations as a result of
our imperfect predictions, in a way that is protected against cosmic variance.

We have split the galaxies according to each property (stellar mass, sSFR, radius and
color) in two bins each, with bin edges and central values listed in Table 5. For the true galaxies,
we use their positions from the TNG300 catalog, while for the ML predictions we use the
positions of their hosting halos. All the spectra were then measured for the entire TNG300
box, computing the FKP spectra (see Sections 2.3.1 and 2.3.3, Equation 2.27) using the Python
package NbodyKit (96). Because we have only one single IllustrisTNG box, the uncertainties
of the spectrum on each of the Fourier bins (bandpowers) ki, for each tracer α, σPα,i

, were

https://nbodykit.readthedocs.io/en/latest/
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Figure 40 – Power spectra comparison. For the raw and SMOGN stacked models compared
with the true data set. In each panel, a different galaxy property, split in two bins,
is analyzed (see text). The residuals are provided in the subplots. Source: Reference
(65).

Table 5 – Bin edges and central values for the subsets considered for the computation
of the power spectrum.

Property Bin edges Central values
log10(M∗ [h−1M⊙] ) [8.8, 10.6, 12.7] [9.7, 11.6]
log10(sSFR[yr−1h]) [−16.3,−11.0,−8.3] [−13.6,−9.6]

log10(R
(∗)
1/2 [h−1 kpc]) [0.1, 0.9, 2.1] [0.5, 1.5]

(g − i) [−0.23, 1.0, 1.2] [0.4, 1.1]

assumed to be given by:

σ2
Pα,i

P 2
α,i

=
2

ṼiV

(
1 + n̄αPα,i

n̄αPα,i

)2

, (5.5)

where Ṽi = 4πk2
i∆k/(2π)3 is the volume of the Fourier bin, with ∆k representing the width

of the bandpower, V is the volume of the catalog, and n̄α is the mean number density of the
tracer α (which here stands for the two bins in galaxy properties).

The results for the power spectrum are shown in the four panels of Figure 40, which,
from upper left to lower right, correspond respectively to binning the galaxies in stellar mass,
sSFR, radius, and color. The legends in the upper right corner show the central values of the
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bins of each galaxy property, for each bin and method – which, as can be seen, are identical
for all methods. The legends in the lower left corners indicate the χ2 values for the fit of the
spectra of the predicted versus the true galaxies.

For each plot in Figure 40 we also show the residuals:[
P Pred

α,i (k)− P True

α,i (k)
]2[

σPred

Pα,i

]2 , (5.6)

where Pred is the predicted and True is the true power spectrum (i.e., the power spectrum
that results from using the original galaxy property and position in the TNG300 box). For stellar
mass, the residuals range between 10−5 and 0.12, for the less massive bin, and 1.6 · 10−3 and 1
for the most massive interval. In the case of sSFR, the residuals range between 5.5 · 10−5 and
2.9 for the first (low sSFR) bin, and 5 · 10−4 − 1.0 for the second subset (high sSFR). Similar
results are obtained for galaxy size and color. For the former, ranges of [2 · 10−8, 0.02] and
[3 · 10−6, 2.5] are obtained for the residuals in each bin, respectively. Finally, the residuals in
the power spectrum for galaxy color are [0.009, 1.3] and [3 · 10−5, 3.3], for the blue and red
subsets, respectively.

Particularly, the residuals follow the same trend for sSFR and color, and behaves differ-
ently for stellar mass and radius. In the former case, the comparison happens because both bins
either have their mean values (for the raw and SMOGN predictions) close to the true spectra, or
because the dispersion σ is higher enough (specifically in the case of the red color bin). In the
latter case, it is evident that the bins with a low number of objects (higher stellar masses and
higher radii) have higher values for the residuals. Some trends, such as the fact that the residuals
increase with k for all four predicted properties, show that our predictions are more accurate
on larger scales. This can be both because of shot noise (which affects more the small scales),
and also because it is harder for the predictions to match precisely the local environments
of those galaxies and halos. Another point to consider is that binning the galaxy populations
sometimes leads to samples with very different sizes, which also affects the residuals.

When adding up the residual for all the values of k, we obtain the χ2 associated to
each power spectrum. Since we have 22 bins of k, the χ2 per degree of freedom is significantly
smaller than 1 in all cases, which is indicative of an excellent agreement. It is noteworthy that
the SMOGN stacked models perform slightly worse for stellar mass and sSFR, compared with
the raw stacked models, but they do better for radius and color.

5.3.3 Discussion and conclusions

The predictive power of ML techniques can be harnessed to reproduce the hidden
intricacies of the halo-galaxy connections. The main goal in this field is to establish relations
between the properties of galaxies and the properties of their hosting halos, in the cosmological
context of the large-scale structures of the Universe. This problem can be treated in ML in
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terms of an input data set (halo properties), which is known a priori, and an output data set,
corresponding to the galaxy properties that we attempt to predict (53,56,58,61,184,190,274,275).

We have selected four different ML algorithms (NN, kNN, LGBM, ERT), as well as the
combination of their predictions (the stacked models), and evaluated their ability to predict
stellar mass, color, sSFR, and half-mass radius for central galaxies in the TNG300 hydrodynam-
ical simulation. In addiction, we have employed a data augmentation technique called SMOGN
for the first time in the context of the halo-galaxy connection field.

Our set of halo properties includes halo mass, age, concentration, spin, and overdensity
around halos. Overall, our findings are consistent with previous results in the literature, with
stellar mass being the most accurately predicted property, with a PCC of ∼ 0.98 (previously
reported values are typically 0.92 − 0.957, see References (56, 184, 190)). The second best-
predicted property is sSFR, with a correlation coefficient of ∼ 0.8 (previously, 0.745− 0.794,
see References (56, 184, 190)). For size and color we obtain coefficients in the range 0.7− 0.8

and 0.59− 0.71, respectively. A similar hierarchy for the predictive power of our ML methods
is obtained when other performance estimators such as the K-S test are employed.

The aforementioned improvements are primarily due to the use of both the stacked
models and the SMOGN technique. The stacked models perform a linear combination of the
different ML predictions for each galaxy property. The SMOGN method, on the other hand, al-
leviates the problem of imbalanced data sets, by statistically compensating the lower-populated
regions in parameter space. Note that ML methods tend to focus, by construction, on reproduc-
ing the better represented data. Needless to say, in the context of the halo-galaxy connection,
there is significant value in the sparse (rare) objects. We have shown in a quantitative manner
that the use of SMOGN has several advantages. First, it helps predicting galaxies in the tails of
the distributions (this can be seen from the distribution histogram or from the small D-values
obtained from a K-S test: e.g., D ≲ 0.175 for sSFR and D ≲ 0.125 for radius and color). Sec-
ond, it tends to rectify the tilted real v. predicted distributions obtained using the raw models
(without augmentation), by expanding the predicted range of values.

The above advantages are also noticeable when the joint distributions of galaxy/halo
properties are analyzed. We have demonstrated that we are capable of reproducing very well
the shape of several important relations, such as the stellar/halo mass relation (SHMR) or
the galaxy size–halo mass relation, to name but a few. Here, SMOGN proved once again to
be helpful, particularly in terms of reproducing the overall scatter in the relations. We have
used the 2D K-S test to quantify the accuracy of our predictions, both for the raw and for
the SMOGN stacked models. To give an example, the use of the data augmentation technique
improves our predictions by ∼ 49% and ∼ 27% (as compared to the raw models) for the galaxy
radius–halo mass relation and the color–stellar mass relation, respectively. In conclusion, the
results presented in this work clearly show the potential of SMOGN in the context of the
halo-galaxy connection.
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In terms of the physical implications of our results, the most important aspect is the
quantification of the feature importance, i.e., the contribution of each halo property to the
prediction of each galaxy property. The validity of this analysis is of course due to the high
consistency across the different models. As expected, stellar mass seems to be almost completely
determined by halo mass, whereas the inclusion of halo age is necessary to predict both sSFR
and color. Maybe the most interesting case is again galaxy size, which, within the uncertainties
of our analysis, seems to be primarily determined by halo mass (this makes sense due to
the mass–size relation). The contribution of other properties such as spin, concentration or
age seem to be equally relevant and significant, but it is important to bear in mind that our
prediction for galaxy radius is still not optimal. These results seem to be connected with the
shape of the (halo/stellar) mass–size relation (see, e.g., Reference (302)): at the high-mass end,
central galaxy size is proportional to halo mass, but the relation is basically flat at the low-mass
end.

The study of the halo–galaxy connection would be incomplete if the relations between
the properties of halos/galaxies and their spatial distribution in the large-scale structure were
not taken into account. In the last part of this work we show that the clustering of our
predicted central galaxies, measured in terms of their power spectra, reproduces that of the
true sample with a high level of accuracy: 0.05 − 7.6%, χ2 = 0.18 − 8.88 for stellar mass;
2.0− 5.1%, χ2 = 1.9− 7.6 for sSFR; 0.12− 11.7%, χ2 = 0.06− 13.99 for radius; 4.4− 7.3%,
χ2 = 6.7− 15.9 for color. Importantly, this good agreement is obtained for multiple subsets
defined in terms of the aforementioned galaxy properties. Despite this performance, some
subsets display a few percent bias (difference) in the amplitude of the spectrum. As an example,
the high-mass subpopulation, log10 (M∗[h

−1M⊙]) > 10.6, and the high-sSFR subpopulation,
log10(sSFR[yr−1h]) > −11, are predicted to have slightly smaller bias than the real TNG300
galaxies. On the other hand, the subpopulation with large radius, log10(R

(∗)
1/2[h

−1 kpc]) > 0.9,
and that with bluer colors, (g− i) < 1, show some scatter, but no significant bias, especially on
small scales (k ≳ 0.1h Mpc−1), which may point towards either hidden variables that correlate
with these properties, or a larger role of stochasticity. In terms of the clustering properties of
IllustrisTNG galaxies, one interesting aspect that merits further investigation, particularly if
larger boxes become available, is whether clustering can be reproduced at fixed halo mass.

The results presented in this work come with another important realization. Even
though we are equipped with a powerful ML machinery and the SMOGN augmentation tech-
nique, the accuracy in the predictions for galaxy radius, sSFR, and color is still not comparable
to that of stellar mass. In Figure 41, we show the effect of considering galaxy properties as
input features (using only NN), i.e., we use all halo and galaxy properties (except for the one
under analysis) to predict stellar mass, sSFR, radius, and color. This exercise is reassuring in
terms of the robustness of our methodology, since our predictions, in most cases, improve
significantly (both qualitatively and quantitatively). That is the case for sSFR and color (stellar
mass was already very well reproduced), which is of course expected due to their correlation.
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Figure 41 – Predicted versus true distribution using halo and galaxy information. For
stellar mass, sSFR, radius, and color for NN models produced using all halo and
galaxy properties (except for the one under analysis). Each point represents a
central galaxy and the color bar corresponds to the normalized density of objects
in each region. Source: Reference (65).

Figure 41, however, illustrates some of the challenges: even with the aid of galaxy properties,
there is a substantial level of scatter which cannot be overcome with this set of properties
alone. For sSFR, the scatter becomes very small for the bulk of the distribution, but there are
still problems at the low-sSFR range–a testament to the challenge of dealing with extremely
low-SFR objects in TNG300. For color, conversely, the scatter is larger in the blue cloud than in
the red sequence. Finally, particularly striking is the effect on galaxy size, where little or no
improvement is observed in the performance scores, nor in the visual appearance of the scatter
distribution.

An interesting point of debate is whether the predictions for these properties can
be significantly improved by including any additional halo or environmental property (or
information on the assembly history, such as the number of major mergers). Equivalently, one
can ask to which extent the problem is dominated by the intrinsic stochasticity of the galaxy
formation process. In this sense, we have tweaked our definition of environmental overdensity,
by varying the threshold scale. None of these tests provided significant improvements in our
performance scores with respect to the basic set of halo properties, so we have opted to stick
to our fiducial configuration for simplicity. However, as shown in References (66, 277), the use
of merger trees have already obtained better results than what we show here.

In the same context, the fact that we are able to predict the TNG300 clustering with
precision, even when the sample is split in multiple ways, serves as a motivation to explore
in more detail the related effect of galaxy assembly bias. Galaxy assembly bias measures the
dependence of the properties and clustering of galaxies on halo properties beyond halo mass
(see References (293, 303)), and can be a useful tool both to test our results as well as a property
that can be directly predicted using ML techniques.
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5.4 Converting regression to classification

The methodology employed in this section involves converting the regression problem
discussed in Section 5.3 into a classification problem, as outlined Section 3.4.2. We utilize the
same data set and data preprocessing techniques detailed in Section 5.1. This approach has
its complete version in Reference (69). In this section, we provide a summary of some of the
key achievements, comparing them with the findings presented in the previous section (See
Section 5.3).

5.4.1 Methodology

To start, we train four models to predict each galaxy property individually as univariate
distributions. This means we have separate models to predict P (M∗), P (g − i), P (sSFR),
P (R

(∗)
1/2). While this approach is sufficient to recover the overall distribution P (Y ) for a given

sample, it does not guarantee, a priori, that the joint distributions are well reproduced.

Therefore, we proceed to predict pairs of properties, namely P (M∗, g−i), P (M∗, sSFR),
P (g− i, sSFR), and P (R

(∗)
1/2,M∗). This strategy is similar to the univariate P (Y ) case: we make

a grid in the {Y1, Y2} subspace so that the output corresponds to pixels in this grid.

For all the results shown here, we set K = 50 classes for each one of the central galaxy
properties, with equally spaced bins. For example, for stellar mass, this corresponds to bins of
0.085 dex. It is important to note that this choice of binning is arbitrary. We have tried different
numbers of bins, finding similar results in terms of the recovery of the distributions.

5.4.2 Results

In this section we present some of the results we have achieved in Reference (69),
mostly based in the comparison with Reference (65) (see Section 5.3). We start presenting the
comparison for the distribution of halo and galaxy properties, in Section 5.4.2.1. In Section
5.4.2.2, we present the K-S test for the predicted individual and joint galaxy properties. In order
to be able to compare the probabilistic results with one-single value estimations, we compute
the PCC score in Section 5.4.2.3.

5.4.2.1 Distribution of halo-galaxy properties

In Figure 42 we present the distributions of the galaxy properties for the test set. The first
column is the truth table, the TNG300 catalog. The second column is the NNClass prediction
of univariate distributions, i.e., galaxy properties predicted independently. With the univariate
distributions we can compute the joint distributions as P (Y1)⊗ P (Y2), which are shown in
the heatmap diagrams. The third column is the NNClass prediction for the joint distributions
P (Y1, Y2), which can be integrated to recover the univariate distributions P (Y ) shown in the
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Figure 42 – Distributions of galaxy properties. From top to bottom: color v. stellar mass,
sSFR v. stellar mass, sSFR v. color, and radius v. stellar mass. The first column shows
the true distributions from TNG300. The second column shows the distributions
computed from the univariate distributions as predicted by NNClass–i.e., predicted
independently from each other. The third column shows the joint distributions as
predicted by NNClass. The gray shaded regions in the marginal plots correspond
to the TNG300 distributions, while the black solid lines correspond to the NNClass
predictions. The univariate distributions shown in the third column plots were
computed by marginalizing the joint distributions. Source: Reference (69).
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marginal plots from the third column, i.e.:

P (Yi) =

∫
P (Yi, Yj)dYj. (5.7)

The univariate distributions predicted by NNClass, shown in black solid lines in the
second-column plots of Figure 42, are in excellent agreement with the true distributions from
TNG300, shown in gray shaded regions. They also reproduce fairly well the joint distributions
P (Y1) ⊗ P (Y2) for most cases. The P (g − i) ⊗ P (sSFR) joint distribution, however, fails to
reproduce the shape of the distribution for redder colors and lower sSFRs. According to this
prediction, red galaxies could have virtually any value of sSFR, while what we actually observe
in TNG300 is that as galaxies move from the blue to the red the peak, their sSFRs decrease.
This important feature is recovered when NNClass is trained to predict P (g − i, sSFR) jointly
(third column in Figure 42).

Figure 43 – Distribution of halo-galaxy properties. Stellar-to-halo mass relation (top) and
galaxy size–halo mass relation (bottom) from the TNG300 catalog (left panels) and
from NNClass predictions (right panels). Source: Reference (69).

As a complementary analysis, in Figure 43 we show: the stellar-to-halo mass relation,
and the galaxy size–halo mass relation obtained with TNG300 and with P (M∗) and P (R

(∗)
1/2)

predicted by NNClass.

The above result indicates that our input halo properties alone are unable to predict
accurately the correlations between color and sSFR. The model would need additional features
in order to capture this relation (as observed in Section 5.3.3 or directly in Reference (65)). It is
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interesting, however, that we can overcome this limitation by predicting the joint distribution
directly using only the presented halo properties. This exercise indicates that, in order to
robustly assign galaxies to halos, with all the properties consistently correlated, the properties
should be predicted together (overall distributions which are way better than the ones presented
in Section 5.3.2.4 (65)). Note that, in principle, one could define galaxy populations based on
as many parameters as wished. Therefore, in the most general case, we would have an N -
dimensional distribution associated to each host halo.

5.4.2.2 K-S test for galaxy predictions

Table 6 – K-S test values for univariate (1D) and joint (2D) distributions computed with
the NNs and the baseline models.

1D KS P (Y ) Raw SMOGN 2D KS P (Y1)⊗ P (Y2) P (Y1, Y2) Raw SMOGN
P (M∗) 0.002 0.064 0.064 P (M∗, g − i) 0.010 0.005 0.183 0.163
P (g − i) 0.004 0.181 0.116 P (M∗, sSFR) 0.012 0.009 0.253 0.209
P (sSFR) 0.004 0.213 0.168 P (g − i, sSFR) 0.110 0.009 0.266 0.176
P (R

(∗)
1/2) 0.009 0.217 0.110 P (M∗, R

(∗)
1/2) 0.015 0.007 0.217 0.150

P (Mvir,M∗) 0.008 – 0.064 0.064
P (Mvir, R

(∗)
1/2) 0.012 – 0.217 0.110

Figures 42 and 43 allow for a visual inspection of the results. In order to quantify the
similarity between the distributions, we have performed the K-S test (see Section 5.2). The
results are shown in Table 6. For comparison, we also show the values obtained with our
baseline models, Raw and SMOGN, from Section 5.3 (65). Once again, we see that for most
cases the independent prediction of univariate distributions reproduce fairly well the joint
distributions, except for color and sSFR. In all cases, NNClass provides significantly lower
values as compared to Raw and SMOGN.

5.4.2.3 Single Value Estimation

We can also discuss the results of NNClass in terms of single-point estimation scores.
Since we do not have a single value associated to each data set instance, but a distribution, one
can sample several times from this distribution in order to estimate the most probable value,
and compute single-point estimation metrics with it. In practice, we take the average of the
number of realizations (r ∈ [1, 42]) of each predicted galaxy property, and calculate the PCC
between the true and estimated values (see Equation 5.3).

Figure 44 shows the PCC score as a function of the number of realizations and also
the values of the baseline models for the four galaxy properties. We sample from univariate
distributions P (Y ) instead of joint distributions. NNClass provides results comparable to
the single-point estimators Raw and SMOGN as the number of realizations increases, which
indicates that NNClass are also good maximum likelihood estimators.
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Figure 44 – PCC comparison for galaxy properties predicted by Raw, SMOGN, and
NNClass. The PCC values of the baseline models Raw and SMOGN are shown as
dotted and squared markers, respectively. Source: Reference (69).

5.4.3 Discussion and conclusions

Although there is an obvious relation between the baryonic and DM components of
halos, there is also mounting evidence that the properties of halos alone are insufficient to
reproduce the properties of galaxies, since the latter are shaped by a variety of galaxy-formation
processes. ML regression models are traditionally designed to reproduce single-value statistics,
and thus are ill-equipped to encode the intrinsic scatter in the halo-galaxy connection.

In order to alleviate the deficiencies of ML deterministic regression models, we have
tested a different approach for the first time in the context of the halo-galaxy connection. The
NNs are now trained to predict probability distributions instead of single-value statistics by
means of a binning classification scheme. In essence, the distributions of galaxy properties are
split into K narrow bins so that the NNs can associate a score to each of the K classes. This is
performed in such a way that the output can be used as a proxy for the probability distributions
of the central galaxy properties.

We have shown that this approach is in fact capable of producing bivariate distribu-
tions of galaxy properties, i.e., P (Y1, Y2), in outstanding agreement with those from TNG300
(here, {Y1, Y2} is any pair of galaxy properties). The predicted probability distributions yields
significantly better results compared with the deterministic approach of our previous work
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(see Subsection 5.3 and Reference (65)), as both a visual inspection and the 2D K-S test reveal.
As a reference, our 2D K-S test for the joint distributions P (Y1, Y2) yields performance results
that are better by factors of 10− 30 as compared to those reported in Reference (65) and in
Section 5.3.2.4. We have also checked that predicting jointly galaxy properties is particularly
advantageous for the color–sSFR joint distribution.

Finally, the comparison of the presented method with the two previous approaches (Raw
and SMOGN methods) using the single-value estimation shows that, after multiple realizations,
we achieve similar scores. This result indicates that NNClass behaves as an effective maximum
likelihood estimator. However, averaging over the sorted predictions does not accurately reflect
the overall distributions, failing to represent the true distribution for the TNG300 data set
and not yielding remarkable improvements in this regard. Nevertheless, this highlights the
flexibility of using the results from the presented method over single-value estimators: one can
select “single-values” from the predicted distributions by either randomly selecting a value
from it or by averaging (or applying any other statistic) over the sorted distribution values.
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6 FIELD-LEVEL LIKELIHOOD-FREE INFERENCE WITH GRAPH NEURAL NET-
WORKS

ΛCDM is the current standard model of Cosmology, describing well the evolution and
expansion of the Universe (see Section 2.1). This model elucidates how primordial density
perturbations in the early Universe were amplified by gravity, eventually leading to the forma-
tion of the large-scale structures observed today. To achieve this, the model relies on several
cosmological parameters that characterize the composition and other fundamental properties
of our Universe. One such parameter is Ωm, which quantifies the fractional energy density of
matter (both dark and baryonic matter). Obtaining accurate constraints for Ωm is crucial for
enhancing our understanding of the foundational physics governing the Universe.

Historically, statistics utilized to analyze the density and velocity fields of matter and
galaxies have served as valuable probes for determining Ωm (264, 304). This includes, e.g.,
the analysis of redshift-space distortions in galaxy redshift surveys, which arise from virial
and peculiar velocities deviating from the homogeneous cosmic flow (305). These distortions
significantly impact the statistical properties of galaxy clustering by breaking the symmetry
between distances across and along the line-of-sight direction. As a result, these anisotropies
directly probe the growth factor, which depends on Ωm, as described in References (306, 307).
In summary, the majority of these analyses consider the parameter constraints from large-
scales. On the other hand, examples such as considering the pairwise velocity metric defined
for galaxies and galaxy clusters as the peculiar velocity difference of pairs along their radial
separation vector demonstrate that valuable cosmological information is embedded on the
small scales (308, 309). However, there is a lack of techniques to precisely extract cosmological
information from small scales.

Traditional methods have been widely used to estimate Ωm. However, they often
encounter challenges due to the necessity of a summary statistics (which we still do not
know what of them contain all, or the majority, of the cosmological information (32–35))
and requirement for numerous realizations of computationally expensive simulations (36–40)
(as discussed in Sections 2.3.5 and 2.3.5.1). Recently, ML techniques have demonstrated good
performance compared to the traditional methods, sometimes even incorporating them (42).
Specifically, field-level likelihood-free inference1 methods operate by directly utilizing data from
simulations (forward models), bypassing the need for summary statistics, and then inferring a
posterior distribution over the parameters. Several studies have illustrated competitive results
achieved by these ML techniques in comparison to conventional statistical inference methods
(44–52).

1 The term “field-level” is used here to refer to the fact that the ML suite takes as input the galaxy
field, as opposed to feeding it with a summary statistic.



152

Specially attention has been directed towards GNN inferences (as discussed in Section
3.3.4) due to their ability to handle sparse and irregular data, without imposing restrictions on
considered physical scales. Moreover, GNNs readily incorporate various physical symmetries,
such as translational and rotational invariance, into their framework. For instance, researchers in
Reference (50) demonstrated that GNNs achieved approximately ∼ 10% accuracy in inferring
Ωm solely based on galaxy properties (e.g., positions, stellar mass, radius, and metallicity),
without the need for summary statistics and through likelihood-free inference. However, their
model exhibited a lack of robustness, which could be attributed to intrinsic disparities in
subgrid models across different simulations or the models learning specific numerical artifacts.
Conversely, when dealing with DM halos, authors in Reference (52) showed that positions and
velocities remained robust to numerical variations inN -body codes and changes in astrophysical
parameters when inferring Ωm using a field-level approach.

In this chapter, we demonstrate the utilization of galaxy and halos phase-space infor-
mation, reminiscent of historical concepts, to predict Ωm by converting it into graphs and
feeding GNNs. Our primary objective is to develop robust models. Section 6.1 outlines our
efforts working with galaxy catalogs, while Section 6.2 focuses on training the machinery on
halos and interpreting the GNN task into equations using SR. Furthermore, we delve into the
reasons behind the success of Astrid data set in Section 6.1.6.3.1. Finally, we extend our efforts
presented in Section 6.1 by incorporating real observational effects into the galaxy catalogs
and assessing their impact in Section 6.3. In this regard, the work presented in this chapter is
related to the background seen in Section 3.3.4. Additionally, the main achievements related to
this work are associated with the publications of References (71, 74, 310, 311).

The recent impact of these efforts on the scientific community is evident in the uti-
lization of GNNs to explore other astrophysical relations, such as the most important scales
to halo-galaxy connection (312). Authors have identified a critical scale of approximately 3

Mpc, with important environmental information at 10 Mpc, for IllustrisTNG, of 205 Mpc/h.
Another noteworthy development emerging as a competitive method subsequent to our find-
ings involves the application of ML to predict parameter inference on simulated data catalogs,
which incorporate the BOSS geometry and observational effects (313). In that work, the authors
employ CNNs to compress galaxy information, considering survey systematics, and integrate it
with Neural Posterior Estimation (NPE) to infer the cosmological parameters. Despite achieving
impressive predictions, their method remains dependent on scales, as it requires discretizing
the galaxy field to compress information within the CNNs.

6.1 Robust field-level likelihood-free inference with galaxies

In this section we showcase the achievements outlined in Reference (71). We train
GNNs to conduct field-level likelihood-free inference using galaxy catalogs sourced from hydro-
dynamic simulations of the CAMELS project. The data utilized in this endeavor is elaborated
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upon in Section 6.1.1, with data pre-processing detailed in Section 6.1.1.2, graph construction
methods are explained in Section 6.1.1.3, and the architecture of the GNN expounded upon in
Section 6.1.2. Our models exhibit the capability to infer the value of Ωm with approximately
12% precision, demonstrating robustness to variations in astrophysics, subgrid physics, and
subhalo/galaxy finder methodologies. These results will be presented and discussed in Sections
6.1.6 and 6.1.8. Additionally, we delve into an investigation of which galaxy properties remain
robust and elucidate their contributions to the network predictions. Remarkably, we find that
leveraging only the phase-space information of the galaxies yields the best results, as detailed
in Section 6.1.6.3.

6.1.1 Data

In this section, we describe the data we use to train, validate, and test our models. We
emphasize that all the galaxy properties considered in this work are direct from the simulations.
In this way, we are not performing any changes in order to consider realistic effects, such as
taking into account errors in the peculiar velocities. These considerations will be addressed in
Section 6.3.

6.1.1.1 Simulations

Table 7 – Characteristics of the hydrodynamical simulations.

Model Usage
Number of Mean number

Referencesimulations of galaxies
used per catalog

Astrid Train, validate & test 1000(LH) + 27(CV) 1114 (154)
SIMBA Train, validate & test 1000(LH) + 27(CV) 1093 (155)

IllustrisTNG Train, validate & test 1000(LH) + 27(CV) + 1024(SB) 737 (278)
IllustrisTNG300 Test 1(LH) 799 (281)
Magneticum Test 50(LH) + 27(CV) 3655 (157)

SWIFT-EAGLE Test 64(LH) 1255 (158)

The galaxy catalogs we use to train, validate, and test our models come from thou-
sands of hydrodynamic simulations of the CAMELS project (see Section 2.5.2) (314, 315). The
hydrodynamic simulations have been run with different codes that solve the hydrodynamic
equations differently and implement different subgrid models: IllustrisTNG (278,316), SIMBA
(155), Astrid (154), Magneticum (157), and SWIFT-EAGLE (158, 317). All the simulations
follow the evolution of 2563 DM particles and are initialized with 2563 fluid elements from
z = 127 down to z = 0 in periodic boxes of 25 h−1Mpc on a side. The catalogs used in this
work correspond to z = 0. The fiducial values of the cosmological parameters are: Ωm = 0.3,
Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.8, w = −1, Mν = 0 eV.
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The CAMELS simulations can be classified into different sets and suites depending
on how their parameters are arranged and which code was used to run them. We start by
classifying the catalogs into different sets:

• Latin Hypercube (LH). The simulations in this category have their cosmological and
astrophysical parameter variations arranged in a LH that spans: Ωm ∈ [0.1, 0.5] and
σ8 ∈ [0.6, 1.0], ASN1 ∈ [0.25, 4.0], ASN2 ∈ [0.5, 2.0], AAGN1 ∈ [0.25, 4.0], and AAGN2 ∈
[0.5, 2.0]. ASN and AAGN are astrophysical parameters that control the efficiency of SN
and AGN feedback (see References (311, 314) for a detailed description of the meaning
of the astrophysical parameters in every simulation suite). Each of the simulations in
the LH has been run with a different initial random seed for the generation of the initial
conditions. We used these simulations for training, validating, and testing.

• Cosmic Variance (CV). These simulations have been run with the fiducial value of the
cosmological and astrophysical parameters. The initial conditions for each simulation in
this set have been generated with a different initial random seed. These simulations are
only used for testing the models.

• Sobol Sequence (SB). The simulations in this set have their cosmological and astrophys-
ical parameters arranged in a Sobol sequence (318). A total of 28 parameters are varied:
5 cosmological (Ωm, Ωb, h, ns, σ8) and 23 astrophysical. The astrophysical parameters
varied include the usual ones (ASN1, ASN2, AAGN1, AAGN2) and incorporate many others
such as star formation, galactic winds, BH growth, and quasar parameters. All of them
vary in ranges around the fiducial values used in the IllustrisTNG set. Their range of
variation is large enough to enable a broad sampling of the considered parameter (311). We
note that this set covers the largest region in parameter space within CAMELS although
at a much lower density given the high dimensionality of the considered space. We use
these simulations only for testing and to investigate how well our models generalize.

The CAMELS simulations can also be classified into different model suites according to
the code used to run them (different subgrid physical models–see Section 2.5.2):

• IllustrisTNG. These simulations were run using Arepo (319, 320) applying the same
subgrid physics as the IllustrisTNG simulations (278, 316). This suite contains 1, 000
LH, 27 CV, and 1, 024 SB simulations2.

• SIMBA. These simulations were run with the Gizmo code (321) and employ the same
subgrid physics as the SIMBA simulation (155). This suite contains 1, 000 LH and 27 CV
simulations.

2 Note that, in the work of Section 6.3, we had access to the new SB28 suite which contains 2, 048
realizations for the SB set.
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• Astrid. These simulations were run using MP-Gadget (322) applying some modifica-
tions to the subgrid model employed in the Astrid simulation (154, 311, 323). This suite
contains 1, 000 LH and 27 CV simulations.

• Magneticum. These simulations were run with the parallel cosmological Tree-PM
code P-Gadget3 (324), employing subgrid physical models according to the References
(163, 325–334). The set contains 50 LH and 27 CV simulations.

• SWIFT-EAGLE. These simulations have been run with the Swift code (317,335) using a
new subgrid physics model based on the original Gadget-EAGLE simulations (158, 336),
with some parameter changes (337). This suite contains 64 LH simulations.

Finally, to quantify the robustness of our model to super-sample covariance effects,
we made use of the IllustrisTNG300-1 simulation (281), which covers a larger volume of
(205 h−1Mpc)3 with slightly higher resolution than our fiducial CAMELS simulations and
has a slightly different cosmology: Ωm = 0.3089, Ωb = 0.0486, ΩΛ = 0.6911, h = 0.6774,
σ8 = 0.8159, and ns = 0.9667. This simulation was run with Arepo and made use of the
IllustrisTNG subgrid physics model (278, 282–284, 338, 339).

We emphasize that although the name of the parameters ASN1, ASN2, AAGN1, AAGN2

is common among different simulations, their actual implementation and effect on galaxy
properties and clustering can be very distinct. Therefore, it is important to keep in mind that
those parameters are not meant to share physical effects, only their names.

6.1.1.2 Galaxy catalogs

Halos and subhalos are identified in the simulations for every snapshot using two
different halo and subhalo finders: SubFind (134, 135) and VELOCIraptor (137, 138) (see
Section 2.5.1.8). All galaxy catalogs are from SubFind with the exception of SWIFT-EAGLE,
which only contains VELOCIraptor catalogs. The reason for using two different codes is to
check the robustness of our results to the subhalo finding procedure, which can cause some
differences in the number of galaxies and resolving substructures as shown in References
(132, 133).

Galaxies are defined in all cases as subhalos that contain at least one star particle. In this
work, we only consider galaxies with stellar masses above 1.3× 108 M⊙/h. A galaxy catalog
is constructed by taking all galaxies whose stellar mass is higher than a given threshold. For
every simulation, we produce several galaxy catalogs by varying the stellar mass threshold.

A summary of the simulation characteristics can be found in Table 7, where we present
their usage, the number of catalogs, the mean number of galaxies per catalog and the reference
for each of the original galaxy formation models.
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6.1.1.3 Galaxy graphs: construction

The input for our GNNs are the galaxy catalogs converted to graphs (see Section 3.3.4.1).
We construct the graphs with the galaxy positions and their peculiar velocities (only the z

component); in some models, we also include the stellar mass of the galaxies.

We follow the method presented in Reference (50) (and used in References (52) and
(51) for halos) where galaxies represent the graph nodes and two galaxies are connected by an
edge if their distance is smaller than a given linking radius rlink. As presented in Section 3.3.4.1,
a similar approach could involve taking into account the k nearest neighbors for each node,
to link them. However, for this particular application, it might overlook some neighbors in a
clustered region that should be connected, while including others that are much farther away,
and thus should have less influence on the node. We have verified that the performance slightly
decreases when using this approach instead of considering nodes within a certain distance.
Additionally, we use as a global property of the graph the logarithm of the number of galaxies
in the graph: log10(Ng)

3.

We investigate the contribution of the z component of the galaxy’s peculiar velocities
vz and the stellar mass M⋆ as node attributes. We transform these features according to:

vz → sign(vz) · log10 [1 + abs(vz)] , (6.1)

M⋆ → log10(1 +M⋆) . (6.2)

We chose to work with only one component for the galaxy velocity. This is because we want to
be as close as possible to observational data, where we have access only to the radial peculiar
velocity, i.e., the velocity measured along the line of sight.

The edge features contain information about the spatial distribution of galaxies (their
positions), and those properties are designed to make the graph invariant under rotations and
translations. We follow Reference (50) and set the edge features as:

eij =

[
|dij|
rlink

, αij, βij

]
= [γij, αij, βij] , (6.3)

where

dij = [ri − rj] , (6.4)

δδδi = ri − c, (6.5)

αij =
δδδi
|δδδi|

· δδδj
|δδδj|

, (6.6)

βij =
δδδi
|δδδi|

· dij

|dij|
, (6.7)

γij =
|dij|
rlink

, (6.8)

3 We have checked that including the number of galaxies as global feature yields slightly better results.
For that reason, we keep that property.
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with ri representing the position of a galaxy i and c =
∑N

i ri/N being the centroid. Here, the
distance dij is the difference of two galaxy (i and j) positions, the difference vector δδδi denotes the
position of a galaxy i with respect to the centroid, αij is the (cosine of) the angle between the
difference vectors of two galaxies, while βij represents the angle between the difference vector
of a galaxy i and its distance to another galaxy j. We account for PBC when computing both
distances and angles. Moreover, we consider reverse edges and we do not consider self-loops.
Note that, by construction, the model is rotational and translation invariant, as those operations
will not change the edge features of the graph. In other words, they will remain the same while
performing the usual rotation and translational matrix transformations to the galaxy positions
(50).

In Figure 45 we show graphs constructed from galaxy catalogs of the different simu-
lations: Astrid, SIMBA, IllustrisTNG, SB28, Magneticum, and SWIFT-EAGLE. All these
catalogs contain galaxies with minimum stellar mass: M⋆ = 1.95×108 M⊙/h. In all the graphs
galaxies are colored according to their vz (transformed according to Equation 6.1), and two
galaxies are connected by a black line if their distance is within rlink ≃ 1.25 h−1Mpc (this
value was found with Optuna, as it will be described in Section 6.1.4). Notice that we are not
connecting galaxies which are linked due to the PBC in this representation, i.e., a galaxy near
the border of the box is not showing to be connected to some other galaxy in the other box
extreme, even when they are linked due to these conditions. This simple visual comparison
shows that the spatial distribution of galaxies and their peculiar velocities are similar among
all simulations. We note that the graph constructed from the Magneticum simulation exhibits
a significantly larger number of galaxies than the others; this happens due to the employed
AGN model used in Magneticum.

Every graph is characterized by a set of labels that we aim at inferring (Ωm). We
normalize these labels as θi, using

θi →
(θi − θmin)

(θmax − θmin)
, (6.9)

where θmin and θmax represent the minimum and the maximum values of the corresponding
parameter.

In Figure 46 we compare the number of galaxies in the LH catalogs for the different
CAMELS simulations, considering a threshold in stellar mass as M⋆ = 1.95 · 108 M⊙/h. In
almost all the cases the mean number of galaxies is ∼ 1, 000, being a bit lower (∼ 700) for
IllustrisTNG and its variation SB28, and dramatically higher (∼ 3, 600) for Magneticum. Also,
we can see that Astrid includes catalogs with a huge range of galaxy number (N ∈ [30, 5, 000]),
while the SIMBA and IllustrisTNG LH sets are much narrower (the same follows for SB28,
with a higher dispersion of galaxy number, but not so broad as in Astrid). Finally, the range
of the number of galaxies for Magneticum is N ∈ [1, 000; 5, 500], including catalogs with
such a large number of galaxies that do not have equivalent simulations in the SIMBA and
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Figure 45 – Examples of graphs constructed from galaxy catalogs from different
CAMELS simulations. We present graphs of Astrid, SIMBA, IllustrisTNG,
SB28, Magneticum, and SWIFT-EAGLE. The nodes represent the galaxies and their
colors correspond to the normalization (Equation 6.1) of the z component of their
peculiar velocity. Galaxies are connected by edges (shown as black lines) if their
distance is smaller than rlink ∼ 1.25 h−1Mpc. We stress that we are not connecting
the galaxies which are linked due to PBC in these plots. Source: Reference (71).
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Figure 46 – Comparison of the number of galaxies per LH catalog in CAMELS sim-
ulations. We present the results for Astrid (top left), SIMBA (top middle), Il-
lustrisTNG (top right), SB28 (bottom left), Magneticum (bottom middle), and
SWIFT-EAGLE (bottom right). The horizontal lines correspond to the mean number
of galaxies per simulation. Source: Reference (71).

IllustrisTNG data sets. As mentioned in Section 6.1.1.3 the large number of galaxies in
Magneticum is related to the particular feedback model employed in those simulations.

The distances and the number of edges among the galaxies belonging to different
catalogs were also investigated, as well the percentage of single galaxies per catalog. As
expected, the distances among galaxies cover a range d ∈ [10−2, 21.65] h−1 Mpc. All the
catalogs have a similar shape in their spatial distributions, with small differences on small
scales. Single galaxies (the ones which are not connected to any other, and therefore only
contribute to the propagation of their node information), on average, do not correspond to
more than ∼ 20% of the galaxies in the catalogs. This means that most of the information of
the galaxies came from their connections (i.e. clustering properties). The number of edges per
catalog is of order ∼ 10, 000, indicating that most galaxies have ∼ 10 connections. Finally, the
rlink found in all the models, for all different CAMELS sets in the hyperparameter training
optimization, was around 1.25 h−1Mpc.

6.1.2 GNN architecture

The architecture we employ in this work follows the one presented in CosmoGraphNet4

(50). We have used a message passing scheme where each message passing layer updates the
node and edge features (see MetaLayer block and Equations 3.11, 3.12, and 3.13 in Section
4 Available on Github repository https://github.com/PabloVD/CosmoGraphNet, DOI: 10.5281/zen-

odo.6485804.

https://github.com/PabloVD/CosmoGraphNet
https://doi.org/10.5281/zenodo.6485804
https://doi.org/10.5281/zenodo.6485804
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3.3.4.2.1). The number of layers to perform this update is a hyperparameter to be chosen in
the optimization scheme. We also made use of residual in the intermediate layers. The use of
residuals means adding the input of the layer to its respective output, i.e., adding node/edge
attributes to node/edge models. A discussion about this use can be found in References (340)
and (50).

Once the graph has been updated using the N message passing layers, we collapse it
into a 1-dimensional feature vector using

y = F

([⊕
i∈F

nN
i ,g

])
, (6.10)

where F is the last MLP, ⊕i∈F the last multi-pooling operation (done exactly according to
Equation 3.13, but operating over all nodes in the graph F), and y represents the target of the
GNN (e.g. Ωm).

All the MLP are constructed by a series of fully connected layers with ReLU activation
function (except for the last layer, which does not employ an activation function). The number
of layers, the number of neurons per layer, the weight decay, and the learning rate were
considered as hyperparameters. The implementation of all the architectures presented in this
work was done using PyTorch Geometric (222).

6.1.2.1 Variations of the architecture

In Section 6.1.6.3 we investigate whether the information of our model is due to clus-
tering, the distribution of velocities, or both. For that test, we made use of slightly different
architectures to the one outlined above. Their main differences are:

• Galaxy positions. This model is used to quantify how much information is coming
from the clustering of galaxies, i.e., it only uses galaxy positions. For that reason, the
graphs only contain edge features (in the same way outlined above) and no node features.
Because of this, the first layer of the model operates in a slightly different way, updating
the edge and node models according to Equations 3.20 and 3.21, respectively (see Section
3.3.4.3.2). Note that other layers operate in exactly the same way as described in Equations
3.11-3.12.

• Galaxy velocities. This model is used to quantify how much information is coming from
the distribution of galaxy velocities. Therefore, the graphs do not contain any spatial
information and we can use deep sets (227) architecture (see Section 3.3.4.3.1). In this case,
we only have a node model according to Equation 3.19.

No matter the variation in the architecture, the target quantity is computed using Equation
6.10.
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6.1.3 Likelihood-free inference and the loss function

Our models are a mix of a GNN together with a MNN (see Section 3.4.1). So, they are
trained to infer the value of a given parameter (Ωm) by predicting the marginal posterior mean
µi and standard deviation σi without making any assumption about the form of the posterior.
We do this following a modified loss function according to the Equation 3.25 (232).

We note that we will be referring to the error of the model as the quantity described
above σi. This error only represents the aleatoric error, and therefore does not include the
epistemic one, i.e., the error intrinsically related to the ML model (see Section 3.1). We have
quantified the magnitude of the epistemic errors by training 10 different models with the same
value of the hyperparameters (the best ones for the considered setup) and calculating the
variance between the predictions of the models. We find that error to be 10× smaller than the
aleatoric one. Therefore, from now on, we will only report aleatoric errors since they dominate
the total error budget.

6.1.4 Training procedure and optimization

We train our models on graphs constructed from galaxy catalogs of the LH sets of a given
suite (e.g. the LH set of the Astrid simulations). We initially split the 1, 000 LH simulations into
training (850 simulations), validation (100 simulations), and testing (50 simulations). For each
simulation, we generate 10 galaxy catalogs constructed by taking all galaxies with stellar masses
larger than 1.3R× 108 M⊙/h, where R is a random number uniformly distributed between 1

and 2. This strategy is made in order to marginalize over different minimum threshold values
for stellar masses, as well to increase the number of catalogs used to train the models5. For
each catalog, we produce a graph as outlined in Section 6.1.1.3.

We then train the models utilizing the above architecture for 300 epochs making use
of Adam optimizer (203) to perform the gradient descent, and a batch size of 25 samples. The
hyperparameter optimization (where we have used the learning rate, the weight decay, the
linking radius, the number of message passing layers, and the number of hidden channels per
layer of the MLPs) was carried out using the Optuna package (243) to perform a Bayesian
optimization with TPE (244) (see Section 3.5.4). We made use of at least 100 trials to perform this
task and we directed Optuna to minimize the validation loss, computed using an early-stopping
scheme, in order to save only the model with the minimum validation error. The selected model
was used for test subsequently.

5 A similar trick was used in Reference (52), where the authors employed an augmentation in the halo
catalogs, choosing them according to a minimum number of DM particles as a threshold. Authors
from Reference (310) also made use of this method.
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6.1.5 Performance Metrics

We quantify the accuracy and precision of our models using different metrics that we
describe below. We consider the true value of the parameter in question for graph i as θi, while
we denote as µi and σi the prediction of the network for the posterior mean and standard
deviation, respectively.

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(θi − µi)
2. (6.11)

Low values of the RMSE indicate the model is precise.

• Coefficient of determination:

R2 = 1−
∑N

i=1 (θi − µi)
2∑N

i=1

(
θi − θ̄i

)2 , (6.12)

where θ̄i =
1
N

∑N
i=1 θi. Values close to 1 indicate the model is accurate.

• Pearson Correlation Coefficient (PCC):

PCC =
cov (θ, µ)
σθσµ

. (6.13)

This is the same PCC as the one presented in Equation 5.3, but in terms of this work.

• Bias:

b =
1

N

N∑
i=1

(θi − µi) . (6.14)

This statistic quantifies how much the inferences are “biased” with respect to the truth
values; better values are close to 0.

• Mean relative error:

ϵ =
1

N

N∑
i=1

|θi − µi|
µi

. (6.15)

Low values of this statistic indicate the model is precise.

• Reduced chi squared:

χ2 =
1

N

N∑
i=1

(
θi − µi

σi

)2

. (6.16)

This statistic quantifies the accuracy of the estimated errors. Values of χ2 close to 1

indicate the magnitude of the errors (posterior standard deviation in our case) is properly
inferred, while values larger/smaller than 1 indicate the model is under/over predicting
the errors.
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We make use of these statistics to quantify the accuracy, precision, and bias of a given
model in the test set. Note that in some cases we omit to report the value of some of these
statistics for clarity, or when the statistics are not well defined (e.g. when tested on the CV set).

6.1.6 Results

In this section we present the main results of testing our GNN models on galaxy catalogs
with different cosmologies, astrophysical parameters, and subgrid physic models from the
catalogs used for training. We start by showing the results of our best model, which only
needs 3D galaxy positions and 1D velocity components, in Section 6.1.6.1. We then attempt to
increase the precision of the model by adding more galaxy properties, particularly stellar mass,
in Section 6.1.6.2. Next, we investigate the origin of the information extracted by our models in
Section 6.1.6.3.

Note that we focus our analysis entirely on Ωm. This is because our constraints on σ8

are very weak. We provide further details on this in Section 6.1.7. All results below are shown
for catalogs built with galaxies with a minimum value of stellar mass as M⋆ = 1.95 · 108 M⊙/h,
a value right in the middle of the threshold used in our training criteria6.

6.1.6.1 Positions & velocities

We start by showing the results of training GNNs on catalogs that only contain the
positions and velocities (solely the z component)7 of galaxies to infer the value of Ωm. We have
trained models using galaxy catalogs from the LH sets of the Astrid (and present the results
in Section 6.1.6.1.1), IllustrisTNG, and SIMBA (with results presented in Section 6.1.6.1.2)
simulations. We then test these models on all other galaxy catalogs not included in their training
set.

6.1.6.1.1 Astrid results

We found that the model trained on Astrid galaxy catalogs exhibits the best extrapola-
tion properties. The success of the model trained on Astrid can be associated with:

1. The variety in the number of galaxies along the Astrid catalogs in LH sets, which vary
from small to large numbers of galaxies (N ∈ [30; 5, 000]–see more details in the Section
6.1.1.3 and Figure 46).

2. Astrid produces larger variations in some galaxy properties given the parameter varia-
tions in the LH set (see Section 6.1.6.3.1) (311).

6 We have checked that our results are not very sensitive to the particular stellar mass cut we take, as
long as we are not very close to the training boundaries.

7 Due to homogeneity and isotropy, the results presented choosing the z component of the velocity
are equivalent to choosing either x or y ones.
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Figure 47 – Ωm predictions for a model trained on Astrid, using galaxy positions and
velocities in the z direction. We present the results for a model trained on Astrid
and tested on Astrid (top left), SIMBA (top middle), IllustrisTNG (top right),
SB28 (second row left), Magneticum (second row right), and SWIFT-EAGLE (third
row). The bottom panel shows the results of testing on CV sets of Astrid, SIMBA,
IllustrisTNG, and Magneticum. Source: Reference (71).

In addition, we trained a model on SB28 set (to check if the wide range in number of galaxies,
presented on SB28 catalogs as well, was the main reason of the success of the model–see Figure
46). Although, the model does not show good predictions when tested on the other simulations.
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In Figure 47 we show the results of testing the model on galaxy catalogs from the LH
sets of Astrid (top left), SIMBA (top middle), IllustrisTNG (top right), SB28 (second row left),
Magneticum (second row right), and SWIFT-EAGLE (third row). In all these plots (apart from
SB28 and SWIFT-EAGLE) we present the average (of their mean and standard deviation) across
all of their CV boxes as a black point at Ωm = 0.3. The results of testing the model on galaxies
catalogs from the CV set of the different suites are shown in the bottom panel. Note that for
clarity we only show 50 randomly selected samples of the predictions for all the LH results8.
We stress that even if we only show the results for 50 random catalogs, the numbers reported
for the different performance metrics (e.g. RMSE) are evaluated using all catalogs in the test set
(e.g. 1, 000 catalogs for IllustrisTNG).

When using the model trained on Astrid and testing it on itself, we find that the GNN is
able to infer Ωm with RMSE = 0.043, R2 = 0.835, PCC = 0.923, b = −0.0091, ϵ = 11.8%,
and χ2 = 1.647. These numbers indicate the model is accurate, precise, unbiased, and its
errors are only slightly under predicted9. While testing that model on the other simulations
the performance metrics are in the ranges: RMSE ∈ [0.015, 0.047], R2 ∈ [0.821, 0.934],
PCC ∈ [0.917, 0.967], b ∈ [−0.0010, 0.0161], ϵ ∈ [4.0, 13.1]%, and χ2 ∈ [0.249, 2.383],
showing that the model extrapolates very well, as can also be seen in Figure 47. Note that the
model performs best on SIMBA and SWIFT-EAGLE, and worst on SB28. This indicates that,
while the model is generally robust, even when tested on SB28, it becomes increasingly difficult
to extrapolate predictions over distant regions in parameter space.

We have included a test using IllustrisTNG300 box in order to estimate the importance
of super-sample covariance effects. Basically, the lack of power on scales larger than our boxes
can affect both the abundance and clustering of galaxies (90,341–343). We find that our method
can partially account for these effects. We provide further details in Section 6.1.6.1.3.

We now discuss the performance of the model on galaxy catalogs from the CV set. We
find that our model works better when tested on the CV catalogs compared to the LH and SB
sets. This could be due to the fact that the cosmology and astrophysics of those models lie
exactly in the center of the training set. Those configurations are less prone to biased results,
although it is interesting to observe that cosmic variance effects are not the main contribution
to the error budget. Finally, all the different simulations end up with differences lower than 5%

8 In the case of Astrid we only have 50 samples in the test set since the majority of the LH set was
used for training.

9 To show the scores for the best model while testing it on Astrid and Magneticum, we removed
respectively 1 and 4 predictions that correspond to a χ2 larger than 14.0. They are points in the
test set that achieved this bad inference and that we call “outliers”. Outliers not only because of
the bad scores but mainly because they correspond to particular realizations in the LH set with
extreme values for the astrophysical parameters, which are realizations far away from the fiducial
model. We do not follow this procedure in the other models (apart from the best model, trained on
Astrid using only galaxy positions and z component of the velocity) because they end up with a
huge number of “bad” predictions, not only in the matter of fact to this issue.
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(apart from some boxes of Astrid or SIMBA, where we achieve differences {truth - inference}
up to 10%) for the best model, once again being accurate, precise, and without bias.

6.1.6.1.2 SIMBA and IllustrisTNG results

Figure 48 – Ωm predictions for a model trained on SIMBA and IllustrisTNG, using
galaxy positions and velocities in the z direction. We present the results for LH
set tests of a model trained on SIMBA (on the left) and IllustrisTNG (on the right)
and tested on Astrid, SIMBA, IllustrisTNG, SB28, and Magneticum respectively
from the top to the bottom. Source: Reference (71).

Figure 49 – Ωm predictions on SWIFT-EAGLE for a model trained on SIMBA and Illus-
trisTNG, on LH set, using galaxy positions and velocities in the z direction.
We present the results for a model trained on SIMBA (on the left) and IllustrisTNG
(on the right) and tested on SWIFT-EAGLE. Source: Reference (71).

Here we present similar results to the ones presented in Section 6.1.6.1, for models
trained using SIMBA and IllustrisTNG data sets. We stress that the GNN architecture follows
the same structure as the one used in the best model (but with a different set of hyperparameters,
also found using Optuna).

All the results are presented in Figures 48, 49 and 50, where we plot the values for
{truth - inference} in the y-axis, while the x-axis shows either the truth values of Ωm or an
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Figure 50 – Ωm predictions for a model trained on SIMBA and IllustrisTNG, on CV set,
using galaxy positions and velocities in the z direction. We present the results
for CV set tests of a model trained on SIMBA (on the left) and on IllustrisTNG (on
the right) and tested on Astrid, SIMBA, IllustrisTNG, SB28, and Magneticum.
Source: Reference (71).

arbitrary order of the predictions by simulation suite. The metrics for the models trained
on SIMBA/IllustrisTNG and tested on themselves are very good (even compared to the
best model): RMSE = [0.030, 0.031], R2 = [0.911, 0.928], PCC = [0.960, 0.968], b =

[0.0041, 0.0062], ϵ = [7.9, 9.7]%, and χ2 = [1.422, 1.811]. However, all the tests on the other
simulations are worse: RMSE ∈ [0.018, 0.190], R2 ∈ [−2.922, 0.885], PCC ∈ [0.252, 0.963],
b ∈ [0.0059, 0.1384], ϵ ∈ [4.6, 46.1]%, and χ2 ∈ [0.424, 681.821]. The worst predictions show
up when the networks are tested on Magneticum (both, for the model trained on SIMBA and
IllustrisTNG, but being worse for the latter). The tests on SWIFT-EAGLE and in the CV sets
show that the scores are, in most cases, a bit worse compared to the best model (when we train
the model using Astrid).

Our results suggest that the very poor predictions for Magneticum are due to the fact
that the models trained on SIMBA and IllustrisTNG have never seen catalogs with such a high
number of galaxies, which is the case for Magneticum catalogs (see Section 6.1.1.3, specially
Figure 46, which shows that Astrid covers a large range of number of galaxies when compared
to SIMBA and IllustrisTNG). We have tested to increase the stellar mass cut in Magneticum
catalogs and have obtained better predictions (comparable to the same models tested on the
other catalogs apart themselves) while using the models trained on SIMBA/IllustrisTNG. This
shows that reducing the number of galaxies in Magneticum catalogs improves their inferences
significantly. Therefore, although the number of galaxies is not the most important property in
the analysis, we can clearly see their effect on the model predictions while taking a look at
these results.

Finally, in contrast to the robust model that was trained using Astrid, the inferences
from the models trained using SIMBA and IllustrisTNG are, unfortunately, not robust across
different simulations.

6.1.6.1.3 Super-sample covariance analysis

We start noticing that our 25 h−1Mpc boxes have a mean overdensity, ⟨ρ/ρ̄⟩ = 1. In the
real Universe, (25 h−1Mpc)3 patches will not satisfy that equality, and values larger or smaller
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Figure 51 – Ωm predictions for a model trained on Astrid (with PBC), using galaxy
positions and velocities in the z direction and tested considering PBC. We
present the results for a model trained on Astrid and tested on: (1) 50 random
(25 h−1Mpc)3 sub-volumes of the IllustrisTNG300 simulation (on the left) and (2)
Astrid (on the right). In both cases the model was trained considering the PBC
and tested without this consideration. Source: Reference (71).

will appear due to the presence of power on modes larger than the size of that region. Those
modes are expected to affect both the clustering of galaxies and their internal properties. Here
we investigate whether such effects will affect our models. To test this, we made use of the
IllustrisTNG300-1 simulation, which covers a periodic volume of (205 h−1Mpc)3 at a slightly
higher resolution than the CAMELS simulations.

We have selected 50 random (25 h−1Mpc)3 sub-volumes within the IllustrisTNG300
box, taking the galaxies in those sub-volumes and constructed graphs to input into our model.
It is important to note that we have turned off the PBC when constructing the graphs, due to
the fact that the distribution of galaxies is not periodic within the sub-volumes. The results
of testing our model with these galaxy catalogs are shown in Figure 51. We can see that the
inferences for the IllustrisTNG300 catalogs have a positive bias of b = 0.0432 and the different
estimations fluctuate around an offset that we indicate as Min χ2

TNG300. This value represents
the χ2 minimization considering the IllustrisTNG300 inferences.

In order to check if this offset can be an effect of turning off the PBC we have tested
the model on Astrid galaxy catalogs whose graphs have been constructed neglecting PBC.
The results are presented in the right panel of Figure 51. We can see that we find almost the
same offset for these new predictions.

Given the large effect that the PBC have on our results, we have retrained the GNN
model on Astrid galaxy catalogs whose graphs are constructed without using PBC. We then
test that model on galaxy catalogs from 100 random sub-volumes of the IllustrisTNG300
simulation. The results are presented in Figure 52. We can see that the inferences do not
exhibit good scores: RMSE = 0.089, b = −0.0073, ϵ = 24.8%, and χ2 = 34. Even though, all
the predictions fluctuate around the true values, indicating that we may have outliers. After
removing predictions related to χ2 > 14.0 (35 points) we achieve better results that follows
for: RMSE = 0.059, b = −0.0118, ϵ = 16.6%, and χ2 = 4, 0.

From these results, we conclude that our method is not severely affected by super-
sample covariance in the majority of the cases, although it does not work in all scenarios. We



169

Figure 52 – Ωm predictions for a model trained on Astrid (without PBC), using galaxy
positions and velocities in the z direction and tested removing PBC. We
present the results for a model trained on Astrid and tested on 100 random
(25 h−1Mpc)3 sub-volumes within IllustrisTNG300. This specific model was
trained without the PBC and tested without this too. Source: Reference (71).

note that the fraction of outliers (i.e. cases where the model performs badly) is much higher in
this test case than in, e.g., SB28 simulations.

6.1.6.2 Positions, velocities, and stellar mass

We now investigate whether we can make our model more precise, while keeping it
robust, by considering an additional galaxy property: stellar mass. For this, we construct graphs
in the standard way (as described in Section 3.3.4.1) but taking as node features both velocity
and stellar mass: [vz,M⋆] (properties normalized as described in Section 6.1.1.3). We then train
GNN models using catalogs from the Astrid LH set.

We present the results in Figure 53. When testing the model on galaxy catalogs from the
Astrid LH set we find that the results improved for almost all the metrics: RMSE = 0.039,
R2 = 0.863, PCC = 0.936, b = −0.0090, ϵ = 9.62%, and χ2 = 1.849, which means that
the GNN was able to extract more information from the catalogs. On the other hand, when
testing the model on the galaxy catalogs from the other simulation suites the scores worsen:
RMSE ∈ [0.032, 0.077], R2 ∈ [0.238, 0.926], PCC ∈ [0.902, 0.966], b ∈ [0.0096, 0.0651],
ϵ ∈ [10.7, 20.7]%, and χ2 ∈ [2.825, 14.167]. In other words, the model has become more
precise when tested on itself, at the expense of becoming less accurate, when tested on other
simulation sets. It is worth noting that some metrics actually improved when tested on galaxy
catalogs from Magneticum, as seen in Figure 53. It is not clear to us what could be the
explanation behind this: whether it is either a coincidence or due to the fact that galaxies
in Astrid and Magneticum are more alike somehow while considering this specific galaxy
property.

Additionally, our results are in agreement with those of Reference (50) who performed a
similar analysis with galaxy catalogs whose node features were the maximum circular velocity,
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Figure 53 – Ωm predictions for a model trained on Astrid, using galaxy positions,
velocities in the z direction, and stellar mass. We present the results for a
model trained on Astrid and tested on Astrid (top left), SIMBA (top middle),
IllustrisTNG (top right), SB28 (second row left), Magneticum (second row right),
and SWIFT-EAGLE (third row). The bottom panel shows the results of testing on
CV sets of Astrid, SIMBA, IllustrisTNG, and Magneticum. Source: Reference
(71).

the stellar mass, the galaxy radius, and the star metallicity. While the model of those authors
was more precise than ours (likely due to the use of additional galaxy properties), it was not
robust. However, our models are slightly more robust; we believe this could be due to the fact
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that we use catalogs with different stellar mass thresholds to train the models, which overcomes
the differences due to the fact that we are marginalizing over different stellar mass thresholds.
This conclusion agrees with what authors from Reference (52) have found using the same idea
of marginalization over an augmentation technique.

We reach similar conclusions when testing our models on galaxy catalogs from simula-
tions of the CV sets (see the last panel of Figure 53), especially noticing that we have obtained a
bias in the predictions for the different simulations. We emphasize the importance of testing the
models on simulations as diverse as possible. Should we only have galaxy catalogs from Astrid
and Magneticum simulations, we could reach the wrong conclusion that the model was both
more precise and accurate than the one constructed using only positions and velocities.

6.1.6.3 Where does the information come from?

We now investigate where the information from our robust model (discussed in Section
6.1.6.1) comes from. Since in that model we only made use of galaxy positions and velocities,
there are only three possibilities:

1. The information is coming from the positions of galaxies (clustering).

2. The information is coming from the distribution of galaxy velocities.

3. The information is coming from both positions and velocities.

Note that we are not considering attributing the importance to the level of information coming
from the number of galaxies in the catalogs because: a) as mentioned in the Footnote 3, this
global property only improved slightly the results, and b) we do not have a considerable number
of catalogs with the same number, or even with the same range of the number, of galaxies (see
Section 6.1.1.3). This last reason should result in worse predictions due to the lack of data to
train the machinery and would not allow to test it in all the different subgrid physics models
(which is the case of Magneticum, which only contains boxes with thousands of galaxies–see
again Section 6.1.1.3).

In order to address the first possibility we have made use of graphs where the nodes do
not contain any property. We train the model on Astrid, using the first slightly different GNN
architecture described in Section 6.1.2.1: galaxy positions, i.e., using the prescription presented
in Equations 3.20-3.21 for the first message passing layer. We then test the model on different
graphs from different simulation suites. The results are presented in Figure 54, following
the same scheme as Figure 47. In all the tests the results are visibly worse (with large error
bars) and significantly biased (when extrapolating to the other simulations). More specifically,
we found: RMSE ∈ [0.084, 2.230], R2 ∈ −[0.680, 0.063], PCC ∈ [−0.349, 0.854], b ∈
[−0.5305, 0.0467], ϵ ∈ [24.3, 483.2]%, and χ2 ∈ [9.957, 70.730]. While testing the model in the
CV sets we found a low performance for all the metrics analyzed, with larger error bars. Our
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Figure 54 – Ωm predictions for a model trained on Astrid, using only galaxy positions.
We present the results for models trained on Astrid and tested on Astrid (top left),
SIMBA (top middle), IllustrisTNG (top right), SB28 (second row left), Magneticum
(second row right), and SWIFT-EAGLE (third row). The bottom panel shows the
results of testing on CV sets of Astrid, SIMBA, IllustrisTNG, and Magneticum.
Source: Reference (71).

results are qualitatively in agreement with those of Reference (50), who performed a similar
analysis but with galaxy catalogs with a fixed stellar mass threshold and did not use Astrid
as the training set. From this test, we conclude that the network cannot be extracting the
information just from galaxy clustering.
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Figure 55 – Ωm predictions for a model trained on Astrid, using only galaxy velocities.
We present the results for a model trained on Astrid and tested on Astrid (top left),
SIMBA (top middle), IllustrisTNG (top right), SB28 (second row left), Magneticum
(second row right), and SWIFT-EAGLE (third row). The bottom panel shows the
results of testing on CV sets of Astrid, SIMBA, IllustrisTNG, and Magneticum.
Source: Reference (71).

Next, we train a deep set model (see the second model presented in Section 6.1.2.1:
galaxy velocities) on galaxy catalogs that only contain the z component of the galaxy velocities
(i.e. there are no galaxy positions) and, then, we employed Equation 3.19. We used Astrid
simulation to train the model. Figure 55 displays the results. Also in this case we find that the
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model performs poorly: RMSE ∈ [0.019, 0.082], R2 ∈ [0.084, 0.359], PCC ∈ [0.715, 0.845],
b ∈ −[0.0398, 0.0010], ϵ ∈ [5.8, 26.3]%, and χ2 ∈ [0.066, 8.893]. These results are distinct
from what authors of Reference (50) found (while using a deep set as well), whose scores were
comparable to the ones from the GNN. Note that those authors used more galaxy properties
and we only use the 1D velocity component. The results for catalogs of the CV sets have large
error bars and poor values for all the metrics. We then conclude that galaxy velocities can not
be alone the origin of the information extracted by the network.

The above tests indicate that the network is making use of both positions and velocities
to infer the value of Ωm. Another important point to highlight is that the models trained on
galaxy positions alone and galaxy velocities alone, although not very precise, seem to also not
be robust. This may indicate that the model that uses galaxy positions and velocities may be
extracting robust information due to constraints in phase space (e.g. the necessity to fulfill the
continuity equation), directly encoding effective information on Ωm.

6.1.6.3.1 Why the model trained on Astrid is so good?

We already have noticed that the model trained on Astrid (see Section 6.1.6.1.1), in
comparison with the models trained on SIMBA and IllustrisTNG (see Section 6.1.6.1.2), using
only galaxy phase-space information, presents better predictions. We commented about the
number of galaxies per catalogs as one of the explanations for it in Sections 6.1.6.1.1 and 6.1.6.1.2,
referring to Figure 46. In this section we will present some of other Astrid characteristics that
can explain this success. For a complete discussion see Reference (311).

Compared to IllustrisTNG and SIMBA simulation suites in CAMELS, the fiducial
model of Astrid features the mildest AGN feedback and predicts the least baryonic effect on
the matter power spectrum. The training set of Astrid covers a broader variation in the galaxy
populations (specially in the star formation rate density, due to ASN2

10) and the baryonic impact
on the matter power spectrum compared to its TNG and SIMBA counterparts. This is clear by
taking a look at Figure 56, where we present the comparison of the ratio of the matter power
spectrum (left) and global star formation rate density (SFRD) of the 1P simulations (where only
one parameter is varied and other parameters are fixed) for IllustrisTNG, SIMBA, and Astrid.
These findings are a huge indicative which can make ML models trained on the Astrid suite
exhibit better extrapolation performance when tested on other hydrodynamic simulation sets.

6.1.7 Why not inferring σ8?

In this section, we present our efforts on trying to infer σ8 using galaxy catalogs as
graphs to feed GNN models. We made a sequence of tests of properties to include as node
10 ASN2 parameter modulates the speed of hydrodynamically-decoupled galactic winds in all the

simulation suites. Although the detailed model is different among the simulations, the star formation
in Astrid turns out to be more sensitive to the SN wind speed while compared to TNG or SIMBA.
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Figure 56 – Ratio of the matter power spectrum (left) and global star formation rate
density (SFRD) of the 1P simulations (where only one parameter is varied
and other parameters are fixed). Green, orange and blue colors represent the
results from TNG, SIMBA, and Astrid, respectively. Solid, dotted, and dashed lines
represent the simulations with the fiducial, lowest, and highest parameter values
in the variation range correspondingly. Source: Reference (311).

Figure 57 – Predictions of σ8 using galaxy and halo properties. Likelihood-free inference
of σ8 using galaxy velocities on the z direction and stellar mass (on the left) and
halo mass (on the right) as node attributes. We present the results for a model
trained on Astrid and tested on Astrid. Source: Reference (71).

information in our graphs and none of them resulted in a robust model. Here we present two
main results guided by:



176

1. Reference (50), while using galaxy velocities (in one direction) and including one more
galaxy property, the stellar mass.

2. Reference (52), when using the host halo mass as node information for the graphs.

The results are shown in Figure 57. In both models, we found poor performance: higher values
for RMSE (> 0.1), negative values for R2 (−[3.4, 1.1]) and low values for PCC ([0.49, 0.56]). In
the case of the model which uses the halo mass, the χ2 value is higher too (> 5.5). Furthermore,
the predictions are around the fiducial/mean value, without covering the whole range of values
and having higher error bars.

As already shown by Reference (50), it is a challenge to infer this cosmological parameter
using galaxy information, which may need more galaxy properties (stellar mass, galaxy radius,
metallicity, and maximum circular velocity) to achieve better performance. Then, because of
relying on galaxy properties that differ substantially among the different simulations, it is
hard to get a robust model. That is why our inference while using only galaxy velocity and
stellar mass, is worse than these authors’ results. On the other hand, because we are using all
galaxies (centrals and satellites), our results are not directly comparable to the ones presented
in Reference (52), where only halos (without subhalos) are employed.

Therefore, we conclude, in agreement with References (50) and (70), that to constrain
σ8 precisely we need larger volumes, as no ML technique was able to infer their value using
only galaxy information. Besides, getting the correct value of this parameter can be challenging
also for the standard approaches due to the small size of the boxes in the CAMELS suite. One
possible solution can be found in Reference (42), where the authors obtained good constraints
to predict σ8 using ML methods to deal with the usual summary statistics, for larger boxes
(100 h−1Mpc). Another possible way to solve the puzzle related to σ8 predictions should train
a GNN on galaxy catalogs at higher redshifts and look for their impact on galaxy populations.
This can be mostly related to the response of σ8 in the abundance of more massive structures
due to hierarchical structure formation, which does not happen at z = 0, where small galaxy
populations dominate (311).

6.1.8 Discussion and conclusions

The quest to extract the maximum information from galaxy redshift surveys has moti-
vated the development of many different approaches (32–40, 94, 344), and the upcoming data
from the current and next generation of surveys (22–24,26–31) is pressing this field of research.
While we do not have a final answer to this question, ML techniques are promising tools that
can be harnessed in order to tackle this problem (42, 44–49). In particular, GNNs stand out
as good machinery to extract cosmological information from galaxy and halo catalogs from
simulations (50–52, 228).



177

GNNs are ideal methods to analyze galaxy redshift surveys because: 1) they are designed
to work with sparse and irregular data (219–221); 2) it is easy to construct models that fulfill
physical symmetries (50); 3) they do not impose any cutoff scale. Perhaps the most challenging
task associated with ML methods is their robustness (345), a hard question already explored
using 2D maps with CNNs (48), tabular data (70), and galaxy catalogs (50). The reason behind
the lack of robustness of the models is unclear and can be due to multiple factors: 1) data
sets do not overlap; 2) models may be learning no physical effects (e.g. numerical artifacts); 3)
data representation is different. We emphasize that precision is completely irrelevant without
accuracy. The only way to deploy ML models to perform analysis with real data is to employ
accurate models. Thus, robustness lies at the heart of this problem.

In this work, we have trained GNN models on thousands of galaxy catalogs from
state-of-the-art hydrodynamic simulations of the CAMELS project to infer the value of Ωm

at the field-level using a likelihood-free approach. More importantly, we have investigated
the robustness of the models by testing them on galaxy catalogs from simulations run with
completely different codes to the ones used for training. We now outline the main takeaways
from this work:

• The model trained on Astrid catalogs that only contain galaxy positions and velocities
(the z component) is able to infer the value of Ωm with ∼ 12% precision and accuracy
when tested on Astrid catalogs with different cosmologies and astrophysical parameters.

• The performance is similar when tested on galaxy catalogs from other galaxy formation
simulations (each with different cosmology and astrophysics) run with four different
hydrodynamic codes: IllustrisTNG, SIMBA, Magneticum, and SWIFT-EAGLE. This
fact illustrates the robustness of the model under variations of the underlying subgrid
physics.

• It also works well when tested on the SB28 set of the IllustrisTNG suite: a collection of
1, 024 simulations that varies 28 parameters (5 cosmological and 23 astrophysical) and
therefore goes well beyond the diversity used to train the model (where only 6 parameters
are varied).

• Our model is also robust to changes in the halo/subhalo finder: the galaxy catalogs of
the SWIFT-EAGLE simulations were constructed employing VELOCIraptor, a different
method than the one used for training (SubFind). When we tested our model on SWIFT-
EAGLE catalogs we still obtained good predictions.

• The above constraints were obtained using a very small volume (25 h−1Mpc)3 that only
contains ∼ 1, 000 galaxies with stellar masses above ∼ 2 × 108 M⊙/h at z = 0. We
note that some galaxy catalogs contain a much larger (∼ 5, 000, which is the case of
Magneticum simulations) or smaller (∼ 30, in some Astrid boxes) number of galaxies,
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and the model trained on Astrid still performs well on those. This is related to the broader
number of galaxies found on Astrid (the training set), together with other wide variety
on this galaxy properties (311).

• When training our models on galaxy catalogs that contain positions, velocities, and stellar
masses we are able to build models that are more precise but less accurate. In fact, those
models are no longer robust across different simulation codes, and therefore could not
be used with real data at the present time.

• We find that our models are extracting information from both galaxy positions and
velocities. Furthermore, models trained using catalogs that only contain galaxy positions
or galaxy velocities are not only less precise but also less accurate. We speculate that
having both positions and velocities may improve the accuracy of the models as the
phase-space distribution is constrained by physical arguments, such as the continuity
equation, that need to be fulfilled independently of cosmology, astrophysics, and subgrid
model employed.

Given the precision and accuracy of our model, it will be interesting applying it to
peculiar velocity surveys such as the SLOAN catalog (346) or even the Cosmicflows-4 catalog
(347). We note that several steps need to be carried out before performing such a task:

• The method needs to be shown robust with regards to super-sample covariance (fluc-
tuations on scales larger than the simulation box) This is because in this analysis we
did not account for such effect at the training stage. If the method is not robust to this
effect, we should retrain our models on galaxy catalogs from larger volumes or catalogs,
which would then suppress super-sample covariance. We note that preliminary work
indicates that the models can deal with this effect, at least partially – see Section 6.1.6.1.3)
for further details.

• Throughout this work we are dealing with peculiar velocities from simulations. Obviously,
the peculiar velocities of galaxies cannot be measured with infinite precision. In particular,
we do not take into account inaccuracies due to observational errors in this quantity. We
therefore need to quantify how the errors on the peculiar velocities propagate into the
constraint in Ωm.

• An investigation on whether selection effects may affect the results is also needed, as
most surveys rely on tracers that are not equally available at all redshifts.

The last two aforementioned topics have been the object of another study, as discussed in
Section 6.3.

To summarize this Section, the work presented here is a new method to study Cosmology
using the clustering and velocities of galaxies at the field-level, without imposing any cut on
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scale, that seems robust to changes in cosmology, astrophysics, subgrid physics, and galaxy
identification algorithms.

6.2 A universal equation to predict Ωm from halo and galaxy catalogs

In this section we introduce a universal equation designed to predict Ωm from halo and
galaxy catalogs, based on Reference (310). These equations are formulated by integrating a GNN
architecture with SR (see Section 3.2.3). The halo catalogs utilized for training this machinery
are presented in Section 6.2.1, and data pre-processing methods (for halo and galaxy catalogs)
are detailed in Section 6.2.1.1. Initially, the GNN is trained on DM halos from Gadget N -body
simulations to perform field-level likelihood-free inference. The architecture of the GNN, along
with its training and optimization processes, are described in Section 6.2.2. Subsequently, SR is
employed to extract the optimal set of equations that encapsulate the behavior of the GNN, a
procedure delineated in Section 6.2.3. The resultant GNN model demonstrates the capability
to infer Ωm with ∼ 6% accuracy from halo catalogs of of N -body simulations run with six
different codes. Furthermore, by applying SR to dissect the constituent components of GNN, we
derive equations capable of predicting Ωm from halo catalogs of simulations run with all of the
above codes, achieving accuracies on par with those of the GNN. Moreover, we illustrate that
by fine-tuning a single free parameter, our equations can extend their predictive capabilities
to infer the value of Ωm from galaxy catalogs sourced from hydrodynamic simulations of the
CAMELS project. Although we present selected results in Section 6.2.4, we refer the Reference
(310) for a complete analysis.

6.2.1 Data

We train our models using halo catalogs from high-resolution cosmological simulations
that contain two halo properties: the halo positions r and the halo velocity modulus v. In this
work we focus on halo and galaxy catalogs at z = 0.

The different N -body codes follow the evolution of DM particles under the effect of self-
gravity in a given expanding cosmological background using different numerical techniques
and approximations (see Section 2.5.1). The 6 codes we use to run the N -body simulations are
described briefly below:

• Abacus. This code computes the long-range gravitational potential by decomposing
the near-field and far-field forces in which the near-field forces are reduced to a r−2

summation (or an appropriately softened form) and the far-field forces to a discrete
convolution over multipoles (348). We run 51 simulations with Abacus: 1 simulation with
a shared cosmology and initial random seed among codes and 50 simulations in a LH
with varying values of Ωm and σ8.
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• CUBEP3M. This code employs a particle-particle particle-mesh (P3M) scheme, described
in Reference (349), where long-range gravitational forces are computed via a 2-level
particle mesh calculation. We ran 51 CUBEP3M simulations: 1 simulation with shared
cosmology and initial random seed among codes and 50 simulations in a LH.

• Enzo. This is an Adaptative Mesh Refinement (AMR) code, as described in Reference
(350), that solves the Poisson equation via a fast Fourier technique (351) on the root grid
and a multigrid solver on the individual sub-mesh. We only have one Enzo simulation
which shares the same cosmology and initial random seed with the other codes.

• Gadget. This code utilizes a TreePM algorithm to compute short-range forces and Fourier
techniques to calculate long-distance forces, as described in Reference (124). We use the
halo catalogs from these simulations to train the models. We run 1, 001 of the Gadget
simulations: 1 simulation with shared cosmology and initial random seed among codes
and 1, 000 simulations that have different values of Ωm, σ8, and initial random seed.

• PKDGrav3. This code computes forces using Fast Multipole Method (FMM) (352, 353).
We run 1, 001 N -body simulations with this code: 1 simulation with shared cosmology
and initial random seed among codes and 1, 000 simulations with different values of Ωm,
σ8, and initial random seed that are organized in a LH.

• Ramses. This code uses the Adaptive Particle Mesh technique described in Reference
(354). It solves Poisson’s equation level by level using Dirichlet boundary conditions and
a Multigrid relaxation solver. We have run 1, 001 Ramses simulations: 1 simulation with
shared cosmology and initial random seed among codes, and 1, 000 simulations with
different values of Ωm, σ8, and initial random seed that are organized in a LH.

The different hydrodynamical simulations used to test the models presented in this
work are the same of the ones described in Section 6.1.1.1.

6.2.1.1 Halo and galaxy catalogs

Here, we describe the procedures for constructing the halo and galaxy catalogs that we
use to train, validate, and test the GNN and symbolic expressions.

• Halo Catalogs for Training and Validating. For training and validation, we use
halo catalogs from the Gadget simulations. For each simulation, we generate 10 halo
catalogs by taking all halos with masses larger than MX , where MX is a randomly chosen
number between 100mp and 500mp. Here, mp is the mass of a single DM particle. As
explained in Reference (52), using different DM particle thresholds is key to achieving
a model that is robust to different simulations. These halo catalogs are generated by
running Rockstar (a halo/subhalo finder, see Section 2.5.1.8) (136) on snapshots from
the numerical simulations described above.
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• Halo Catalogs for Testing. We use all N -body simulations described in the previous
section and 4 hydrodynamic simulations: IllustrisTNG, SIMBA, Astrid, and Mag-
neticum. For each simulation, we generate 5 halo catalogs for the 5 different DM particle
thresholds: {100, 200, 300, 400, 500}. Note that for hydrodynamic simulations, instead
of considering only the amount of DM mass to make our mass cuts, we define mp as the
effective particle mass: mp =

1
Nc
ΩmV ρc, where V is the volume of the simulation, ρc is

the Universe’s critical density today, and Nc = 2563 is the effective number of particles.
These halo catalogs are generated by running Rockstar (136) on snapshots from the
numerical simulations described above.

• Galaxy Catalogs for Testing. We use galaxy catalogs from all the hydrodynamic
simulations described in Section 6.1.1.1. We define a galaxy as a subhalo (can either be a
central or satellite) that contains a stellar mass of at least N ×m∗ where N ∈ 3, 4, 5, 6

and m∗ = 1.3× 107 h−1M⊙. For each simulation, we construct 4 catalogs, each using a
different N . We limit the range of the stellar mass thresholds to be no larger than 6×m∗

because we find that using larger cuts result in catalogs with galaxy number densities that
are smaller than the number densities (from the halo catalogs) used to train the network
and equations. We find that using catalogs with number densities that are outside the
training range can lead to inaccurate predictions. These galaxy catalogs are generated
by running Rockstar (136) on snapshots from the 6 hydrodynamic simulations, with
the exception of the catalogs from the SWIFT-EAGLE simulations which were generated
using the halo finder VELOCIraptor (also see Section 2.5.1.8) (137, 138).

6.2.2 GNN architecture

The methods described in this section closely follow those presented in References
(52,71) to infer Ωm. We emphasize the key changes that we implement in this work are: 1) using
only the summation operator as the aggregation function and 2) reducing the depth and width
of the GNN architecture with constrained hyperparameter optimization. These steps decrease
the complexity of the model and allow for easier interpretation of the learned relations.

The halo and galaxy graphs were constructed in the same fashion way as presented
in Sections 3.3.4.1 and 6.1.1.3, but using the 3D phase-space information and not accounting
for the global attribute related to the number of objects. The architecture of the GNN follow
the message passing scheme making use of a single MetaLayer (see Section 3.3.4.2.1) for a
compressed GNN. For this reason, we denote the edge and node features that are input to the
message-passing layer (the initial halo properties) with the superscript (0) and output (hidden)
features by the message-passing layer with the superscript (1). Then:

• Edge model:
e
(1)
ij = E (1)

([
n
(0)
i ,n

(0)
j , e

(0)
ij

])
. (6.17)
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• Node model:

n
(1)
i = N (1)

([
n
(0)
i ,
∑
j∈Ni

e
(1)
ij

])
, (6.18)

where we reduce the aggregation function just to the summation to decrease the com-
plexity of the learned relations.

The final layer (see Equation 6.10) in the architecture aggregates the hidden node features
output by the message passing layer to make the prediction y:

y = F

([∑
i∈G

n
(1)
i

])
. (6.19)

Note that, different from the work presented in Section 6.1 and in Reference (71), we do not
make use of the graph global attribute.

6.2.2.1 Training procedure and optimization

We train and test the models using graphs constructed from halo catalogs of the Gadget
simulations. For each simulation, we construct 10 catalogs using the procedure described in
Section 6.2.1.1 to marginalize over the halo number density. Once trained, the model is tested
using catalogs from all simulations. For Gadget, we split the simulations into training (80%),
validation (10%), and testing (10%) data sets before creating halo catalogs for each simulation.
For the other codes, we use the entirety of the data set for testing.

We standardize the values of input node features as

ṽ =
v − µ

δ
, (6.20)

where µ and δ denote the mean and standard deviation of the feature v =
√

v2x + v2y + v2z .
However, we explain in later sections that the value of δ must be tuned for when evaluating
the symbolic equations.

Also, the GNNs are associated to the MNNs, making use of the loss function of Equation
3.25 (232), in the same fashion way as presented in Section 6.1.3. Our model is implemented in
PyTorch (202) and PyTorch Geometric (222). We use the AdamW optimizer (355) with beta
values equal to 0.9 and 0.999. We train the network using a batch size of 8 for 500 epochs.

The hyperparameters for our model are: 1) the learning rate, 2) the weight decay, and 3)
the linking radius. We use the Optuna code (243) to perform Bayesian optimization and find
the best value of these hyper-parameters for each model (see Section 3.5.4). Different from the
previous work (see Section 6.1 and Reference (71)), the optimal linking radius was ∼ 1.35h−2

Mpc. As mentioned earlier, we aim to reduce the depth and width of our GNN architecture to
obtain a compressed network, so we restrict to only one layer and 2 hidden neurons. For each
model, we run 100 trials, where each trial consists of training the model using selected values
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of the hyper-parameters. We perform the optimization of the hyper-parameters required to
achieve the lowest validation loss possible and use early stopping to save only the model with
a minimum validation error.

6.2.3 SR architecture

In this section, we describe the SR algorithm we use and the procedure for fitting
functions to components of the learned GNN. We use the package PySR (199) (see Section 3.2.3).
A key limitation of SR is that its tractability and accuracy are restricted to low-dimensional
spaces of input data. To circumvent this, we limit the size of the latent space produced by
the GNN, as described in Section 6.2.2. Using the learned parameters and relations from
the low-dimensional GNN architecture, we search for equations that characterize the model
by approximating the individual MLPs used in the node model, edge model, and final layer
described in Equations 6.17, 6.18, and 6.19, respectively. We emphasize that since there is only
one message-passing layer, we only need to approximate one node model MLP and one edge
model MLP. Moreover, for each of the node and edge models, we search for two equations
because there are two hidden features.

The data and procedure used to obtain these equations are described below:

• Approximating Edge Model. To approximate the edge model, we train a SR to map
from the input variables xe, to the target variables ye, defined as:

xe =
(
n
(0)
i , n

(0)
j , αij, βij, γij

)
(6.21)

ye =
(
e
(1)
1 , e

(1)
2

)
. (6.22)

The input variables are the initial features of the nodes and their neighbors, as well as the
initial edge features as described in Section 6.2.2.1. The corresponding target variables
are the edge features of the MLP in the edge model defined in Equation 6.17. Since the
GNN employs only two hidden features for each message-passing layer, we denote the
first component of the edge feature as e(1)1 and the second component as e(1)2 . To obtain
this data, we randomly select 10 (xe,ye) pairs from each graph in the training set. This
selection is done to ensure that we have a representative sample of the training set
without using every node pair of all graphs which would result in too large of a data set.

• Approximating Node Model. Similarly, to approximate the node model, the input
variables xn, and the target variables yn, of the symbolic regressor, are:

xn =

(
n
(0)
i ,
∑
j∈Ni

e
(1)
1 ,
∑
j∈Ni

e
(1)
2

)
(6.23)

yn =
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1 + n

(1)
2

)
. (6.24)
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As seen above, the inputs are the initial node feature and the neighborhood-wise sums
of the hidden edge features because the output of the edge model is aggregated using the
summation operator before being passed onto the node model. The corresponding target
variables are the hidden node features of the MLP in the node model defined in Equation
6.18. We denote the first and second hidden node features as n(1)

1 and n
(1)
2 , respectively.

However, instead of directly finding an equation for the second node feature, n(1)
2 , we

instead search for a formula for the sum n
(1)
1 + n

(1)
2 . This is because we find that the

change of variables allows us to obtain more accurate approximations than with the
original target variable. Ultimately, to obtain the expression of n(1)

2 , we subtract from it
n
(1)
1 . To obtain this data, we randomly sample 10 (xn,yn) pairs from each graph in the

training set as we did with the edge model data.

• Approximating Final MLP. Lastly, to approximate the MLP in the final aggregation
layer, the input and target variables are:

xu =

(∑
i∈G

n
(1)
1 ,
∑
i∈G

n
(1)
2

)
(6.25)

yu = µi. (6.26)

Here, the inputs are the graph-wise sums of the hidden node features because the output
of the node model is aggregated using the summation operator before being passed onto
the final MLP. The corresponding target is the mean posterior (here, because we predict
Ωm, it is denoted as µΩm). We do not attempt to find an expression for the posterior
standard deviation as it is solely a component of the parameter inference methodology
and does not contribute additional physical understanding. We obtain this data from
each graph in the training set. Note that this time there is no need to select a sub-sample
of nodes from each graph because xu and yu are global properties of the graph so we can
use every graph in the training set.

In each of the above approximation steps, the SR algorithm searches for analytic
expressions that can map from the given input variables to the desired target. For the training,
the regressor is allowed to employ the following operators: "add", "sub", "mult", "div", "pow",
"1/x", "abs", "log", "log10", "sqrt". We employ a standard MSE loss function to optimize the
model too. The model was trained for 100, 000 trials with a batch size of 64.

During training, the algorithm outputs a list of equations found by the regressor (see
Section 3.2.3) for each of the GNN components. We evaluate several candidate equations on
a test set for each hidden feature before selecting one that optimizes the trade-off between
complexity and accuracy with these metrics in mind. Finally, the performance metrics were
the same as presented in Section 6.1.5.

We emphasize that the predictions of Ωm derived from the SR equations incorporate
all the equations responsible for updating both the edge and node models, in addition to
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approximating the final MLP (which gives the final prediction for Ωm, here denoted as µΩm).
These equations are employed to substitute their respective MLP counterparts within the GNN
model (node and edge models, as well as the final aggregation layer), while retaining all other
components of the GNN unaltered.

Table 8 – Analytic formulae obtained using SR for each component of the learned
GNN model. To the edge model, node model, and the MLP in the final aggregation
layer. The last column lists the RMSE values of the analytic expressions when they
are individually substituted into the GNN architecture. This evaluation is done by
replacing the corresponding MLP in the edge model, node model, or final aggregation
layer with the symbolic approximation while keeping all other components of the
GNN unchanged. Notice that, the feature of node i is defined as ni = (|v⃗i| − µ)/δ,
where |v⃗i| is the velocity modulus of halo/galaxy i, µ = 189 km s−1, and δ is a free
parameter with units of km s−1 that needs to be adjusted for galaxy catalogs (see
Section 6.2.2.1 and Table 9 for more details).

GNN Component Formula RMSE
Edge Model: e(1)1 1.32|ni − nj + 0.21|+ 0.12(ni − nj)− 0.12(γij + βij − 1.73) 0.03
Edge Model: e(1)2 |1.62(ni − nj) + 0.45|+ 1.98(ni − nj) + 0.55 0.04
Node Model: n(1)

1 1.21ni(0.77
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e
(1)
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∑
j∈Nj

e
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√
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Final MLP: µΩm 4× 10−4 · (−5.5
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(1)
1 + |0.96

∑
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6.2.4 Results

In this section we present some selected results from Reference (310). Firstly, we show
the analytic approximations that were found using SR in Section 6.2.4.1. Secondly, in Section
6.2.4.2, we compare the predictions of GNNs and the resulting equations on halo catalogs.
Thirdly, we present the predictions for Ωm on galaxy catalogs for both methods, showing that,
while GNNs fail on their predictions, the symbolic expressions are able to extrapolate their
results (Section 6.2.4.3). A complete analysis can be found in Reference (310).

6.2.4.1 Analytic Approximations

Here we present the equations extracted from the trained GNN model using the SR
method. The formulae for each of the hidden edge and node features, as well as for the predicted
posterior mean from the final MLP, are listed in Table 8. The listed RMSE values are computed
by individually replacing the corresponding component in the GNN architecture with each
expression while keeping all other components of the GNN unchanged and evaluating them
on halo catalogs of the Gadget test set. The computed RMSE values are used to gauge the error
that each approximate equation introduces.

It is important to note that the variables ni and nj in the equations represent the
initial node features or velocity moduli. As explained in Section 6.2.2.1, these variables were
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Figure 58 – Comparison of Gadget Ωm predictions for the GNN and SR on halos. We
present GNN (on the left panel) and SR (on the right panel) predictions. Source:
Reference (310).

normalized by the mean and standard deviation of the velocity modulus for the halos from the
training set to ensure that all terms in the equations are dimensionless. Hence, the velocity
modulus terms in the equations are ni =

vi−µ
δ

and nj =
vj−µ

δ
, where µ = 189 kms−1 is a fixed

value that was the computed mean velocity modulus for all halos in the training set and δ is
treated as a free parameter. For testing on halo catalogs, we set δ = 129 kms−1 which is equal
to the value used during training and was the standard deviation computed for all halos in
the training set. On the other hand, for testing on galaxy catalogs, we tune δ to fit to each
hydrodynamic simulation set as listed in Section 6.2.2.1 because we find that using the value
δ = 129 kms−1 leads to inaccurate predictions. This is not surprising given that this value was
computed for N -body halos which would not be expected to extrapolate to galaxies. Hence,
it is possible that tuning it for different simulations can account for the halo-galaxy bias. We
discuss this in more detail in Section 6.2.5.

The way to use these equations is as follows. First, given a halo/galaxy catalog, a
mathematical graph is constructed by considering the halos/galaxies as nodes and linking
nodes by edges if their distance is smaller than rlink = 1.35 h−1Mpc (see Section 6.2.2.1 for
details). For the graph, the feature of node i is defined as ni = (|v⃗i| − µ)/δ, where |v⃗i| is
the velocity modulus of halo/galaxy i, µ = 189 km s−1, and δ is a free parameter with units
of km s−1 that needs to be adjusted for galaxy catalogs (see Section 6.2.2.1 and Table 9 for
more details). Also, the edge features βij and γij between nodes i and j are computed using
Equations 6.7 and 6.8, respectively. At this stage the graph is ready to feed the GNN, with their
components (node and edge models and final aggregation layer) replaced by the equations
presented in Table 8. Second, the graph will have their edge features updated using the first
two equations of the edge model. Third, the updated node features are computed using the two
equations of the node model. Finally, from the updated graph we can estimate Ωm by using the
final equation (referred as “final MLP” in Table 8).



187

The accuracy of the equations when evaluated on the halo catalogs of the Gadget simu-
lations is shown in the right panel of Figure 58. As can be seen, these analytic approximations
achieve similar mean relative error (6.7%) and RMSE (2.6 × 10−2) as the GNN, suggesting
that they are accurate representations of the trained network. We emphasize that our analytic
formula predicts the posterior mean while the error bars (posterior standard deviation) are
obtained from the GNN discussed in Section 6.2.3.

6.2.4.2 Predictions on halo catalogs
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Figure 59 – Ωm predictions using GNNs and SR equations. We present the GNN (on top
panel) and SR equations (on bottom panel) predictions for halo catalogs of N -body
(PKDGRAV, ABACUS, ENZO, RAMSES, GADGET, and CUBEP3M) and hydrody-
namic (IllustrisTNG, SIMBA, Astrid, and Magneticum) simulations. Note that,
for each simulation, we generate 5 catalogs. Each halo catalog contains all halos with
masses above Nmp, where mp is the particle mass and N can be 100, 200, 300, 400,
or 500 (see legend). The y-axis represents the difference between the truth and the
inference. Source: Reference (310).

In Figure 59 we present the comparison of the GNN and SR equation predictions of Ωm

on halo catalogs of N -body (PKDGRAV, ABACUS, ENZO, RAMSES, GADGET, and CUBEP3M)
and hydrodynamic (IllustrisTNG, SIMBA, Astrid, and Magneticum) simulations. Note that,
for each simulation, we generate 5 catalogs. Each halo catalog contains all halos with masses
above Nmp, where mp is the particle mass and N can be 100, 200, 300, 400, or 500 (see legend).
The y-axis represents the difference between the truth and the inference.

As can be seen, both models exhibits surprising extrapolation properties and are robust
to all simulation codes. This is remarkable to be on side of Occam’s razor, because the GNN
is on its compressed version, containing only one message-passing layer and agrees with the
results from Reference (52) (which contains a more complex GNN). Also, the formulae maintain
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Figure 60 – GNN (trained on halos) predictions on galaxy catalogs. This plot shows
the predictions of the GNN trained on halo catalogs from Gadget being tested
on galaxies from 6 different hydrodynamic simulations. To construct the galaxy
catalogs we use 4 different stellar mass thresholds which are labeled for each
column. For clarity, we plot the predictions for 50 randomly selected catalogs in
each panel, but the metrics are for the whole sets. Source: Reference (310).
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the robustness of the GNN model and achieve a very similar accuracy compared to the GNN,
deviating a bit more for halos from the hydrodynamical simulations.

6.2.4.3 Predictions on galaxy catalogs

We also test the GNNs and the SR equations on galaxy catalogs from the 6 hydrodynamic
simulation suites: Astrid, IlustrisTNG, Magneticum, SB28, SIMBA, and SWIFT-EAGLE. We
emphasize that this is not a trivial task as the GNN and the corresponding equations were
trained using DM halos from N -body simulations that do not contain any information about
the intergalactic dynamics or baryonic processes present in hydrodynamic simulations. There
is also a complex halo-galaxy connection which can, for instance, be reflected in the relative
abundances of halos and galaxies where larger halos can contain multiple galaxies while smaller
halos may not contain any. These biases can possibly leave a significant imprint in the relations
between the relative position and velocity terms of the equations found for halos. For these
tests, we follow the definitions of galaxies and stellar mass thresholds discussed in Section
6.2.1.1 in constructing the galaxy catalogs where we include both central and satellite galaxies.

In Figure 60 we present the predictions of the GNN trained on halo catalogs and tested on
galaxies from 6 different hydrodynamic simulation suites: Astrid, IllustrisTNG, Magneticum,
SB28, SIMBA, and SWIFT-EAGLE. As it can be seen, the GNN is unable to accurately predict
the values of Ωm as all the predictions exhibit a bias deviating from the true values (no matter
the cut considered on stellar mass). This is common across all simulations, which is expected
given that there is a nontrivial connection between halo and galaxy distributions.

Table 9 – List of the optimized values of δ. We list the values for Astrid, IllustrisTNG,
Magneticum, SB28, SIMBA, and SWIFT-EAGLE. We also include the δ used for
testing on N -body halos for comparison.

Simulation δ [km/s]
N -body codes 129.2

SB28 100.0
Astrid 126.5
SIMBA 122.5

IllustrisTNG 99.6
SWIFT-EAGLE 114.5
Magneticum 147.2

We believe that these biases are due to the effects of the halo-galaxy connection in
addition to the differences in the abundance of galaxies found in the catalogs used for testing
and that of halos found in the training data set. As discussed in Section 6.2.1.1, the network is
unable to extrapolate to number densities outside of the training range and there are many
catalogs with galaxy number densities that fall below the range of the halo number densities
seen during training: (1, 000; 6, 000). However, the under-predicted values of Ωm cannot be
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Figure 61 – Tuned SR equations (trained on GNN blocks from halo catalogs) predictions
on galaxy catalogs. The predictions are done on 6 different hydrodynamic simula-
tion sets: Astrid, IllustrisTNG, Magneticum, SB28, SIMBA, and SWIFT-EAGLE,
to infer the value of Ωm. We plot the predicted against truth for each simulation. We
present results for a stellar mass threshold of 4×m∗, with m∗ = 1.3× 107 h−1M⊙
(see Section 6.2.1.1), but we reach similar accuracies for other mass cuts. We also
include only 50 randomly selected catalogs for each simulation set for the clarity
of the figures, but the reported metrics were computed for all simulations in the
suites. Note that for the bottom right panel, which depicts the predictions for the
SWIFT-EAGLE simulation set, we use simulations that are generated with the
same value of Ωm = 0.3. Thus, we plot the difference between the truth and the
prediction on the y-axis for these catalogs. Source: Reference (310).

solely attributed to the abundance of galaxies. As discussed in the Reference (71) (see Figure 46,
in Section 6.1.1.3), the full range of galaxy number densities is exhibited for all values of Ωm,
specially for Astrid and there are other galaxy properties in these simulations which cause
differences to the galaxy properties. This agrees further demonstrates that the biases present in
the network predictions are attributed to the intrinsic characteristics of the galaxy population.

We present the results for evaluating the equations on galaxy catalogs from the different
hydrodynamic simulations in Figure 61. Each panel is labeled with the corresponding simulation
suite. For simplicity, we present the predictions for only the galaxy catalogs generated with
the stellar mass threshold of 4×m∗ for a fixed m∗ denoting the mass of an individual stellar
particle as described in Section 6.2.1.1. However, we find that the equations are able to perform
with similar accuracies for catalogs constructed with different mass cuts. Moreover, since the
simulations from the SWIFT-EAGLE suite are run with the same value of Ωm, we plot the
difference between the true (Ωm = 0.3) and the predicted values on the y-axis for these catalogs.
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We note that the presented error bars for all simulations are the inferred posterior standard
deviation values obtained by the model trained and tested on galaxy catalogs discussed in
Section 6.1 and in Reference (71), since the equations predict only the first moment of the
posterior for Ωm.

For each simulation we tune the parameter δ to improve the accuracy of the predictions.
As discussed in Section 6.2.4.1, this parameter appears in the equation as a normalization of the
velocity modulus, and its value varies for different hydrodynamic simulations when testing on
galaxies. We tune this normalization because we noticed that using the original value δ = 129

kms−1, the standard deviation of the velocity moduli for all halos in the training set, resulted
in predictions that deviated from the truth in terms of a slope and bias, which varies for each
simulation. Thus, in Table 9 we list the values of δ that we optimize for each simulation using
nonlinear least squares with scipy-optimize11 for the catalogs constructed using the same stellar
mass threshold as presented here.

After tuning this parameter, we find that the equations are able to predict Ωm with
mean relative errors of 15.35% for Astrid, 12.85% for IllustrisTNG, 6.89% for Magneticum,
16.17% for SB28, 8.50% for SIMBA, and 4.08% for SWIFT-EAGLE, across the four stellar mass
thresholds. Evidently, the predictions for the galaxy catalogs exhibit significantly larger error
than for the halo catalogs. This can be explained by two reasons. One, there are additional
astrophysical processes and dynamics present in the thousands of hydrodynamic simulations
that can interfere with the equations’ extrapolation ability. Given that the equations can
only encode information regarding the gravitational interactions between halos from N -body
simulations, the effects of these various astrophysical parameters may impede on the accuracy
of the predictions. Moreover, there are likely to be significantly more outliers for simulations
such as SB28, where we vary 28 cosmological and astrophysical parameters at a time. This is
also true for the Astrid simulations which encompass a wider range of galaxy properties and
are able to encapsulate the variations found in the other simulation suites.

Two, there is a large fraction of the galaxy catalogs that contain galaxy number densities
outside the scope of the halo number densities seen by the GNN and equations during training.
For instance, the number of halos in catalogs from the Gadget simulations used for training
ranges from ∼ 1, 000 to 6, 000. However, there are galaxy catalogs that contain fewer than
500 galaxies at this stellar mass threshold. These outliers are particularly dominant in the
IllustrisTNG, Astrid, and SB28 simulations, which leads to under-predicted values of Ωm. On
the other hand, if one removes these outliers, the mean relative errors significantly decrease.
Hence, Figure 61 depicts the results for only the catalogs with galaxy number densities that fall
within the range of (1, 000; 6, 000). Restricting to these catalogs decreases the mean relative
errors to: 9.76% for Astrid, 10.34% for IllustrisTNG, 7.02% for Magneticum, 12.24% for
SB28, 8.29% for SIMBA, and 4.08% for SWIFT-EAGLE.

11 https://docs.scipy.org/doc/scipy/reference/optimize.html

https://docs.scipy.org/doc/scipy/reference/optimize.html
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Thus, we conclude that the equations are able to extrapolate to galaxies, with accuracies
that are comparable to those attained for the halo catalogs from hydrodynamic simulations.
These results are also comparable to those obtained by us in Reference (71) (see Section
6.1), where we trained a model directly on galaxy properties. We note that the effect of the
number density being an uninformative prior during the learning process can be diminished
by broadening the range of halo number densities used to train the network and equations.

6.2.5 Discussion and Conclusions

Here, we discuss some speculative interpretations of the equations that we found.
In that respect, we only attempt to explain the formulae for the edge models, because their
functional forms are simpler than those for the node models (as they introduce nonlinearities
to the formulae). The edge model also solely employs physical information about the halo
positions and velocity moduli, so they are responsible for directly leveraging the clustering
and distribution of the halos. Also, we discuss the normalization choice for the velocities.

• Relative Peculiar Velocity Modulus (vi − vj). This indicates that the model is taking
advantage of the relative velocity moduli of the halos and their neighbors. We believe that
in this case, using the relative velocities allows the models to gauge the local gravitational
forces where the relative velocity moduli between two halos can serve as a proxy for the
depth of the potential wells in the bound system. This is reasonable since larger relative
speeds of interacting bodies can result from the presence of stronger attractive forces
between them. From this, the model may be learning a representation of the masses
of the halos. An analogous discussion in Reference (308) reached similar conclusions
pertaining to the pairwise peculiar velocities and speeds which were found to have
strong dependence on Ωm at the same small scale as that used by the models in this
work (≲ 5 h−1Mpc). We also speculate that the presence of these terms reflect the
strong dependence of Ωm on the information available in the cosmic velocity fields
(304, 356, 357). For instance, the authors of Reference (356) discuss a derived relation
between the moments of the scalar field of the peculiar velocity divergence andΩm, which
is independent of the biasing between the distribution of galaxies and the underlying
DM density field. It is possible that the expressions found in this work reflect a similar
relationship, because our models have been trained using the scalar halo velocity modulus,
and the fact that they demonstrate an accuracy that is not significantly affected by the
presence of astrophysical and baryonic effects. We speculate that the network and
equations may be correcting for the nonlinearities of the galaxy velocity fields on smaller
scales, by considering the galaxy distribution and number densities.

• Velocity normalization. Here we discuss the implications of tuning the normalization
of the velocity modulus terms, δ, for galaxies from each simulation set. Previous findings
in References (358,359) indicate that the halo-galaxy distribution bias can induce biases in
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pairwise velocity statistics defined using the radial separation between galaxies. Thus, we
speculate that the normalization of the velocity modulus terms vi and vj in our equations
reflects a similar correction to account for the fact that the spatial clustering of galaxies
may not trace directly the matter field.

• Spatial distribution and clustering. In the first edge equation, e1, the presence of the
terms β and γ reflects the spatial distribution of the halos in the catalogs. Specifically, the
variable γ ∈ (0, 1] describes the distance between two halos where its range is restricted
due to its normalization by the linking radius, rlink ∼ 1.35 h−1Mpc, as described in 6.2.2.1.
Thus, a smaller γ would indicate a denser distribution of halos. Meanwhile, the variable
β ∈ [−1, 1] describes the angular orientation of a halo with respect to its neighbor, and
can provide information about the shape of the distribution, e.g. the filamentary structure
of the cosmic web. Both parameters are used by the model to learn about the presence of
large scale structures such as superclusters and filaments.

Finally, we can say that we have found a compressed form of GNN together with an
analytic expression that approximates the relation employed by a GNN that was trained to
infer Ωm from DM halo catalogs. Investigations related to the GNN model by itself proved
to be as robust as the model found by Reference (52) for DM halos from N -body simulations
for 6 different simulations (namely, PKDGRAD, ABACUS, ENZO, RAMSES, GADGET, and
CUBEP3M). We also found that the GNN fails while extrapolating their Ωm predictions for the
galaxy catalogs, but this was expected due to the complex relationship from the astrophysical
processes, which are not taken into account in the N -body process. While the GNN failed, the
analytical expressions performed good predictions to the galaxy catalogs, after tuning a single
free parameter associated with the normalization of the galaxy velocities. Also, the expressions
found by SR presented robust results across the different N -body simulations, considering the
DM halos and the same normalization factor. We thus reinforce (in agreement with the findings
of the work presented in Section 6.1 and in Reference (71)) the fact that the ML suite is learning
to make inferences based about Ωm on more than just spatial correlations, but also on physical
relations which are manifested in the phase-space distributions of halos and galaxies.

6.3 The impact of systematic effects

We have seen throughout this thesis that a powerful way to constrain cosmological
parameters from galaxy catalogs is to train GNNs to perform field-level likelihood-free inference
without imposing cuts on scale. In particular, in Reference (71) (see Section 6.1) we developed
models that could accurately infer the value of Ωm from catalogs that only contain the positions
and radial velocities of galaxies, which are robust to astrophysics and subgrid physical models.
However, observations are affected by many other real-life effects, including 1) masking,
2) uncertainties in peculiar velocities and radial distances, and 3) different galaxy selections.
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Moreover, observations only allow us to measure redshift, intertwining galaxies’ radial positions
and velocities.

In this section, which was based on Reference (74), we train and test our models on
galaxy catalogs, created from different codes from the CAMELS project, that incorporate these
observational effects. As we will show, although the presence of these effects degrades the
precision and accuracy of the models, increasing the fraction of catalogs where the model
breaks down, the fraction of galaxy catalogs where the model performs well is over 90%,
demonstrating the potential of these models to constrain cosmological parameters even when
applied to real data.

We start by presenting, in Section 6.3.1, the way we incorporate each one of these
observational effects into the data set of galaxy catalogs, and how we process these catalogs into
graphs. In Section 6.3.2 we briefly discuss the methodology for this work, which is essentially
the same as the one employed in Section 6.1. Then, in Section 6.3.3 we present a summary of
the results achieved in this work, followed by a discussion in Section 6.3.4.

6.3.1 Data

The data set we use in this work are galaxy catalogs from the CAMELS suite, namely
Astrid, SIMBA, IllustrisTNG, SB28, and SWIFT-EAGLE, exactly as presented in Section 6.1.1.
One interesting difference is related to the SB28 catalogs, for which in this work we had access
to 2, 048 catalogs, exploring more the 28D space of cosmological and astrophysical parameters.

Apart from the similarities, the main difference of this approach are the inclusion of
observational effects in the galaxy catalogs – which can be regarded as potential systematic
effects. In this section we describe the different systematics that we consider, and how we
simulate them.

• Masking. In real surveys, some fraction of the galaxies are masked out due to a variety of
reasons: bright stars, cosmic rays, bad pixels, etc. When we train a ML suite considering
the entire sample of objects in the simulations, we are capturing all the information from
the cosmic web. In contrast, if we deploy that machinery on masked catalogs, some of
that information is erased, and we may end up with less trustworthy predictions. Here
we simulate the effect of masks by randomly removing some percentage of the galaxies in
the catalog (a different approximation to mask effects, if compared to what we have done
in the work of Chapter 2.3.5.1 and in Reference (40)). Since the fraction of survey areas
which end up being masked out is typically below 10% of the footprint (266, 360, 361),
we simulated masks that eliminate 5% and 10% of the galaxies in our samples.

• Peculiar velocity uncertainties. Peculiar velocity cannot be precisely measured, since
observations are unable to distinguish between radial (line-of-sight) positions and radial
velocities (346, 347, 362–364). In our previous work (71), we built a robust model on the
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basis of exact values for the 3D positions and velocities of all the galaxies. However,
this phase space information can become blurred or even biased if those positions and
velocities are affected by measurement errors, which could then lead to inaccurate (or
even biased) predictions. We simulate this effect by adding a random error to the line-of-
sight peculiar velocity of each galaxy, vz , in a catalog. This error is added in two different
ways:

– Absolute error:
vz → vz +N (µ, σ), (6.27)

where N (µ, σ) is a Gaussian distribution with mean µ and standard deviation σ.
We use µ = 0, and both a low (σ = 100 km/s) as well as a large (σ = 150 km/s)
uncertainty in the velocities. The magnitude of these velocity errors are commensu-
rate with model observational uncertainties related to, e.g., the separation of the
peculiar velocities from the Hubble flow, considering the typical velocity dispersion
of galaxies inside groups and clusters, which are of order ∼ [300, 500] km/s (365).

– Relative error:
vz → vz [1 + PN (0, 1)] , (6.28)

where we consider P = 0.15 and P = 0.25, representing relative errors on the
peculiar velocities of 15% and 25%, respectively. The idea is that these velocity
errors could come from uncertainties in the redshifts of the galaxies. For a galaxy
with peculiar velocity of 200 km/s, this amounts to ∼ [30, 50] km/s, which is
comparable to the intrinsic error of spectroscopic surveys such as DESI for galaxies
and quasars (366).

• Line-of-sight distance uncertainties. In galaxy redshift surveys the radial components
of the peculiar velocities are degenerate with the radial positions of the galaxies. We
account for this observational constraint by removing the line-of-sight component from
the position vector –i.e., we project the galaxies onto a 2D plane. The main modification
brought about by this particular test is that, compared with our previous work (71), the
graphs are now in 2 dimensions for the edge indices. More details are given in Section
6.3.1.1.

• Galaxy selection. In real surveys, galaxies are selected according to some criteria: e.g.,
objects brighter than some threshold, and/or those whose colors lie within certain ranges.
Moreover, some of these criteria are correlated with the clustering and environmental
properties (e.g. galaxy colors are related to their positions inside the halos). By folding
these selection effects into the training and testing processes we are able to estimate
their impact on our predictions for parameters such as Ωm. We simulate galaxy selection
in our catalogs by means of two different criteria:
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– Color. Since some of the hydrodynamical simulations in CAMELS do not contain
galaxy magnitudes (these properties are only available for the IllustrisTNG suite),
we employ a selection based on the “quenched” and “not-quenched” galaxies12. This
definition derives from the values of the specific star formation rate (sSFR = SFR/M⋆

[yr−1M⊙], where a galaxy’s SFR is defined as the sum of the individual SFR of all
gas cells in its subhalo), according to Reference (155), i.e.

∗ Blue: sSFR < 10−10.8 yr−1M⊙,
∗ Red: sSFR > 10−10.8 yr−1M⊙.

– Star formation rate. The second criterion we use is based on the galaxy’s SFR,
where we define:

∗ Star forming: SFR > 0,
∗ Non star-forming: SFR = 0.

In the present section we show the results that less impact the predictions for each
of the above considerations (e.g., for the mask effect we show the results related to masking
5% of the galaxies), otherwise we present both of them. The complete analysis can be seen in
Reference (74).

6.3.1.1 Galaxy graphs

Table 10 – Values of the linking radius found by Optuna for the selected models.

Model rlink

Relative error: P = 15% 0.913h−1 Mpc
Color: Blues 1.065h−1 Mpc
Color: Reds 1.025h−1 Mpc

Non star-forming 1.160h−1 Mpc
Forming stars 1.231h−1 Mpc

2D positions and 1D velocity 1.938h−1 Mpc

In all the above scenarios we are modifying the CAMELS catalogs in order to include
the systematic effects. Thus, we include them in all training, validation, and testing catalogs,
while converting them, according to the same prescription of Section 6.1.1.3, to graphs. The
main difference relies in the linking radius, which when it was not ∼ 1.25Mpc/h, we present
according to the effect analyzed in Table 10. This parameter was found with the help of Optuna
(243). We emphasize that the above effects do not represent all possible systematic effects that
appear in real surveys (369).
12 We have checked that this choice is similar to the color bi-modality, following Reference (367) for

IllustrisTNG CV boxes. For a complete correspondence on IllustrisTNG color and SFR selection,
see Reference (368).
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Figure 62 – Examples of 2D graphs built from galaxy catalogs from different CAMELS
simulations: Astrid, SIMBA, IllustrisTNG, Magneticum, SB28, and
SWIFT-EAGLE. The nodes represent the galaxies and their colors correspond to
the normalized z component of their peculiar velocity. Galaxies are connected by
edges (shown as black lines) if their distance is smaller than the linking radius. We
stress that, in this pictorial representation, there are no galaxies which are linked
due to PBC. Source: Reference (74).

An interesting systematic tested was the line-of-sight distance uncertainties. In order
to perform this change in the catalogs we consider all the galaxies in the same z plane, as
the 2D graphs, show in Figure 62. We present one graph for 1 CV box of Astrid, SIMBA,
IllustrisTNG, and Magneticum, and 1 SB/LH box of SB28 and SWIFT-EAGLE. Following
the same prescription of Reference (71), we are representing the galaxies by points, colored
according to their values of the transformed velocities, and the edge connections by black lines
(see Figure 45). Notice that we are not representing the galaxies connected by PBC. Also, we are
always selecting galaxies more massive than our minimum stellar mass cut of M⋆ = 1.95 · 108

M⊙/h. By removing one spatial component, this figure shows some important differences
compared to the 3D graphs. First, due the fact that we have artificially created galaxies closer
to each other (because we removed one spatial component), we allowed more connections
(roughly speaking, we have ∼ 50 connections per galaxy, 5 times more than in the usual 3D
case of Reference (71)). This number is still larger because, as already mentioned in the previous
paragraph, the preferred value for the linking radius is larger than in the 3D graphs. This can
be indicative of how the GNNs gather information to provide predictions which are still good,
even if they do not capture the information from larger scales.
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6.3.2 Methodology

We have used the same basic GNN, along with the MNNs architecture for likelihood-
free inference, training procedure and optimization, as well as metrics (restricting only to the
relative error and reduced chi squared here), that were used to evaluate the models in Sections
6.1.2, 6.1.3, 6.1.4, and 6.1.5. The main difference is the inclusion of different systematics in the
galaxy catalogs.

6.3.3 Results

In this section we present the main results of testing our GNN models on galaxy catalogs
with different cosmologies, astrophysical parameters, and subgrid physical models from the
catalogs used for training, considering the different systematics. For a complete analysis, see
Reference (74).

Figure 63 shows the average over the predictions in the LH test set of Astrid, SIMBA,
IllustrisTNG, SB28, Magneticum, and SWIFT-EAGLE for the different systematics (namely,
masking 5% of the galaxies, relative velocity perturbation of 15%, absolute velocity perturbation
of 100km/s, 2D positions and 1D velocity, blue and red galaxies, star-forming and non star-
forming galaxies) and comparing it to the results without systematics (see “considering all
the galaxies”). This representation is made just to facilitate the discussion (see a complete
presentation of all the systematics, as well as a complete representation of the predictions in
Reference (74)). Also we present (next to the name of the subgrid physical model, in the legend)
the number of catalogs considered with predictions with χ2 < 10. Catalogs with predictions
beyond this threshold are considered as outliers.

The systematic analysis considering 5% of masking, velocity uncertainties, line-of-sight
uncertainties, blue, and star-forming galaxies, shows strong evidence that the network is still
robust across the different subgrid physical models. This is because all the values for ϵ are close
to 12, and χ2 are around 1, which is in agreement with the results obtained while disregarding
those systematics (see, e.g., the results of “considering all the galaxies”).

In the case of velocity perturbation, the relative perturbation of 15% (see Equation 6.28)
leads to larger error bars, as well as worse scores (ϵ > 12%), when compared with the absolute
(additive) perturbation of 100km/s. A remarkable prediction is that provided by the results
using only line-of-sight information – i.e., 2D positions and 1D velocities. Even considering all
the galaxies in the same plane, we still get a robust model (with prediction slightly worse for
SWIFT-EAGLE), with all the metrics comparable to the model without any systematics. While
considering color selection, the predictions show that the network extrapolate better for blue
than for red galaxies, a fact which is directly seen in the number of catalogs considered with
χ2 > 10, which are discarded: 6% → 12%, from blue to red galaxies. A worse performance is
observed for the predictions from star-forming and non star-forming galaxies, where the latter
shows the poorest results. In terms of metrics, we have ϵ ∼ 16% and χ2 ∼ 2.4 for SIMBA for
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Figure 63 – Averaged predictions over Astrid, SIMBA, IllustrisTNG, SB28, Mag-
neticum, and SWIFT-EAGLE for the different observational effects com-
pared to the case of disregarding systematics. We present truth - inference
averaged predictions, from the top to bottom, for: on the first row - all the galaxies
(without systematics, on the left panel), masking (on the right panel); on the second
row - relative velocity perturbation (15%, on the left panel), absolute velocity per-
turbation (100 km/s, on the right panel); on the third row - line-of-sight distance
uncertainties (2D positions and 1D velocities); on the fourth row - blue (on the left
panel) and red (on the right panel); on the last row - star-forming (on the left panel)
and non star-forming (on the right panel). In the legends we present the metrics
for each simulation, followed by the number of boxes with predictions accounting
for χ2 < 10. Source: Reference (74).

non star-forming predictions.
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6.3.4 Discussion and conclusions

There are many different aspects related to the different performances, across the
different systematics considered in this work. When masking the galaxies, we are randomly
removing objects from the cosmic-web. This was shown to work for a small fraction of the
galaxy content (of course, the results get slightly worse as we enlarge the masked fraction – see
Reference (74)). The velocity uncertainties evidentiate the impact over the velocity component
of the phase-space information, which leads to a worse performance on the robustness, in both
cases of the velocity errors. The main reason for the slightly worse performance when we put
all galaxies on a plane can be related to the lesser amount of information. In particular, by
doing so we lose information from large scales in the z dimension. The worse performance for
color-selected red galaxies implies that the GNN is being impacted by the lower number density
and higher clustering information associated with those objects. In the case of star-forming
selection, considering non star-forming galaxies means that we are taking into account catalogs
with a lower number density of objects. However, those are likely numerical artifacts and,
therefore, cannot be trusted (368).

We stress the importance of further investigating the removal of certain galaxy catalogs
labeled as “outliers” based on their χ2 values. Such removal may stem from correlations
with specific astrophysical parameters and associated systematic effects, or even from flaws
in the definition of galaxy selection criteria, such as color selection, within the LH/SB sets,
where variations in parameters may alter color bimodality. Analyzing the latent space and
employing Domain Adaptation techniques (see References (370, 371)) could offer avenues for
future exploration. However, it is worth noting that this approach has been previously employed
in other studies (see References (71, 72, 372)), and the identified outliers constitute only a small
fraction of our the test sets. Therefore, these considerations guided our decision to present this
solution here.

In conclusion, we have shown that the method proposed by us in Reference (71) (see
Section 6.1), to recover cosmological parameters from galaxies, and further developed here,
is relatively robust to observational effects. For some of those real-world effects, the results
are still very good, while for others there is a larger impact on the accuracy of the recovered
parameters. We believe that further improvements can be made by, e.g., training on an even
wider parameter space that includes not only cosmology and astrophysics, but also systematic
effects. Moreover, we can also design models which are more accurate within a given range
of scales and with specific selection criteria. This research represents an important first step
towards applying these methods to real galaxy catalogs.



201

7 DISCUSSION AND CONCLUSIONS

This thesis represents an innovative collection of ML methods for extracting cosmolog-
ical information. This is accomplished in two ways: first, by obtaining cosmological parameters
through traditional pipelines, by improving cosmological covariance matrices, and by perform-
ing field-level likelihood-free inferences; and second, by obtaining galaxy properties based on
their DM host halo information. After discussing the necessary background of cosmological
and ML methods, covered in Chapters 2 and 3, respectively, the achievements related to the
problems addressed by our doctoral research were presented in Chapters 4, 5, and 6, dedicated
respectively to the improvement of cosmological covariance matrices, halo-galaxy connec-
tion, and simulation-based inference. In this final chapter we present a discussion, ideas for
improvements, and the main conclusions that can drawn from the entire body of work.

In the Cosmology background, we provide an overview of the foundation concepts
in Cosmology. We began in Section 2.1 introducing classical Cosmology, which encompasses
Einstein’s equations, the FLRW metric, and the Friedmann equations. These serve as the basis
for introducing cosmological parameters and discussing the eras of the Universe. In Section
2.2, we briefly described the history of the Universe based on these eras. Section 2.3 introduced
various cosmological tools, including correlation functions, power spectra, halo and galaxy
bias, and an overview of the halo model. We also touched on the estimation of cosmological
parameters using Bayesian theory and covariance matrices, marking the traditional approach
to this task (see Section 2.3.5). Linear and nonlinear Cosmology were presented in Sections 2.4
and 2.5, respectively, as means to explain linear and nonlinear scales for the power spectrum,
which serves as the primary summary statistic studied throughout the thesis. In particular,
in the case of nonlinear Cosmology, we used this opportunity to introduce the main set of
simulations utilized in this thesis: N -body and hydrodynamical simulations.

In the ML background chapter, we delved into various ML algorithms to provide
a comprehensive understanding of their application. Firstly, we offered a brief review of
fundamental ML concepts in Section 3.1. Secondly, in Section 3.3.1, were explored NNs within
the context of tabular data. Thirdly, the discussion shifted to CNNs in Section 3.3.2, motivated by
their application to matrix data. Fourthly, Section 3.3.3 focused on image denoising techniques,
predominantly utilizing CNN blocks. Fifthly, we introduced GNNs and their components,
along with the graph data structure, in Section 3.3.4. Sixthly, we presented ideas about SR in
Section 3.2.3. Seventhly, tree methods were discussed in Section 3.2.2. Eightly, the k-Nearest
Neighbors algorithm for clusterization was introduced in Section 3.2.1. Ninthly, Section 3.5
covered various ML techniques necessary for handling challenges such as imbalanced data sets,
stacking different ML predictions, and optimizing ML hyperparameters.

Chapter 4 presents a study focused on developing an efficient method for computing
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accurate cosmological covariance matrices, which are essential for parameter inference in
Cosmology. By leveraging CNNs for denoising, the method effectively removes noise from input
matrices while preserving essential features. We trained our method on covariance matrices
computed from a data set comprised of ExSHalos mock catalogs, and showed that the CNN
demonstrates robust generalization when applied to covariance matrices from N -body simula-
tions like Quijote. Validation tests confirm the method’s efficacy, including MSE reduction,
comparison of eigenvalues, and analysis of diagonal values (see Section 4.5). The study also
compares the method with mathematical models (presented in Section 4.5.5), revealing its
ability to virtually augment sample size. Parameter estimation, presented in Section 4.5.6, fur-
ther validates the approach, showing significant improvements in parameter constraints. The
primary limitation of the model arises from the computational cost associated with running the
ExSHalos simulations, albeit still less comparable to running hundreds of N -body simulations
– but without this method, one would need to run many thousands of N -body simulations in
order to arrive at the same level of accuracy.

Some next steps for this project could include: (i) testing the machinery in matrices from
different cosmologies, other than the fiducial ones used in the training stage, in order to assess
its generalization capability; (ii) applying the ML suite to more complex and realistic covariance
matrices, such as those in redshift space, with multiple tracers of the large-scale structure, and
higher-order statistics; (iii) employing this methodology to a real survey, training it on their
mocks (accounting for their systematic), and obtaining an accurate and precise covariance
matrix from a small number of N -body realizations for it, finally estimating the parameters
– and by doing so, reducing the bias in those parameters. Overall, this work underscores the
potential of image denoising techniques to enhance cosmological parameter estimation.

Chapter 5 delves into the intricate halo-galaxy connection by employing various ML
approaches to predict galaxy properties, including stellar mass, sSFR, radius, and color, based
on known DM halo attributes (halo mass, age, spin, concentration, and overdensity). In the first
approach (see Section 5.3), we tested different ML algorithms (ERTs, kNN, LGBM, and NN), a
combined version of them (stacking their predictions), as well as data augmentation techniques.
Validation tests using the MSE and PCC scores have confirmed the method’s improvements
over other works in the literature, as detailed in Section 5.3.2. Although neither the separate
predictions, nor the stacked model, were able to predict very well the full distribution of galaxy
properties, the stacked version proved to aggregate the best parts of the separate predictions
while mitigating their weaknesses. On the other hand, by leveraging models trained with
augmentated data sets we were able to improved the prediction accuracy for the tails of the
distribution of galaxy properties, which turns out to be particularly important for sSFR and
color – even if the overall distribution remained imperfect.

To address the stochasticity behind the galaxy properties (see Section 5.4), the second
approach aimed at obtaining PDFs, instead of single-value (deterministic) predictions. The
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excellent performance of this technique resulted in a successful recovery of the complete
distribution of galaxy properties, including joint galaxy-galaxy and galaxy-halo distributions,
as shown in Section 5.4.2. However, a comparison test between sampling over probabilities
and maximum likelihood methods (Section 5.4.2.3) yielded similar results, without necessarily
maintaining the overall distribution accurately.

Further investigation should be devoted to: (i) testing other means to improve the overall
distribution for maximum likelihood estimation methods (e.g., using different ML methods or
exploring other halo-galaxy properties); (ii) employing different probability estimator methods
to handle higher-dimensional spaces for the predictions; (iii) conducting a concrete comparison
between these two approaches using specific metrics; (iv) including predictions for satellite
galaxies, as well as solving the inverse problem (predicting halo properties from the observable
galaxies). In that context, Chapter 5 presents two possible solutions to deal with the scatter
and the intricate relations of the halo-galaxy connection.

Chapter 6 presents a proof of concept for the use of GNNs in Cosmology, demonstrating
novel achievements. Firstly, in Section 6.1, a GNN trained with a MNN on a broader data set of
galaxies (specifically, Astrid) is showcased. This robust model can extrapolate predictions to
constrain Ωm across various astrophysical parameters, six different subgrid physical models,
and different halo/subhalo finders. Secondly, in Section 6.2, SR was used to translate GNNs into
equations that encapsulate the halo/galaxy phase-space information and geometry. While GNNs
trained on halos exhibit robustness tested on halo catalogs of manyN -body and hydrodynamical
simulations, they cannot extrapolate to galaxies; however, the symbolic equation can, after
parameter adjustment. Thirdly, in Section 6.3, the effect of observational effects on estimations
made by GNNs+MNNs is estimated, showing robustness even when considering these new
challenges. Estimations on galaxy catalogs still face many challenges, such accounting for
super-sample covariance effects, and σ8 inference remains elusive.

Additional next steps for this project include: (i) investigating more mechanisms of
robustness, such as Domain Adaptation methods; (ii) addressing computational memory issues
to handle larger graphs, capable of accommodating more galaxies; (iii) incorporating full
probability estimators to replace the MNNs and comparing results with other ML and traditional
methods; (iv) marginalizing over observational effects, not only differences in cosmological
and astrophysical parameters; (v) investigating the most important physical scales behind the
success of these inferences; and (vi) looking for an explanation for the “outliers”. Therefore,
Chapter 6 presents an alternative ML method for inferring cosmological parameters that does
not necessitate cuts on scale, can be interpretable into analytical equations, and which is robust
to several known sources of systematic effects.

In conclusion, this thesis has explored innovative applications of ML techniques in
Cosmology, addressing key challenges in parameter estimation and exploring in new ways our
understanding the halo-galaxy connection. From improving cosmological covariance matrices
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using CNNs, to predicting galaxy properties with advanced ML algorithms, each chapter has
contributed to advancing our understanding of how to extract valuable information from cos-
mological data sets. Moreover, the integration of GNNs, MNNs, and SR in Chapter 6 represents a
significant leap forward, offering a promising alternative for cosmological parameter inference.
By leveraging the power of ML, this work opens new avenues for cosmological research, paving
the way for more accurate and efficient methods in the quest to unravel the mysteries of the
Cosmos.
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APPENDIX A – SOLVING THE POISSON EQUATION IN FOURIER SPACE

This appendix is related to Section 2.5.1 and it shows the details behind the solution
of Equation 2.76. First, we can write the discretized version of Poisson’s equation, using the
7-point “crest” template (127, 128), as

∇̃2ϕ̃ ≃ ϕ̃i−1,j,k + ϕ̃i+1,j,k + ϕ̃i,j−1,k + ϕ̃i,j+1,k + ϕ̃i,j,k−1 + ϕ̃i,j,k+1 − 6ϕ̃i,j,k =
3

2

Ωm,0

a
δ̃, (A.1)

where (i, j, k) = 1, . . . , Ng . Then, we write the fields ϕ̃(k), ϕ̃(x), and δ̃(x) in the discrete space
according to

ϕ̃k
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=
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N
3/2
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i
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)]
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where ϕ̃k
k̄x,k̄y ,k̄z

↔ ϕ̃(k), ϕ̃x
i,j,k ↔ ϕ̃(x), δ̃xi,j,k ↔ δ̃(x), and Ng means we are using code units in

the way that LBOX = Ng.

Replacing the above fields in the Equation A.1 we have
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Multiplying both sides of Equation A.5 by exp
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Converting the exponential terms as
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we have
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And, finally
ϕ̃(k) = G(k)δ̃(k), (A.9)

with
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where kx,y,z = 2πk̄x,y,z/Ng, exactly as presented in Equation (2.85).
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