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The aim of science is not things themselves, as the dog-
matists in their simplicity imagine, but the relations
among things; outside these relations there is no reality
knowable.

Henri Poincaré, Science and Hypothesis (1905)



Abstract

Optimal information processing in peripheral sensory systems has been associated in
several examples to the signature of a critical or near critical state. Furthermore, cortical
systems have also been described to be in a critical state in both wake and anesthetized
experimental models, both in vitro and in vivo. Using a methodology inspired in the
biological setup, we investigate whether a similar signature characterizes the internal
representations (IR) of a multilayer (deep) spiking artificial neural network performing a
recognition task. The increase of the characteristic time of the decay of the correlation of
fluctuations of the IR, found when the network input changes are indications of a broad-
tailed distribution of IR fluctuations. The broad tails are present even when the network
is not yet capable of performing the classification tasks, either due to partial training
or to the effect of a low dose of anesthesia in a simple model. This is a signature only
for significant changes involving labeled inputs. However, we don’t find enough evidence
of power law distributions of avalanche size and duration. Finally, the perturbational
complexity index (PCI) of IR was measured. The PCI distinguished levels of training
time and also effect of anesthesia leading to a characterization of the spatio-temporal
pattern of activity in the internal layers.

Keywords: Neural Networks; Internal Representations; Critical Brain, Complex index.



Resumo

O processamento de informações ótimo nos sistemas sensoriais periféricos tem sido associ-
ado em diversos exemplos à assinatura de um estado cŕıtico ou próximo ao cŕıtico. Além
disso, sistemas corticais também foram descritos como estando em um estado cŕıtico tanto
em modelos experimentais em estados de viǵılia ou anestesiados, tanto in vitro quanto
in vivo. Utilizando uma metodologia inspirada nos sistemas biológicos, nós investigamos
se assinaturas similares caracterizam as representações internas (IR) de uma rede neural
artificial de spike multi-camada (profunda) realizando uma tarefa de reconhecimento. O
aumento do tempo caracteŕıstico do decaimento da correlação das flutuações da IR, en-
contrado quando o input da rede muda, são indicações de distribuições de caudas longas
nas flutuações da IR. As flutuações estão presentes mesmo quando a rede não é ainda
capaz de realizar uma tarefa de classificação, seja devido ao treinamento parcial ou ao
efeito de uma baixa dose de anestesia em um modelo simples. Esta é uma assinatura
apenas para mudanças significativas envolvendo inputs rotulados. Porém, nós não encon-
tramos evidências suficientes de distribuições de lei de potência do tamanho e duração das
avalanches. Por último, o ı́ndice de complexidade perturbacional (PCI) da IR foi medido.
O PCI distinguiu ńıveis de tempo de treinamento e também efeito de anestesia resultando
em uma caracterização do padrão espaço-temporal da atividade nas camadas internas.

Palavras-chave: Redes Neurais; Representações Internas; Cérebro Cŕıtico; Índices de
Complexidade.



Contents

1 Introduction 7
1.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Critical Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Critical Phenomena and the Brain . . . . . . . . . . . . . . . . . . 13
1.3 Complexity Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Spiking Neural Networks 18
2.1 A Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Training a Spiking Neural Network . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Learning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Neural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Implementing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Internal Representations Analysis 38
3.1 Label Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Learning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Anesthetized Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Random Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Avalanches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Perturbational Complexity Index . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Complexity of Learning Process . . . . . . . . . . . . . . . . . . . . 58
3.6.2 Complexity of Perception . . . . . . . . . . . . . . . . . . . . . . . 59

4 Conclusion 61

Reference 64

Appendices 71

A Article 72



Chapter 1

Introduction

The behavior of large and complex aggregates of elemen-
tary particles, it turns out, is not to be understood in
terms of a simple extrapolation of a few particles. In-
stead, at each level of complexity entirely new properties
appear, and the understanding of the new behaviors re-
quires research which I think is as fundamental in its
nature as any other.

Philip Warren Anderson, More is Different (1972)

1.1 Artificial Intelligence

Although there is no precise definition with regard to what Artificial Intelligence (AI)
means, not to mention intelligence, at least we can partially describe what AI tries to
do and how. For our purposes, it consists of the art of building biologically inspired
machines to solve problems that in principle are intuitive tasks for living beings, but
extremely complicated to put in simple mathematical rules. For instance, despite the
computational power of programmable digital computers have, even a resourceful software
implementation of procedural rules, fails significantly in pattern recognition, including
image and speech recognition, where the brain handles it straightforwardly. It is in this
sense that AI intrinsically involves and takes inspiration from the theory of cognitive
science, such as learning and knowledge acquisition as its central approach. While this
idea may seem new, due to its modern technological applications, the notion of a thinking
machine has been in the imaginary since the Greek mythology.

The pioneers of cybernetics Warren McCulloch and Walter Pitts [1] introduced the
first artificial neural modeling of the all-or-none behavior of nervous cells units, with the
aim of computing logic operations by making circuits composed by them. From then on, a
great effort appeared for the construction of a learning theory. Psychologist Donald Hebb
in the seminal 1949 work [2] suggested that the learning process is expressed by an adap-
tation of synaptic connections. Later, the earliest artificial neural networks (ANN) that
learn from examples appeared, such as the first feedforward network, called the Percep-
tron, invented in 1957 by Frank Rosenblatt [3]. The (multi-layer) perceptron is composed
of layers of interacting McCulloch-Pitts neurons or single layer perceptrons, shown in
figure 1.1. Each unit is defined by a weight vector w ∈ Rd, where d is the dimension of
the input and by one output neuron described by a sign function. Among Rosenblatt’s

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: Rosenblatt’s Perceptron.
The perceptron is defined by a weight
vector w ∈ Rd, where d is the dimen-
sion of input and by an output neuron
described by a signal function, also re-
ferred by a McCulloch-Pitts neuron.

x1

x2

x3

x4

xd

y = sign(wx)

w ∈ Rd

Input x ∈ Rd

Output

important contributions is the introduction of the learning algorithm, characterized by
the reorganization of learnable parameters w from the information in labeled examples
of a training set, with the purpose of accomplishing the successful binary classification
of arrays of feature inputs. He proved the theorem that the algorithm is able to find
a solution w that correctly classifies the examples of the training set, should a solution
exist. This was undoubtedly an intellectual milestone in the development of AI machines.
It is no wonder that a human created system that learns from experience without having
previously established any specific rule gave substantial impulse for the AI future. Nev-
ertheless, it was at this moment of optimism that Marvin Minsk and Seymour Papert,
in their book entitled Perceptrons [4], demonstrated that there are some cases where the
solution does not exist. In particular, the perceptron can not be applied to the XOR
function. They also extended this result incorrectly to the multilayer perceptron, arguing
as a proof, that they did not know how to analyze this type of model. Unexpectedly, it
culminated in discouraging of financial support for this type of paradigm in AI. The next
important stimulus for the study of ANN came from the discovery [5] and the rediscovery
[6] of algorithms to train multilayer networks that can solve general classification prob-
lems.

In the present day, variations on the perceptron are the building blocks of Deep Learn-
ing Neural Networks, renowned for a remarkable success in applications across multiplies
fields. Such networks encompass, in the midst of many, Convolution Neural Networks for
Vision [7] and Transformers for Language [8]. Therefore, the perceptron is a fundamental
piece for the construction of powerful machines whose outstanding performance exceeds
human beings in many tasks. For example, one of the many breakthrough examples can
be found in the domain of Board Gamer, when the first AI based on deep reinforcement
learning beat a human world champion at Go in 2016 [9]. This seemingly unimportant
task led to the important development of AlphaFold that largely improved the prediction
of the structure of proteins from the DNA sequence information [10].

Indeed, the undergoing revolution brought by the many applications of AI in general
and Deep Learning in particular, currently underway, will change many aspects of so-
ciety in the near future. Despite the technological advances, the understanding of the
reasons behind the performance of a deep neural network are far from satisfactory. Due
to their importance, this is a relevant issue. The study of the Statistical Mechanics of
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Neural Networks has a history that spans several decades and topics [11]. The formal
concepts of Statistical Learning theory as the VC (Vapnik–Chervonenkis) dimension and
the Rademacher complexity have been the canonical measure for understanding of the
generalization error1 in neural networks [12, 13]. Yet, there is a huge gap in having a
complete description of the learning processes in large neural networks.

Before delving deeper into this intriguing question, let’s define concretely what an
ANN is and what its relation is to the brain. Quoting the words of Teuvo Kohonen from
reference [14],

“Artificial neural networks” are massively parallel interconnected networks of
simple (usually adaptive) elements and their hierarchical organizations which
are intended to interact with the objects of the real world in the same way as
biological nervous systems do.

By means of this description, it is possible to identify characteristics partially resem-
bling the brain. Some of them are: parallel information processing, composition by many
interconnected excitable units, interaction with an environment and, crucially, execution
of a meaningful task. As a whole, these constitute one of the fundamental aspects of the
information processing dynamics in the brain computational architecture. It is important
to note the following point, on one hand, regardless of its inspiration and similarities in bi-
ological neural networks, ANNs are far from being accurate models for brain functioning.
On the other hand, this can be a useful tool for the understanding of the neurophysiological
processes (perception, memory, language), since in the controlled setup of ANN models,
questions can be related to the analysis of experimental data from biological systems in a
wide range of empirical conditions. This approach is loosely known by connectionism, and
it was developed in the 70-80’s by many authors, systematically presented in the book
Parallel Distributed Processing [6].

The difficulty in building a fully developed theory for capabilities of deep learning sys-
tems stems mainly from two factors (1) neural networks are universal approximators [15,
16] and (2) the nature of acquiring artificial intelligence is a NP-complete optimization
problem [17]. In essence, neural networks are devices capable of approximating any arbi-
trary continuous function. As a result, having a learning algorithm, neural networks have
the ability to correctly map the features of a relevant task, where initially it is described
by an unknown function, at least for the examples of the training set. It is at this point
that the training time takes its important place. The main obstacle to attain a good
performance in the learning from data process is in the computational complexity. Even
for shallow neural networks in the worst-case scenario, the optimization of all neural net-
work’s parameters is definitely a non-efficient algorithm. And to make things worse, the
training techniques become even more challenging in front of the heavily parameterized
models, since that large numbers of parameters increase complexity. It was only at the
beginning of this millennium that the training of deep nets became practicable. Some
reasons were the low cost and the general purpose implementation of GPU (Graphics
processing unit) devices, unlike the CPU (Central Processing Unit), is a parallel compu-
tation circuit.

Thus, in short, deep networks are hard to interpret. Each breakthrough within the
scope of applications makes the learning problem in such models additionally fascinating.
As Leo Breiman pointed out in [18],

1The accuracy in samples outside of training set.
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Figure 1.2: Curves for training risk (dashed line) and test risk (solid line). (A) The
classical U-shaped risk curve arising from the bias–variance trade-off. (B) The double-
descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical”
regime) together with the observed behavior from using high-capacity function classes
(i.e., the “modern” interpolating regime), separated by the interpolation threshold.
The predictors to the right of the interpolation threshold have zero training risk. Im-
age taken from reference [20].

1. Why don’t heavily parameterized neural networks overfit the data?

2. What is the effective number of parameters?

3. Why doesn’t backpropagation head for a poor local minima?

(1) A still unanswered question is how over-parameterized networks show a small
generalization error even when a landmark result in Machine Learning (ML) tell us the
opposite. The bias-variance trade-off predicts that a neural network should be overfitted2

in the scenario when the number of free parameters is notably greater than the number
of examples in the training set of a supervised learning [19]. Illustrated in figure 1.2-(A),
the U-shape curve represents exactly this condition. Note that the sweet spot has two
characteristics, first there is a point where the test error reach its minimum value. After
this point, the test error increases with the model capacity3. That is why for a significant
task to be learned, the selection of the model architecture has always been based on this
classic finding, in order to achieve an excellent performance both in the training set and
test set, which is the central goal of ML practitioners. However, what we see in Figure
1.2 (B) is not exactly this traditional recipe, i.e, after the training error approximates
zero, the test error starts to decrease over again. This phenomenon is known as double-
descent, and it is genuinely connected to deep learning. The point at which it starts the
second descent is called the interpolation threshold, approximately when the number of
parameters is equal to the number of samples in training set.

(2) What is the minimum number of samples required for a learning model to generalize
well? Typical approach to answer this question involves employing capacity measures. By
means of this, it is possible to determine a bound on the generalization error in terms of
the number of trainable model parameters relative to the number of examples in training
set. Nevertheless, the ability to fit random labels, as known as memorization, is one of
the recent evidences that demonstrates that usual complexity measures, such as the VC
dimension, are not sufficient to explain the generalization performance of state-of-the-art

2Overfitting is expressed when the model has a good accuracy in the training set but a poor one in
the test set.

3There are several definitions of capacity one of them is understood as the number of trainable
model parameters.
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neural networks [21], which raises more questions about the successful learning in deep
systems.

(3) Fully understanding the optimization procedure, in deep networks, contains many
open problems. The gradient descent of an error function combined with the backprop-
agation algorithm compose the modern method to train deep neural networks. As a
consequence, given an over-parameterized setup, the analysis of the learning trajectories
in the surface of loss function is a demanding task. Little is known theoretically about the
existence of local minima and their relationships with the test error [22]. This situation
persists even for global minima, which it has been characterized with more details in the
random labels experiment. The presence of bad global minima4 elucidated that explicit
regularization plays an important role in the generalization error [23].

In the light of those open questions, it is notable that there is a great effort to fully
clarify how massive size neural networks work. In special, we address the contributions of
the statistical physics community. During the development of a statistical learning theory,
the main efforts came from engineering, given the future possible applications, and the
mathematical perspective, formalizing it with rigorous results. Despite that, the remark-
able success of disordered systems in describing artificial information processing models
[24], such as the classic Hopfield neural network [25], concretely positioned as a vital tool
in the construction of a learning theory for neural networks. In this sense, bringing again
the limitations of classical learning theory in explaining deep nets, it makes us rethink
the role of statistical physics in such models. As pointed in [26] titled Understanding deep
learning is also a job for physicists, solutions of theoretical questions may be solved using
a physics-based approach.

To formalize a solid theory in deep learning, three elements and their interactions
need to be well understood, structured data, architecture, and training algorithm. For
instance, the connection between information processing in the continuum depth limit
of deep feedforward neural network and the formal aspects of Renormalization Group
has been done [27, 28, 29]. In addition, a concrete example of a recent application lies
in the field of condensed matter physics. The success of neural networks in identifying
phases of matter [30] has positioned them as an essential tool for reconstructing order
parameters of complex systems. This may have interesting consequences, as many physics
models are very well understood analytically, it can facilitate making these large black-
box models interpretable and explainable. Continuing along this line of reasoning, a
new paradigm has recently emerged: physics-informed neural networks [31]. Here, we
can incorporate observational, inductive and learning bias to bring prior knowledge of
symmetry, conservation and dynamics of physics laws in the training section. Finally,
information bottleneck ideas have been employed in support of an information theory of
deep learning [32].

1.2 Critical Phenomena

Statistical Physics is a probabilistic framework to extract the thermodynamics (macro-
scopic) properties of physical systems composed by a huge number of units, leading from
the microstates of atoms and molecules to emergent collective behavior described by
macrostates. Examples of systems that have been studied come from many fields of nat-
ural science, from gases, solids, ferromagnetic materials in physics to the flock of birds

4The point where the training error is zero, whereas the test error does not.
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in biology. By finding the relevant variables, its main approach involves marginalizing
over details of a large arrangement of elements, in the hope of capturing the fundamental
aspects on a simplified model. Although it originated as a research field of pure physics,
its general character leads to an essential tool in the investigation of a vast number of
interdisciplinary phenomena, including models of the brain.

The state of matter can be exhaustively characterized by a very large number, possibly
of the order of 1023 degrees of freedom {xi}i∈I of a system, where xi could represent the
local magnetic moment of each atom with i ∈ {1, · · · , N}. However, a more economical
way to overcome this issue is to associate microscopic samples (configurations) to some
macroscopic variables through a probabilistic view. For example, energy, density, pres-
sure and so on constitute the primary suitable variables for describing the macroscopic
properties of the physical system. In addition, variables, such temperature and external
field (magnetic or electric) are control parameters, since they are used for definition which
specific experimental conditions that a system is being examined. In the context of neu-
ral networks, the coupling strengths5 are a crucial element for learning and information
processing and thus a possible set of variables describing the microstate for analysis of
the learning dynamics. Alternatively, the state of the variables describing the neurons
can represent the microscopic state. Moreover, the definition of a macroscopic variable of
interest, also known as order parameter, is vital to depict the state of system. As in the
study of phase transitions of magnetic materials6, where xi represents a spin, a quantity
of interest is the density ρ written by

ρ =
1

N

N∑

i=1

xi, (1.1)

and the susceptibility, a measure of sensitivity to external changes,

χ =
N

kbT

(
⟨ρ2⟩ − ⟨ρ⟩2

)
, (1.2)

where kB is the Boltzmann constant and T the temperature. Moreover, to gain insights
into the microscopic structure, it is pertinent to compute the two-point correlation func-
tion

Γ(ri, rj) = ⟨(xi − ⟨xi⟩)(xj − ⟨xj⟩)⟩, (1.3)

with ri representing the position vector of the ith element on site i and ⟨· · · ⟩ symbolizes
the thermal average. Assuming that the correlation function only depends on the distance
between of sites, i.e. Γ(ri, rj) = Γ(ri−rj) = Γ(r), in general it can follow an exponential
decay

Γ(r) ∼ r−τ exp

{
−r

ξ

}
(1.4)

when the temperature is distant from the point of phase transition separating ordered and
disorder phases represented by the critical temperature Tc or by the critical point (Tc, Hc),
if an external field is taking consideration. Naming ξ as the correlation length which it
gives us the typical decay of correlation between two elements of the system with respect
to the distance between them, and the exponent τ a constant. From theory of phase
transition, at critical point the correlation length goes to infinity. In this situation, the

5Also called weights or synaptic couplings.
6The reader could have in mind an Ising-like model, but many variations can be considered.
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Figure 1.3: Phase transition of matter. Tc

represents the critical temperature. In the
region close to this point, long-range corre-
lation is observed. The correlation length ξ
is a measure of the spatial correlation de-
cay. When T → Tc, ξ → ∞.

T

ξ

Tc

Solid Gas

Sublimation

Deposition

model become strongly correlated and as a consequence news proprieties emerge. Within
one of them is the aspect of scale-free, where there is not a specific scale to characterize
the model. Mathematically speaking, the density, the susceptibility, the correlation length
and others relevant variables are governed by power laws (PL). Upon defining the reduced
temperature ϵ ≡ (T − Tc)/Tc and reduced external field h ≡ (H −Hc)/Hc, we arrive at
the following and respectively equations

⟨ρ⟩|h=0 ∼ |ϵ|β, (1.5)

χ|h=0 ∼ |ϵ|−γ, (1.6)

ξ|h=0 ∼ |ϵ|−ν . (1.7)

β, γ, ν are called critical exponents and are, in the case of scale-invariance, related by
a scaling law. Knowing the entire set of critical exponents, we are able to characterize
fully the model near of the continuous phase transition. In particular, the divergence of
correlation length expressed by the equation 1.7 is illustrated in Figure 1.3.

Lastly, within our perspective it is important to mention the intricate relation between
the susceptibility and the correlation function. As mentioned above, the susceptibility tells
us what is the response of density to changes of external influences. Analogous definitions
will show to be appropriate when exploring the connection between the external input
and the activity of neurons of neural networks. The expression

⟨ρ2⟩ − ⟨ρ⟩2 = ⟨(ρ− ⟨ρ⟩)2⟩ = 1

N2

∑

i

(xi − ⟨xi⟩)
∑

j

(xj − ⟨xj⟩) =
1

N2

∑

ij

Γij, (1.8)

used for the computation of susceptibility, takes into account the correlation between all
the elements. Considering time indexing of the state as another dimension, as we shall
see, will lead to the analysis of temporal correlations, our first step to describe the activity
in the hidden layers of neural network.

1.2.1 Critical Phenomena and the Brain

The idea that the brain operates at a critical point of a phase transition has permeated
the field of Neuroscience since the first experimental detection of neuronal avalanches,
scale-free bursts of neuronal activity, by Beggs and Plenz [33]. From that time onward, a
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collection of evidences has appeared [34], giving support to what is known as the critical
brain hypothesis. Some characteristics of neuronal avalanches are their size and duration.
The size represents the number of neurons fired. Meanwhile, the duration is its lifetime.
Thus, Beggs and Plenz breakthrough comes from finding it useful to describe in terms of
scale free, i.e power-law (PL), the distributions for the size and duration of avalanches:

P (S) ∼ S−τ , (1.9)

P (T ) ∼ T−τt , (1.10)

respectively, with τ = 1.5 and τt = 2. These critical exponents were identified belonging
to the same universality classes as those of mean-field directed percolation (MF-DP)
models, also termed branching networks [35]. Hence, MF-DP has been the canonical
model, within the critical brain theory community, to explain the brain’s performance,
storage and dynamical range, since at the critical point information processing is optimized
as shown by Kinouchi and Copelli [36]. In addition, Touboul and Destexhe [37] showed
that PL distributions may not be a sufficient signature of critical states. They suggested
that a stronger condition to check criticality is by the crackling noise scaling relation [38]

1

σνz
=

τt − 1

τ − 1
, (1.11)

where σ, ν and z are other critical exponents. In a nutshell, σ defines a cutoff in the
avalanche size distribution, ν defines the typical length L of the largest avalanche and, z
computes the duration T of an avalanche of spatial extent L, expressed as Lz [38]. Finally,
the term 1/σz is known as the fractal dimension of avalanches. The previous relation 1.11
is derived by observing that the avalanche size and its duration must be coupled through
the equation

⟨S⟩ ∼ T
1

σνz . (1.12)

Thus, when both sides of the equation 1.11, found independently, are the same, the
criticality condition is realized.

The Self-Organized Criticality (SOC) theory proposes an explanation of why emergent
properties of systems with many interacting elements arise spontaneously. The canonical
example to show the relevance of SOC mechanism is by means of the sandpile model
introduced by Per Bak, Chao Tang and Kurt Wiesenfeld in seminal 1987 work [39], where
scale-invariance cascades of events, known as avalanches, following a power law distri-
bution, cause the system to self-organize towards a critical point of stable and unstable
states defined as a continuous absorbing-state phase transition. For the redistribution
of grains to happen and for avalanches to be well-defined, SOC says that slow external
input (i.e, the number of grains is being added slowly), bulk conservation and bound-
ary dissipation are the essential keys underlying the critical dynamics, which it has been
partially linked with the brain functioning and its structure. Nevertheless, the meaning
of boundary dissipation in neural systems is not yet clear [40]. Also, the fact that the
separation of timescales - between the slow external input and the internal relaxation dy-
namics of the system (avalanches) - is not concretely applicable in biological systems [41],
raises concerns about the sufficiency of SOC mechanics to explain the observed neuronal
avalanches and to conclude that the ones are from a criticality. Since the brain is an open
system and its activity never ceased, new ideas have emerged suggesting that, in fact, the
continuous dynamics of the brain are not at a critical point, but rather orbiting a critical
point through a homeostatic mechanism [42], i.e, is self-organizing at the edge of a phase
transition.
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In addition to the lack of solid theoretical foundations, challenges are faced in the
experimental domain, the measurements of avalanches exponents are dependent on exper-
imental techniques, brain region and animal and its conscious state. Inconsistent results
have been obtained for distinct avalanches exponents from the same brain region of the
same animal species [41], even when both experiments satisfy the crackling noise scaling,
i.e, both are critical. It leads to puzzling questions: If both experimental technique are
compatible, then the critical exponents are only apparent or, perhaps, the crackling noise
isn’t a sufficient condition to express signatures of criticality. If the experimental tech-
niques aren’t compatible, then we need a standard method to characterize the avalanches
exponents. In addition, all experimental techniques are sub-sampling the internal brain
states and a sub-sampled theoretical model is necessary to reproduce the experimental
results [43]. Experimental techniques for detection of avalanches and the criterion for
criticality assessment are still unresolved problems [41, 44].

Given this set of empirical evidences and broad-tailed distributions are observed in a
wide range of natural phenomena [45], it leads to the assertion that the avalanches obeyed
PL are an incomplete description of phase transitions in brains. The problem is not only
the characterization of PL’s, but also in the theoretical framework. The scaling relations
of critical exponents of second order phase transition, at a mean-field level, found in MF-
DP, are only compatible with those observed by experimental data on spike avalanches
through a fine-tuning [46]. In addition to all of this, it is important to stress that modeling
brain tissue in terms of networks of stochastic neurons prompts us to inquire if this is a
justifiable path to understand capabilities only seen in systems that learn from experience.
In others words, a meaningful task behind a theoretical model is a pathway to get closer
to the role of function in biology. Consequently, that makes us consider an AI machine
as a possible system to examine questions related to criticality signatures and optimal
information processing. Therefore, we seek clarification on the following issue:

Do the time series of internal representations of inputs in a complex artificial
neural network, successful in a meaningful task, present critical activity signa-
tures, analogous to the ones found in biological systems?

The answer will most likely differ from a simple yes or no. A clear “yes” would have
quite important consequences, as it might help in further identifying criticality as a general
signature of successful information processing. In addition, it may illustrate and help in
the design of experiments probing the neural time series from live animals, such as mice
or rats, obtained by multi-electrode implantation, by allowing rapid test of hypotheses
in the artificial set up, that would demand vast resources and times in the biology lab.
Our modeling proposal would be an addition to current mathematical models of neural
networks, based on more realistic neurons of the Hodgkin-Huxley class. Since these models
have not been trained to classify large data sets in a meaningful task, they might fail to
reproduce the information processing aspects that lead to optimal information processing
at, or near, the edge of criticality, although they might be considered far closer to the
experimental neural architecture. A clear “no” may bring questions about whether the
correct variables have been identified in the artificial neural networks which can be thought
of analogous to the biological ones. An intermediate answer will, hopefully raise new
questions that may suggest new experimental research questions.
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1.3 Complexity Index

There is no doubt that capturing the essential behavior of complex systems is a chal-
lenging effort in the actual scientific scenario. A complex system exhibits emergent phe-
nomena, by which it can not be simply understood in terms of its constituents. Phrasing
“The whole is greater than the sum of its parts.”, there is no place for a reductionist
methodology in the study of such systems which doesn’t take into account the conse-
quences of the interactions. As an example, flocking only appears when a group of birds
interacts following a specific rule, just like consciousness emerges through the sophisti-
cated connection between billions of neurons in different cortical areas [47]. In short, one
of the common proprieties observed here it is a complex pattern from a collective group
of elements.

An initial approach to understanding this class of models would be to evaluate com-
plexity indices as a way to identify the presence of an emergent process. For example,
Integrated Information Theory (IIT), formulated by G. Tononi [48], aims to propose an
objective measurement of consciousness over any physical system of units, introducing
a quantity called of integrated information Φ. However, the calculation of this quantity
may be computationally intractable in most experiments. A concrete approximation of Φ,
based on information geometry was proposed by Oizumi et al. [49]. From this study, nu-
merous applications have arisen in many fields [50], including the classic Ising model [51].
As an empirical example, an index of brain complexity called the perturbational complex-
ity index (PCI) was shown to be useful in clinical practice, since it was demonstrated to be
capable to distinguish level of conscious experience for individuals showing different brain
states (wakefulness, dreaming, anesthesia, coma etc.) [52], where the idea underlying it
is to measure the spatio-temporal pattern of the brain’s activity after of a transcranial
magnetic stimulation (TMS).

Since neural networks are information processing devices, it seems reasonable to ques-
tion if a complexity index would be useful for understating of learning process. In others
words, what is expected of the activity pattern when a machine is learning a recognition of
images from a dataset? Maybe a quantity that measures complexity is a strong indication
that artificial intelligence is an emergence process. It is vital to stress the following idea:
the accuracy is already a measure of performance, however, it is only relative to output
layer, thus what we want to do is to understand the complexity inside the machine. In
short, we address the following questions in this dissertation,

Does an artificial intelligence machine become complex as it gets trained?

Could a complexity index be an order parameter of learning process stages in
artificial neural networks?

1.4 Materials and Methods

In this project, we intend to investigate the phenomenology of learning processes in
artificial intelligence systems and the connections it might have with unsolved problems
in Neuroscience. The primary methodology will be the recording of time series of inter-
nal representations of an artificial neural network in deep architectures of spiking units
performing a recognition task.

Inspired by the analysis of time series from cortical implanted electrodes in rats, either
freely behaving or under different levels of anesthesia, our aim is to mimic the procedure
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Figure 1.4: Typical experimental setup, using electrodes for studying cortical activity
during a visual perception task. We adapted the elements of that study to an artificial
neural network environment.

done in a neuroscience laboratory, but now taking an artificial neural network as the main
subject of study. As illustrated in Figure 1.4, a typical sensory perception experiment is
consisted by some steps: external stimulus, the recording of brain activity and the animal
behavior report. In a straightforward manner, it can easily translate for our context taking
into consideration the following point: the external stimulus is described as a sequence
of image inputs, the data collection of the neural network activity is done by a machine
learning framework and the last, the behavioral report, which it is, in this case, a visual
perception of a image expressed by the words “This is an image of the number zero”,
it will be interpreted by the successful classification of a labeled input. In addition, the
term internal representations (IR), expressed in Figure 1.4, are the internal states of the
animal brain employing a cognition task, i.e, they are all the neuronal representations of
the external stimulus from the outside world. Hence, given the classifiable inputs, the IR
of a trained deep neural network are the activity of neurons of the internal layers.

Finally, since the feedforward spiking neural network will be use as the primary model,
it is important to express the reasons of our choice. There are two points here, the first lies
in the architecture. As already explained, there is not yet a well-developed theory for deep
learning and so, consequently, the fully connected layers neural network ends up being
the main massive model to be explained and interpreted. Through empirical evidences,
we intend to answer questions about the connection between the network structure and
its information processing. Second, spike units bring us roughly closer to biology neural
networks. Now, we are dealing with excitable binary neurons modeled by a dynamics
of membrane potential and thus, the feature of recurrent7 dynamics, crucial element in
biological nets, is present.

7In our context, recurrent means a short-term memory.



Chapter 2

Spiking Neural Networks

Pensé en un mundo sin memoria, sin tiempo; consideré
la posibilidad de un lenguaje que ignorara los sustan-
tivos, un lenguaje de verbos impersonales y de indeclin-
ables eṕıtetos. Aśı fueron muriendo los d́ıas y con los
d́ıas los años...

Jorge Luis Borges, El Inmortal (1947)

2.1 A Brief Introduction

Artificial neurons usually transmit information through a single continuous and time-
less value of an activation function h(x), with x a weighted sum of inputs. In contrast,
in biological neural networks, transmission occurs through several biophysical computa-
tions involving synaptic interactions, ion channels and variation of membrane potential
over time, but primarily through action potential, roughly expressed by spikes. There
are several mathematical models of the action potential generating mechanism which in
general can be traced back to Hodgkin and Huxley’s (HH) seminal contribution. These
models vary in mathematical complexity and can lead to high computational costs. A
simple representation of occurrence of a spike is by means of a Heaviside step function
Θ(U(t)− θ), where U(t) the membrane potential in time and θ the firing threshold, illus-
trated in Figure 2.1a. This curve symbolizes that when the membrane potential reaches
a threshold θ, the neuron will fire, expressed by a non-zero value of step function. Of
course, the full dynamics of membrane potential over time is behind of that and so the
next step will be to establish a model for it. To give a concrete example, Integrate and
Fire (IF) models captured the essential properties underlying electric potential difference
in nerve cells, resulting a cheap computational power. As it will be employed in our neural
network, the next section will be in charge of studying in detail. Choosing an alternative
route, since the strong nonlinearities HH lead to numerically very stiff differential equa-
tions, an activation function h(x) that represents an average firing rate, permits the use
of minimization techniques for gradient based learning algorithms in neural networks, in
which the sigmoid and the ReLU1 curves are the typical transfer functions of widespread
use. The sigmoid one is plotted also in Figure 2.1a. The interpretation of θ following

1ReLu means rectified linear unit.
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Figure 2.1: The Heaviside step function Θ(U(t) − θ) is representing a spike neuron
(green curve) and h(x) an activation function of an artificial neuron (orange curve). (a)
Forward pass: The process of computation of inputs. We can see that the activation
function is a kind of smooth step function. (b) Backward pass: The process of compu-
tation of derivative through of backpropagation algorithm. In this situation, the deriva-
tive Θ′ is zero everywhere except at θ, where it is infinite. Meanwhile, h′(x) has a well-
defined derivative across the entire x-axis.

the same idea, the only difference is that θ is not a membrane potential threshold, but
threshold of a weighted sum of inputs.

Illustrated in Figure 2.1b, the impossibility of spiking neurons handling the backprop-
agation algorithm, by virtue of non-differentiable behavior in the step function, referred
to as the dead neuron problem, led to the use of the artificial neuron as the canonical
building block of neural networks for machine learning models. Nevertheless, it doesn’t
mean that it isn’t possible to train a deep neural network of spike units using variations on
the theme of the same methodology. A few relevant methods for training a spiking neural
network (SNN) will now be mentioned [53]. The Shadow Training algorithm consists in
converting a trained ANN to SNN by means of transformation of activation functions
into spike rate. The Surrogate Gradient applies precisely the backpropagation algorithm
into connections between spiking neurons using an approximation of the derivative of the
Heaviside function, only in the backward computation. In particular, since we will be
focusing on SNN of feedforward architecture, and it would be advantageous to bring well
established methods of machine learning for brain-inspired models, the last one will be
used.

The major force behind the development of SNNs stems from the need to create an
energy efficient model for real-world signal processing in artificial intelligence systems.
The inspiration for this comes from how efficiently the brain operates with only about
20W , and it delivers strong performance on cognition tasks. Going down a different
path from the von Neumann architecture, neuromorphic engineering, based in the brain
structure, has been developed to set up an efficient and scalable computation for large
neural networks [54]. Despite the applications that this can lead to the light of computer
science, our attention lies in understating the information processing in these type of
models, as already explained.
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Figure 2.2: The black box of
artificial intelligent machines.
{x0,µ, yµ} is the input/output
pair, ŷν = f(x0,ν ,w∗) is the pre-
diction made by a machine capa-
ble to implement the hypothesis
set fw∈Λ and w∗ is the parame-
ter found by a machine after the
learning process.

x0,ν

Input

f(x0,ν ,w∗)

Hypothesis Set
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2.2 Training a Spiking Neural Network

Three mayor modelling decisions have to be made in order to implement the SNN:
the learning problem, the architecture and the learning algorithm. We now discuss these
points in detail.

2.2.1 Learning Problem

A training set consists of n independent and identically distributed (i.i.d) input/output
pairs, ´. In a multi-class classification problem, yµ ∈ {1, 2, . . . , C} is the class of input
x0,µ, where C is the total number of classes. Given a set of parametric functions fw∈Λ =
{f(x0,w): w ∈ Λ}, also referred by admissible functions or hypothesis set, and any sample
of P (x0, y), (x0,ν , yν), the goal of supervised learning is to find a function, ŷν = f(x0,ν ,w∗),
capable to predict correctly the class of any input x0,ν , i.e, ŷν = yν , illustrated by 2.2. It
does not imply that there is only one function, but the one that the best approximates
the true output. We commonly designate the term w as learnable parameters or weights.
The loss function L(y, ŷν = f(x0,w)) is a measure of the distance between the prediction
made by ŷν and the true value yν . In order to achieve the goal of learning, we should
minimize, over the family fw∈Λ, the expected value of the loss function, so-called the
population risk or generalization error

eG(w) =

∫
dx0dyP (x0, y)L(y, f(x0,w)). (2.1)

But in general, we don’t have access to the distribution P (x0, y), therefore the straight-
forward method to minimize the risk is via an approximation, so-called Empirical Risk
Minimization (ERM) written by

w∗ = argmin
w∈Λ

[
1

n

n∑

µ=1

L(yµ, f(x0,µ,w))

]
, (2.2)

where the quantity being minimized is the empirical risk, popularly known by the training
error

eT (w) =
1

n

n∑

µ=1

L(yµ, f(x0,µ,w)). (2.3)

One of the issues about minimization is that, typically, once we find the global minima
of empirical risk, there is no guarantee that we will also find a low population risk eG(w

∗).
That situation is described when a trained neural network has a poor generalization ability.
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Figure 2.3: Polynomial regres-
sion. For 10 data points that
follow a sine curve affected by
Gaussian noise N (µ = 0, σ2 =
0.2), overfitting happens when
the order polynomial function is
M = 9.
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This is commonly referred to by the community as overfitting. One of the main reasons for
this phenomenon lies in the choice of model architecture complexityfw∈Λ, the minimization
technique and the nature of the task to be learned. The typical illustration to elucidate
this is when we want to fit an observed data set. Image that this data roughly follows
a sine curve. If we decide to fit a polynomial function to this data set, we must choose
the polynomial order appropriately. A high polynomial order gives enough degrees of
freedom so that the fitted curve follows exactly the observed data, see Figure 2.3. This is
a bad scenario, since new data would be far from the curve of best fit by the training set.
In other words, one inappropriate choice leads to drastic consequences on generalization
ability. That’s why the selection of the model architecture is crucial to show an excellent
performance both in the training set and the test set, which is the main goal of machine
learning.

A direct algorithm to perform the optimization problem defined in equation 2.2 is
gradient descent (GD) expressed by

wn+1 = wn − ηn∇weT (wn) (2.4)

where ηn ∈ R+, the learning rate, determines the step size at each interaction. Of course,
the last interaction of this algorithm occurs when the gradient is zero ∇weT (w

∗) = 0
implying that we can identify w∗ as local or global minima of empirical risk. Equation
2.4 says that the learnable parameters are updated at each step in the direction of the
steepest decrease of the loss function, i.e, in its negative gradient,

−∇weT (w) = − 1

n

n∑

µ=1

∇wL(yµ, f(x0,µ,w)). (2.5)

Moreover, in multilayer perceptron, equation 2.4 represents updating the weights and
computing of the gradient over the weights between two consecutive layers. As we add
more layers to our model, the computational cost of the full gradient at each step of GD
ends up becoming high. Not only that, this issue becomes more relevant when we increase
the number of samples from the training set D. The term full gradient means we need
to compute the gradient for all n samples of D at each step of GD. For these reasons,
an alternative to overcome this problem is to compute the gradient only on subsets of a
previously randomly shuffled training set Bk ⊂ D known as mini-batches. This approach
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is called stochastic gradient descent (SGD) [55] and it is one of the most used optimization
technique in Machine Learning practice, especially in Deep Learning. Thus, the sequential
interaction of the weights adjustments follows the equation

wk+1 = wk − ηk
1

|Bk|
∑

µ∈Bk

∇wL(yµ, f(x0,µ,w)), (2.6)

with |Bk| the mini-batch size. Notice that it is only necessary to compute the gradient
of the loss function in each mini-batch. Although the analytical calculation of the gra-
dient can be a straightforward task, a naive strategy of this calculation can increase the
computational cost substantially. We repeatedly emphasize in the computational cost
considerations because of the time complexity, which it is an essential issue for Deep
Learning implementation. In fact, we are interested in neural networks with multiples
hidden layers, potentially with millions or billions parameters to be adjusted and so with
a massive number of mathematical operations required for the computation of all compo-
nents of the gradient during the convergence of the gradient step descent. In that regard,
the error backpropagation algorithm is an efficient method for evaluating the gradient of
any differentiable multivariate function, in such way that the determination of the sequen-
tial chain rule is just a special case of the reverse mode of accumulation differentiation.
The principal distinction between the automatic differentiation2 and the symbolic differ-
entiation3 becomes clear in the face of a complicated algebraic function. The first one
incorporates intermediary functions through elementary arithmetic operations to apply
the chain rule repeatedly to each term comprising the global function. The big advantage
of this approach lies in the implementation of an efficient code for the computing of the
gradient, where it will combine two types of procedure, the forward pass representing,
given an input, the calculation of the output from all layers in the neural network, and
the backward pass representing the sequential computation of all errors associated of each
neuron from the output layer to the input layer. To translate this into equations, let’s
consider a fully-connected feedforward neural network of artificial neuron units with L
layers. The output y

(l)
j of the jth neuron in the lth layer is expressed by





z
(l)
j =

∑

k

w
(l)
jk y

(l−1)
k

y
(l)
j = σ(z

(l)
j ),

(2.7)

where w
(l)
jk is the synaptic weight between the kth neuron in the (l − 1)th layer and the

jth neuron in the lth layer. σ(·) is the activation function and z
(l)
j is the weighted sum

of inputs. Thus, one of the components of the gradient of the loss function L(w) is the
partial derivative

∂L
∂w

(l)
jk

, (2.8)

that is, the sensibility of loss with respect to learnable parameter w
(l)
jk . Using the chain

rule and the definition done in equation 2.7, we obtain

∂L
∂w

(l)
jk

=
∂L
∂z

(l)
j

∂z
(l)
j

∂w
(l)
jk

= δ
(l)
j y

(l−1)
k ,

(2.9)

2It combines two modes: forward and reverse accumulation.
3a.k.a algebraic differentiation.
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with δ
(l)
j = ∂L

∂z
(l)
j

representing the contribution to the error related to the jth neuron in

the lth layer. In simpler terms, with the purpose of calculating all the partial derivatives
in 2.8, we must establish an equation for the error of all neurons, since y

(l)
k has already

computed in the forward pass. Stated differently,

δ
(l)
j =

∂L
∂z

(l)
j

=
∑

k

∂L
∂y

(l)
k

∂y
(l)
k

∂z
(l)
j

=
∂L
∂y

(l)
j

∂y
(l)
j

∂z
(l)
j

=
∂L
∂y

(l)
j

σ′(z(l)j ),

(2.10)

of course, with the condition

∂y
(l)
k

∂z
(l)
j

= 0 if k ̸= j. (2.11)

However, as the output of neural network is a combination of function composition and
the matrix multiplication, it is expected to find a unique expression that combines the
error associated of lth layer and the (l + 1)th layer. In fact, applying again the chain rule
in the error equation and using equation 2.7, we obtain

δ
(l)
j =

∂L
∂z

(l)
j

=
∑

k

∂L
∂z

(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=
∑

k

δ
(l+1)
k

∂z
(l+1)
k

∂z
(l)
j

=
∑

k

w
(l+1)
kj δ

(l+1)
k σ′(z(l)j ),

(2.12)

an equation of the error of lth as function of the error of (l+1)th next layer. As we can see
this previous equation has a nice interpretation, the computing of the error is backwards,
i.e, from the output layer to input layer. This is the core of the error backpropagation
algorithm [56]. To put it briefly, in order to calculate the gradient of a loss function over
the parameters, we must start the calculation of the error associated in the output layer,
the Lth layer, and then the error associated in the (L−1)th layer and so on. By employing
this strategy, all partial derivatives needed to compute the gradient are evaluated easily.

In short, we have the following equations of the error backpropagation technique in
multilayer neural network with L layers





δ
(L)
j =

∂L
∂y

(L)
j

σ′(z(L)j )

δ
(L−1)
j =

∑

k

w
(L)
kj δ

(L)
k σ′(z(L−1)

j )

∂L
∂w

(l)
jk

= δ
(l)
j y

(l−1)
k .

(2.13)

2.2.2 Neural Modeling

Nonlinear spatio-temporal partial differential equations (PDE) are obtained through
a detailed description including ionic conductance and morphology of neural cells (see e.g



24 CHAPTER 2. SPIKING NEURAL NETWORKS

Figure 2.4: An experimental measurement
of the action potential. Image taken from
reference [58].

[57] and references therein). Thus, it seems impractical modeling a neural network using a
realistic description of the neurons, at least if we are studying the computational dynamics
and not the physiological details. For the sake of simplification, we can remove the space
dependence in the PDE, so-called spatial discretization process, which leads to a set of
coupled nonlinear ordinary differential equations (ODE), known as conductance-based
models. The classical example to understand the ionic conductance roles in the neuron
activity is the Hodgkin–Huxley model. The groundbreaking success in the Hodgkin-
Huxley’s experimental measurements was the first modeling of ionic mechanism involved
an action potential of the nerve cell membrane [58], indicated in Figure 2.4. Even so,
conductance-based model is still highly computationally costly for the theoretical study
of macroscopic dynamics of a population neuron, indicating that we should seek another
neural modeling for large-scale training of deep neural networks. Some other limitations
are

1. Dynamical systems with large numbers of control parameters makes qualitative
analysis an arduous task. Conductance-based models are parameterized in a high-
dimensional space [57], suffering from the curse of dimensionality [59].

2. Conductance-based models are experimentally constrained. It says that experimen-
tally well-defined parameters of neurons from some region of the brain, or even from
another living being, can be used to represent the biophysical mechanisms of com-
pletely distinct neurons, leading to what we call Frankenstein models4.

It is reasonable to search for a simplified and general purpose model. The first step
would be to set aside all neuron’s biophysical dependencies from conductance-based mod-
els and only concern on the phenomenology of action potentials. In such manner, the
integrate-and-fire (IF) neuron is equivalent to the electrical circuit with only a capaci-
tance, characterized by the dynamics of the nerve cell’s membrane potential as an inte-
gration process of synaptic and external inputs, and by a reset mechanism, where the
membrane potential is returned to its resting potential after reaching the firing thresh-
old. While the IF model describes satisfactory single spike events, a key ingredient for
the dynamics of the membrane potential is still missing, the leaky current. The leaky
integrate-and-fire (LIF) [57] neuron follows the same principle of IF model, integration

4A term commonly used in the Laboratory of Neural Systems, FFCLRP.
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Figure 2.5: LIF neural modeling. R,
C, Urest, I, θ are the resistor, capaci-
tor, resting potential, current input and
threshold firing within reset mecha-
nism, respectively.
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of inputs combined with a reset mechanism, the only difference is in a new element of
resistance to the electrical circuit representing the leaky, an RC circuit as illustrated in
figure 2.5. Accordingly, the total input current in that circuit can be expressed by

I(t) = IC(t) + IR(t), (2.14)

where IC(t) and IR(t) represent the electric current flowing through the capacitor and
resistor, respectively. These currents can be denoted by the following equations





IC(t) = C
dU(t)

dt
,

IR(t) =
U(t)− Urest

R
,

(2.15)

with U(t) the membrane potential at time t and Urest the resting potential. Now, defining
the variable τ = RC as the time constant of the neuron, equation 2.14 is formulated by

τ
dU(t)

dt
= − [U(t)− Urest] +RI(t) (2.16)

a first-order linear ODE. In terms of the biophysical aspects of nerve cells, the expres-
sion 2.16 is called the equation of a passive membrane. Nevertheless, equation 2.16 is not
the final description of the dynamics of the LIF neuron, we must define a value of firing
threshold θ and a reset mechanism for the resting potential. After that, the description of
the LIF neuron is completed. Additionally, from this point we will assign Urest = 0 across
the entirety of this project without loss of generality. Hence, the solution of equation 2.16
for current input constant I is

U(t) = RI + [U(0)−RI]e−
t
τ . (2.17)

We are concerned with implementing that spiking neuron model as the building block
of a SNN, so the starting point would be to do a numerical integration of equation 2.16.
Since numerical precision is not crucial in our context5, the simple Euler method is enough

5Computing speed is more important.
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Figure 2.6: Unfolded computa-
tional graph of the LIF neuron
with a reset by subtraction of
threshold θ. Loop arrow symbol-
izes the dynamics of membrane
potential in time t. Depth indi-
cates the direction of the out-
put layer. (l)th is the consecutive
layer of the (l − 1)th layer. L(t)
is the loss function computed
at step time t. Finally, tU is the
last step time of membrane po-
tential.
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for our modelling purposes. Therefore, when choosing a ∆t small enough, we obtain that
the membrane potential at the next time step is

U [t+∆t] =

(
1− ∆t

τ

)
U [t] +

∆t

τ
RI[t]. (2.18)

We designate the term
(
1− ∆t

τ

)
= β as an estimate of the inverse time constant β̃ = e−t/τ

for condition when ∆t << τ . The meaning of β becomes clear when the total input is
zero, where the remaining components in the numeric solution 2.18 and in the solution of
original equation 2.16 are respectively





U [t+∆t]

U [t]
=

(
1− ∆t

τ

)
= β

U(t)

U(0)
= e−t/τ = β̃,

(2.19)

thus β and β̃ are the ratio between two successive membrane potential values. Due to
the association between the variables β and τ determined by this prior equation, we will
only utilize β as a membrane potential decay measure. Consequently, the expression 2.18
results on

U [t+∆t] = βU [t] + (1− β)RI[t]. (2.20)

At present, let’s adjust the resistance value to R = 1 with the aim of reducing the
number of parameters, that means we measure resistances in units of R. Let’s see that
this will not impact in the numerical simulation, as long as the definition of the membrane
potential decay is related to the product of the resistance and the capacitance, τ = RC.
Then, the selection of an appropriate value of τ is more than enough. As described in
reference [53], two non-physiological assumptions are made here:

1. The input current is adjusted by one time step increment, i.e, I[t] −→ I[t+ 1].

2. The element I[t+1] is interpreted as I[t] = wS[t], where w is the connection matrix
between two consecutive layers and S[t] is any from of input. As consequence, the
term (1− β) will be assimilated by w.

In the first assumption, the purpose to incorporate an increment into the time step of
the input current focuses on the equivalence of the recurrent dynamics of membrane
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potential, characterized by the fact that the state of neuron is determined solely by its
previous state. This can be seen by considering the following structure of a dynamical
system, with h(1), . . . ,h(T ) representing states over time

h(t) = f(h(t−1),x(t);w), (2.21)

where f a general function, x(t) the sequential inputs received by the network and w the
parameters used for the evaluation of the sequential states. This feature is illustrated in
Figure 2.6 and it is indicated by the loop arrow.

The second assumption ensure that the input S[t] is scaled only by the connections
matrix w. The justification behind this is that, while we are defining S[t] as the firing
of the presynaptic neurons, in general, S[t] can assume various input forms such voltage.
And so, decoupling w and (1 − β) favors the computation of next step of membrane
potential over biological precision.

Going forward, we need to pay attention to the reset mechanism after the neuron
reaches the firing threshold. Reset by subtraction of threshold and reset to zero the
membrane potential are the most frequently utilized in the Computational Neuroscience
literature. Typically, the second one promotes sparsity in the network activity, as the
majority of neuron states spend more in quiescence, below the firing threshold. Ultimately,
we are fully prepared to write the dynamics of ith membrane potential in the lth layer U

(l)
i

of LIF neuron with a reset by subtraction of threshold, i.e,





S
(l)
i [t] = Θ

(
U

(l)
i [t]− θ

)
=

{
1 if U

(l)
i [t] > θ

0 otherwise,

U
(l)
i [t+ 1] = βU

(l)
i [t] +

N(l−1)∑

j=1

w
(l)
ij S

(l−1)
j [t+ 1]− θS

(l)
i [t],

(2.22)

where S
(l−1)
j is the presynaptic input of the jth neuron in the previous layer (l − 1), w

(l)
ij

is the adjustable synaptic coupling between the jth neuron in the previous layer (l − 1)
and the ith neuron in layer (l) and β controls the membrane potential decay. These two
expressions provide a complete description of the LIF neuron. In figure 2.7, we show a
deep multilayer spiking neural network.

2.2.3 Learning Algorithm

As discussed in the preceding section 2.2.1, in order to successfully address a learning
problem, we must confront an optimization problem involving the minimization the ex-
pected loss function within a parameter space. In this way, one can proceed to construct
a learning algorithm for our model, it will be necessary to compute the loss function
through spike neurons. To achieve this, first, the precise definition of the neural code
must be well done. Once the neuronal firing communication is defined, the computation
of the response of neurons in the output layer is feasible as a recognition of the label of an
image and thus enabling a comparison between that predicted response by neural network
and the true targets. This will form the initial basis for pattern recognition in SNN.

Through sensory perception investigations, distinct firing patterns recording are as-
sociated with different external sensory stimuli, such as visual, sounds and smells. In
some way, sensory information about the outside world is encoded by means of neuronal
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Figure 2.7: The diagram
shows the fully connected
feed forward spiking neural
network. Each unit S

(l)
i is a

LIF spiking neuron and the
loop arrow symbolizes the
time-dependent changes of
the membrane potential.
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activity ensuring their accurate perception. If that’s true, what is the nature of the neural
code?

Answering this question is beyond the scope of this dissertation. However, regardless
of what the neural code of the nervous system is, what can be ascertained is that the
brain employs either distinct or combination of neural codes depending on the nature of
the stimulus and the cognition task being performed. The principal ones encompass rate
coding and temporal coding. In special, the second one arises when information can be
assigned to the high temporal resolution in a sequence of spikes. Each temporal structure
of a spike train carries a meaningful information [57]. On the other hand, rate coding
relates to the transmission of information through the neuron firing rates. For instance,
in Figure 2.8, each bright pixel of light represents the stimulus strength that a peripheral
visual system receives, and it is encoded proportionally with a neuron firing rate response.
Bright light corresponds to a higher firing frequency response than dark light. The initial
procedure of neural code is known as input coding and the final one as output decoding.
The last step will be relevant when we seek to comprehend the associations of neuronal
activity patterns and the behavioral report of an animal, for example. Here, it will be
crucial in our classification problem in such a way that each response of output layer will
be connected with a recognition of image, ‘It’s zero’ or ‘It’s shoes’. This is our behavioral
report, a visual perception of a labeled input. For reasons of simplification and of general
purpose, rate coding will be implemented.

Given an input/output pair represented by a labeled image (x0,ν , yν) and a trainable
SNN denoted by its parameters w, we will count how many spikes are observed in each
ith neuron of the output layer through the dynamics of the membrane potential over tU
discrete time steps. After that, we select the index of neuron that has the highest count
as the label predictor ŷ(x0,ν), i.e,

s(x0,ν) =

tU∑

t=0

S[x0,ν , t] =⇒ ŷ(x0,ν) = arg max(s), (2.23)

where S[x0,ν , t] ∈ {0, 1}C represents the response of output layer at t time step, s(x0,ν)
is the spike count of output layer over tU time steps and C is the number of neurons in
the output layer, or rather, the number of classes/labels. Consequently, the rate coding is
converted through the argument of the maxima spike count of the output layer. However,
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Figure 2.8: Rate neural code.
Each intensity of light triggers
a rate spike.

Time

Time

Time

this is insufficient to establish a metric to quantify the predictor error. One way would
be to associate each ith neuron spike count si to a softmax function written as

p(yµ|x0,ν ,w)i =
esi∑C
j=1 e

sj
(2.24)

which can be interpreted as the probability of the prediction of a label yµ when an input
x0,ν is presented to the network model with parameters w. It is clear that the normal-
ization is satisfied with respect to the number of classes C

C∑

i=0

p(yµ|x0,ν ,w)i = 1,with 0 ≤ p(yµ|x0,ν ,w)i ≤ 1. (2.25)

Therefore, we denoted by P = {p(yµ|x0,ν ,w)i}Ci=0 the probability distribution of the
prediction. Correspondingly, the true class distribution is written by Q = {q(yµ|x0,ν)i}Ci=0.
One point worth noting is the distinction between P and Q, which lies in the conditional
w of P while the components of Q consist of a one-hot vector, meaning that each sample
belongs to one of the C classes. In light of this, a measure to calculate the loss function
can be defined based on how one probability distribution P differs from Q in the point of
view of information theory. Following this idea, one of the most natural distance between
two probability distribution is the Kullback–Leibler (KL) divergence K(Q||P ) written by

K(Q||P ) =
C∑

i=0

q(yµ|x0,ν)i log

[
q(yµ|x0,ν)i

p(yµ|x0,ν ,w)i

]

=
C∑

i=0

q(yµ|x0,ν)i
[
log q(yµ|x0,ν)i − log p(yµ|x0,ν ,w)i

]

=
C∑

i=0

q(yµ|x0,ν)i log q(y
µ|x0,ν)i︸ ︷︷ ︸

independent of the parameter w

−
C∑

i=0

q(yµ|x0,ν)i log p(y
µ|x0,ν ,w)i.

(2.26)

Note that the first term does not depend on the parameter of the model, hence it won’t be
required to incorporate it into the final KL expression, as we desire to minimize the KL
distance with respect to w. In other words, the learning algorithm in Machine Learning
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consists in the minimization of the distance of the true probability distribution (Q) from
the prediction one (P ). Therefore, the error function L between the prediction of the
model and the ground truth label is expressed by

L(Q,P ) = −
C∑

i=0

q(yµ|x0,ν)i log p(y
µ|x0,ν ,w)i. (2.27)

This expression is called the cross-entropy of the probability distribution Q relative to
distribution P . Henceforth, we are prepared to apply the concepts already seen here
about the optimization algorithm in artificial neural network, but now in spiking neural
network.

It became evident that the error backpropagation algorithm arises naturally in the
context of feedforward networks composed by artificial neurons units. To put it another
way, the function composition and the continuity of the same is vital to compute the
chain rule. Since now, we are dealing with neural networks with the same architecture
but composed by spike neuron units, a new procedure must be defined in order to correctly
compute the gradient of the loss function. More specifically, there is a need to focus on the
temporal dynamics and the non-differentiability of spikes neurons. Methods for dealing
with temporal dynamics of internal states of a network are already familiar and firmly
established, considering the fact that this holds for RNN. The error backpropagation
through time (BPTT) [60] algorithm evaluates the gradient of error function starting the
chain rule calculation from the output layer and propagating backwards through the neural
network by means the entire path of unfolded computational graph (Figure 2.6) of each
unit in all previous layers. In figure 2.6 the forward computation consists of the sequential
input w

(l)
ij S

(l−1)
i [0], . . . , w

(l)
ij S

(l−1)
i [tU ] and the respective loss values L[0], . . . ,L[tU ]. As a

result, the overall loss function is calculated by summing all the losses at each time step

L =

tU∑

t=0

L[t]. (2.28)

Based on this, we are capable of formulating the partial derivatives

∂L
∂w

(l)
ij

=

tU∑

t=0

∂L[t]
∂w

(l)
ij

=

tU∑
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ij
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∂S
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j [t]
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∂U
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(
t∑

s=0

∂U
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j [t]
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j [s]
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j [s]
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ij

)

︸ ︷︷ ︸
prior influence

.

(2.29)

We observe that this is almost identical to what was seen in the error backpropagation
algorithm, with the only difference being the need to compute the prior influence caused
by recurrent dynamics of neurons. This becomes more clear when we look closely at the

term expressed by
∂U

(l)
j [t]

∂U
(l)
j [s]

involving the influence of the membrane potential of all previous

times. Therefore, using the chain rule, that term can be rewritten by

∂U
(l)
j [t]

∂U
(l)
j [s]

=
∏

t≥i≥s

∂U
(l)
j [i]

∂U
(l)
j [i− 1]

(2.30)
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as a product of multiple factors determined. Accordingly, the prior influence can be
separate into long term and short term dependencies, where the first one refers to the

significant contribution of terms
∂U

(l)
j [t]

∂U
(l)
j [s]

for s << t, while the second one applies only to

k ≈ t. The long term has the potential to cause challenges in the optimization techniques
depending on the value assumed of each component in that product. To be more precise,
if each one displays a value close to zero, the result of that product may end up being
close or even zero and it could kill the gradient, interrupting the gradient descent learning.
The same happens to large values, where results in an unbounded increase in the norm of
the gradient. Such issues are known as the vanishing and the exploding gradient problem
[61], respectively.

The last step is in the application of the reverse-mode differentiation and the obtaining
of the complete gradient over all layers is done in a simple manner. Still, attention should
be given to the second term of equation 2.29. The non-differentiability of LIF neuron
leads a significant problem. As illustrated in Figure 2.1b, the derivative of the Heaviside
function exhibits the following behavior

∂S
(l)
j

∂U
(l)
j

=





0 if U
(l)
j < θ,

∞ if U
(l)
j = θ,

0 if U
(l)
j > θ,

(2.31)

namely, a Dirac delta function. When the membrane potential assumes the threshold
value, U

(l)
j = θ, the computation of loss function grows indefinitely. However, most of the

time, the membrane potential is set to zero as it rarely precisely reach the threshold. In
this way, the gradient of the loss function will almost always be zero, and so, the learning
will not take place, or rather, it will lead to the dead neuron problem.

One alternative for addressing the dead neuron issue involves substituting the deriva-
tive of the Heaviside with a differentiable function. As it is traditional to use S-shape
curve to represent the step function, the derivative of a sigmoid function will be a good
candidate for replacing the derivative of the Heaviside function. Although this procedure
is an approximation of gradient of loss function, its calculation will be well performed
and consequently the learning will unfold. The point here is that the substitution ex-
clusively happens in the backward computation, there is no modification in the forward
computation step. Again, the figure 2.1b displays the described operation. This technique
is known by Surrogate Gradient and was popularised by [62]. Putting this solution into
equations, we considered the following threshold-shifted sigmoid curve and its respectively
derivative.

S̃ =
1

1 + eθ−U(t)
,

∂S̃

∂U
= (1− S̃)S̃, (2.32)

where the replacement is done when the error backpropgation is being applied, i.e,

∂L
∂w

(l)
ij

=
∂L
∂S

(l)
j

∂S̃
(l)
j

∂U
(l)
j

∂U
(l)
j

∂w
(l)
ij

. (2.33)

It is relevant to mention that surrogate gradient eliminates the problem of error propaga-
tion, but the weights are only updated when there is spiking activity. In the absence of
activity, the neuron output is S

(l)
j = 0 and thus the middle term of equation 2.33 is zero.
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Therefore, it is important to adjust a sufficiently large time so that the membrane poten-
tial dynamics emit spikes. Moreover, through empirical practices, it has been observed
that the arctangent function as the most suitable choice to adapt the surrogate gradient
[53]. Among the top candidates are triangular functions, fast sigmoid and sigmoid func-
tions. In special, the arctangent and its derivative as a function of membrane potential is
written respectively by

S̃ =
1

π
arctan (πU),

∂S̃

∂U
=

1

π

1

1 + (πU)2
. (2.34)

2.2.4 Implementing

Applying all the concepts outlined in the preceding sections, a fully connected spiking
neural network, see Figure 2.7, was subject to supervised learning with the goal of recog-
nizing images from standard datasets, the MNIST and the Fashion-MNIST. Both tasks
had the same structure with respect to data set size, training and testing splits, composed
of 60.000 training and 10.000 testing 28x28 gray scale images of 0 to 9 handwritten digits
and of 10 categories of fashion products, as demonstrated respectively on table 2.1 and
2.2.

Hyperparameters were chosen according to table 2.3. The training section was com-
posed by an epoch, a pass over the training set, where the neural network attained an
accuracy above of 80% depending on dataset. Accuracy is measured by attribution the
classification label to the output neuron with the highest firing rate, the spike count. Fig-
ure 2.9 shows the loss and accuracy as a function of the number of subsets (mini-batches)
of previously randomly shuffled training set and test set. Training time refers to each
interaction over mini-batches of the dataset. Training shows three distinct phases. A
short initial phase where the network still cannot implement the task, a fast rising ef-
fective learning phase, and an almost saturated phase showing good performance. After
training, the confusion table becomes practically a diagonal matrix, indicating that the
model classification is most likely a true positive. Figure 2.10 shows the firing rates of
the correct output showing different learning time thresholds for the different categories
being learned.

To examine the performance of a classification algorithm in more detail, a confusion
matrix can be construed. Confusion matrix is a table that shows all the numbers of
true positive and false positive match according to the data labels. The Figure 2.9.C is
illustrated the confusion matrix over MNIST test set after the training. On the matrix’s
diagonal, it is the true positive, outside it is the false positive. Thus, the more diagonal
this table is, the less “confusion” the model has in classifying all the labels of images.
According to this figure, we can check that the trained model is well optimized to recognize
all digits.

Label 0 1 2 3 4 5 6 7 8 9

Sample

Table 2.1: MNIST dataset labeled pattern.
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Hyperparameters
Neural Network Neuron
d = 28× 28 1st Order Leaky Integrate and Fire Neuron

N (1) = 300, N (2) = 300, N (3) = 10 β = 0.5
Batch size = 128 θ = 1

Epochs = 1 tU = 25
η = 5× 10−4

Optimizer: Adam Reset Mechanism: Subtract
Accuracy metric: Spike Count Backward pass: Fast Sigmoid

Loss: Cross Entropy Spike Count

Table 2.3: Hyperparameters used on training. We used standard training for networks
with N (1), N (2) neurons in the 2 hidden layers.

Label 0 1 2 3 4 5 6 7 8 9

Sample

Table 2.2: Fashion-MNIST dataset labeled pattern.
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Figure 2.9: Training session over MNIST train and test set. (A) Loss (left axis) and
Accuracy (right axis). Three different phases can be seen: an initial plateau or slowly
rising accuracy phase, a fast rising and a saturated plateau. (B) Confusion matrix over
the test set after the training. (C), (D) and (E) The evolution of the empirical distribu-
tions of weights between the layers, during training.
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Figure 2.10: Evolution with training time of the firing rate f
(3)
k of output neuron k

when input patterns of type k are presented. Note that it takes different training times
until the network can identify different categories. MNIST dataset.
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Figure 2.11: Training session over Fashion-MNIST train and test set. (A) Loss (left
axis) and Accuracy (right axis). Three different phases can be seen: an initial plateau
or slowly rising accuracy phase, a fast rising and a saturated plateau. (B) Confusion
matrix over the test set after the training. (C), (D) and (E) The evolution of the empir-
ical distributions of weights between the layers, during training.
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Figure 2.12: Evolution with training time of the firing rate f
(3)
k of output neuron k

when input patterns of type k are presented. Note that it takes different training times
until the network can identify different categories. Fashion-MNIST dataset.



Chapter 3

Internal Representations Analysis

The most beautiful thing we can experience is the myste-
rious. It is the source of all art and science.

Albert Einstein, Living Philosophies (1931)

Let’s specify the relevant variables for our study. The activity in the lth layer is
described by a state vector of an N (l)-dimensional space at time t

S(l)(t) =
[
S
(l)
1 (t), · · · , S(l)

N(l)(t)
]
, (3.1)

where N (l) is the number of neurons and S
(l)
i = {0, 1}, the binary output. Also, we can

define the following macroscopic variables (aggregated): the activity density in the lth

layer at time t

ρ(l)(t) =
1

N (l)

N(l)∑

i=1

S
(l)
i (t), (3.2)

and the membrane potential density in the lthlayer at time t

u(l)(t) =
1

N (l)

N(l)∑

i=1

U
(l)
i (t). (3.3)

The characterization of internal representations will be done by measuring the time
series of activity fluctuations. Thus, we use the following notation for the time average
at time t of any quantity f in a time window of width ∆t

〈
f(t)

〉
=

1

∆t

t+∆t∑

t′=t

f(t′) . (3.4)

When f , for fixed t, is an array, so is the above expression and the sums are point wise.
The fluctuation of a quantity around its average is f = f − ⟨f⟩. The un-normalized
truncated correlation is

cf,g(t, τ,∆t) =
〈
f(t) g(t− τ)

〉
, (3.5)

f g is a dot product for arrays, and the normalized correlation of fluctuations or the
truncated correlation is

Cf,g(t, τ,∆t) =
cf,g√
cf,fcg,g

. (3.6)
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Table 3.1: The “movies”

Movie type Composition Description δt Measures
M0 Random

inputs
New random
image every
time step

none ξτ

MS 2 or more
classes

Few slow
transitions
between
classes

δt ≈ 400−500 ξτ

MF 2 or more
classes

Several fast
transitions
between
classes

δt ∼ tU ∼ 25 Avalanches
and

Complexity
Index

For MS and MF , δt is the number of presentations of random choices of examples in the
same class between transitions. It measures the variability of the environment presented
to the NN.

In the simulations we measure CS(l)S(l)(t; τ,∆t), Cρ(l)ρ(l
′)(t; τ,∆t) and Cu(l)u(l′)(t; τ,∆t),

functions of the three parameters t, τ and ∆t. Significantly, our objective is to explore
how temporal correlation of fluctuations changes with different delays values τ , since the
detection of long-range temporal correlation carries significant consequences. From an
analogy to spins systems, we expect these correlations to decay with τ as the product
of a fast decaying exponential with characteristic time ξτ and a slow decaying algebraic
function. If criticality is approached ξτ grows and there is a crossover to purely algebraic
decay, but only in the thermodynamic limit as shown in Figure 1.3. For finite systems
an exponential function is a good model, and we consider representing the broad-tails
distribution

C(τ ; t,∆t) ∼ exp

{
− τ

ξτ

}
, (3.7)

where ξτ is the correlation time, a rate of relative decrease of temporal correlation as the
distant of two temporal points in the time series increases. Moreover, we would like to
stress the parameters of the temporal correlation in equation 3.7. Fixing t and ∆t, the
decay of the temporal correlation can see in function of τ . As a result, for an indexed
time phenomena, the correlation time can be computed for each time step t. Besides of
that, fixing ∆t, we can also observe how the temporal correlation behaves in relation to τ
and t. By doing so, we gain a comprehensive overview of the temporal correlation decay
over time.

We use “movies”, sequences of images described in Table 3.1 as inputs to the SNN
under a condition of free dynamics. This means that the recurrent dynamics of membrane
potential is imposed by hand as the input change. The set of numerical experiments is
shown in Table 3.2. α is a parameter introduced to simulate partial blocking of the input
to the network. Every pixel of an input pixel is multiplied by α in the interval (0, 1]. It is
a simplistic model of the effect of anesthesia acting only on the receptors of input layer.
It is used just to study the pattern recognition of a dim input and not as a model of the
effects of a particular type of anesthesia itself.
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Table 3.2: Simulations.

Training Phase Movie Conditions
early M0 α = 1

intermediate M0,MS,MF 0 < α ≤ 1
saturated M0,MS,MF 0 < α ≤ 1

The intensity of the “anesthesia” is 1− α.

Figure 3.1: A movie of MS type.

3.1 Label Transition

We explore the following question: what do we observe in activity of the internal
layers of a trained spiking neural network performing a recognition task when there is
a significant change in the external input? At this moment, significant change means
a classifiable label change in the film presentation. In Figure 3.1, we see a sequence of
images of the label ‘0’ and suddenly a sequence of images of the label ‘1’, a movie of MS

type. For intervals comprising ∼ 500 frames random examples of one of the ten categories
is shown, then for another ∼ 500 frames, examples from another category are presented.
Nothing interesting happens except for a small region in time starting at the transition
with large and persistent fluctuations, see Figure 3.2.

In Figure 3.3 we show result from a typical run with several input class changes. The
neural network is working satisfactorily as shown in Figure3.3.A, since the output cell
with the dominant U (3) is the correct one. Figure 3.3.B shows a very large increase in
ξτ following the input label transitions. A similar behavior, with same peaks, is seen for
the IR in the first hidden layer. While the neural network moves rapidly toward the new
classification, IR show persistent fluctuations, around the transitions. However, is this
peak in correlation time appears for all label transition?

In Figure 3.4, we show the maximum correlation time in the interval of a slow transition
among all label combinations from the dataset. Although one would expect a matrix more
homogeneous, the one for spike activity S(l) is much more filled by correlation time for
both hidden layers. This has an interesting answer, since we are computing the temporal
correlation through the expression 3.5, an element-wise product between state vectors
of layer is being performed. Therefore, realizing that operation, we are not missing any
feature of neurons activity, since averages represent the state of a system with large N
units by a single number. However, this results can be interpreted as follows: we should
not focus on individual cases of label transitions, but rather observe all transitions of all
measured variables. Each variable represents a part of the whole picture, so if we don’t
observe a correlation time for the membrane potential variable, we may see it for the
spike activity, and so on. Finally, we did the same for the Fashion-MNIST, see Figure
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3.5. In this case, the presence of correlation time in transitions is much more evident for
all variables. That can be associated with the complexity and richness of this dataset, it
is no wonder that Fashion-MNIST is used as a benchmark for machine learning models,
see Figure 2.11.

In light of these results, we can draw some preliminary conclusions that will be useful
going forward. Firstly, we observed that a long decay in temporal correlation emerges
when we change the labels of the images. Secondly, the characterization of these long-
tail distributions is not the same for each category transition, meaning that some exhibit
longer or shorter correlation times. Therefore, we can consider that the dataset labels are
represented as different basins of attraction. As we change the input category, the system
converges to a new attractor. To clarify further, for example, using t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [63], a popular dimensionality reduction technique, we
can visualize how each class of the dataset is spread in a two- or three-dimensional space,
useful for humans to interpret data geometrically. In Figure 3.6, we notice that the dis-
tances between each MNIST label are different. This also confirms our result. Different
values of correlation time lead to the conclusion that the basins of attraction have dif-
ferent distances. It is important to note that this is not the only possible visualization,
there are many ways to apply dimensionality reduction methodology, whether preserving
linear structure (principal component analysis, PCA), global geometry (multidimensional
scaling, MDS), or topology (t-SNE).

One last comment remains unexplained. It is interesting to note that all transitions
of the MNIST involving category “1” possess a very pronounced peak in correlation time.
Additionally, this is the last label to be learned in the training process, as seen in Figure
2.10. Finally, looking at the confusion matrix, Figure 2.9 (B), it is the label with the best
classification. Using other clustering methods, known as Distributional Reduction (DistR)
[64], we were able to observe that label “1” has a significant distance from the other labels,
see Figure 3.7. Perhaps this could tell us that there is no smooth and short interpolation
involving images of label “1” and the rest [64], meaning that strongly correlated activity
emerges as we move towards the attraction basin of class “1”. However, this is not verified
in Fashion-MNIST dataset.
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Figure 3.2: IR fluctuations temporal correlation as a function of τ measured on a slid-
ing window centered at time t for the single image change movie. Left: the raw mea-
sured correlations. Right: For each t, the best fit of an exponential decay e−

τ
ξτ , equa-

tion3.7. At the region of the transition of images, the decay time ξτ increases a few or-
ders of magnitude
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Figure 3.3: The MS movie input (no anesthesia α = 1) contains a sequence of 500
random images of label ”0” (green), then 500 of label ”1” (orange), 500 of label ”6”
(purple), and 500 of ”7” (yellow) from the MNIST database. (A) The membrane po-
tential of output neurons responsible for classification of labels during the movie, (B)
The characteristic time of decay of correlations of the fluctuations of the average activ-
ity, of spikes and average membrane potentials of the second hidden layer. (C) Average
activity. (D) Spike train: raster plot of a few neurons of hidden layer 2. (E) Average
membrane potential.
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Figure 3.4: Correlation time for label transition matrix over MNIST dataset. (a) Corre-
lation time in the activity S(l). (b) Correlation time in the activity density time series.
(c) Correlation time in the membrane potential density time series.
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Figure 3.5: Correlation time for label transition matrix over Fashion-MNIST dataset.
(a) Correlation time in the activity S(l). (b) Correlation time in the activity density
time series. (c) Correlation time in the membrane potential density time series.
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Figure 3.6: Visualization MNIST by t-SNE. Image and caption from reference [63].

Figure 3.7: Example of 2-dimensional embeddings produced by DistR using the SEA
(Symmetric Entropic Affinity) similarity for CX (input similarity matrix) and the Stu-
dent’s kernel for CZ (embedding similarity). Image and caption from reference [64].
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3.2 Learning Process

Given a previously trained model, persistent fluctuations appear when there is a change
of label in sequential inputs. Is the signature of long-tailed distributions exclusive to clas-
sifiers in saturated training phase? At this moment, we aim to elucidate the relationship
between the long-range correlation in a slow transition between labels and the learning
process. In special, we show results in Figure 3.8 for a training time step of 25, when
as Figure 2.10 shows, only category “0” is partially recognizable in the output layer. It
may be expected that since the category attractors are not yet fully developed, persistent
fluctuations should not appear. However, despite not achieving correct classification over
all data labels, such persistence occurs during the transition of input categories. This is
observed in distinct cases, first during the transition of a correctly classified input to one
not yet learned (“0” → “1”). Second, when the neural network still has not learned both
input labels (“1” → “6” → “7”). This is evidence that during the learning process, attrac-
tors of the dynamics are partially present in the hidden layer, while still sub-threshold in
the output layer. In other words, despite the low accuracy in the classification performed
at the output layer, the internal layers are conducting significant information processing.
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Figure 3.8: Same as Figure 3.3 but for a partially trained, where only “0” is recogniz-
able. Transition regions show persistent fluctuations, independently of output recogni-
tion.

3.3 Anesthetized Perception

Another experiment consist on sensory perception under a very simple model of the
effect of “anesthesia”. A movie of MS type is presented again to a trained neural network,
but now the stimulus strength of the external input is decreased (multiplied by a factor
α ≤ 1) until eventually the model ceases to classify correctly the input. α can be inter-
preted in two ways, first as the fraction of input neurons that have not been blocked by an
anesthesia, or second as the brightness (or intensity) of an image. Figure 3.9 shows again
that for inputs on which the output is not correct due to diminished input sensibility, the
sub-threshold images can elicit persistent correlations with large characteristic times.



3.3. ANESTHETIZED PERCEPTION 49

Figure 3.9: Same as Figure 3.3 but with neural network under effect of anesthesia,
α = .4, with an MS input. (A) The network is not able to correctly categorize the in-
puts, which generate sub threshold activity at the output layer: there is no communica-
tion of the computation to the outside world. (B) Nevertheless, the transition of inputs
generates persistent fluctuation correlation. (C, D) show the activity in the second hid-
den layer, but (E) Average membrane potential u(2).
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This result can be interpreted by drawing on ideas from studies in the field of neu-
robiology. The state of coma in a person can be attributed as a state where there is no
behavioral report, but relevant activity within the internal states of the brain is detected.
Bringing this into our experimental context, the neural network does not exhibit any re-
sponse in the output layer, but as there is detection of image labels in the hidden layers
(peaks in correlation time), we can assert that, similarly to biological neural networks,
artificial neural networks can perform “unconscious” pattern recognition. Although this
may be a crude equivalence, the output layer can provide one more contribution to this
argument. Note that all activity is slightly below the firing threshold. As we increase or
decrease the effect of anesthesia, the output layer will respond according to each anes-
thesia condition. Moreover, we can further add to our argument the dynamics of the
membrane potential of the output neurons. Notice that as we change the label of the im-
age, correlated fluctuations persist. Put differently, correlated sub-threshold oscillations
are evident in the final layer, namely the recognition layer.

3.4 Random Inputs

To ensure that the increase of the characteristic time of decay of temporal correlation is
a signature of labeled input transitions, we need to examine the network activity response
in the presence of random inputs not associated with any specific dataset category. In
Figure 3.10 shows results for a combination of movie of type M0 and some random choices
of examples in the same class of dataset. The green color represents the random images,
in which each pixel follows a uniform distribution between 0 and 1 U(a = 0, b = 1). We
notice there is no presence of correlation time in the temporal series of activity when the
random images of film is being exposed. However, long-range correlation emerges during
the transition from random to labeled input. This has a similar interpretation to previous
cases, where the search for an attractor basin leads to persistent activity.

Now, let’s conduct another similar experiment. A movie composed of random images of
distinct probability distributions will be presented. Gaussian and uniform distributions
were chosen for simplicity. In short, we will compile a movie consisting of 500 images
from each distribution. Figure 3.11 and 3.12 display the results for the first and second
hidden layer, respectively. As can be observed, there is no increase in the correlation
time when we alter the probability distribution of random images. This suggests that
activity persistence only occurs when we are in a scenario where significant changes in
the external environment take into account only labeled inputs within the dataset in
question. Additionally, it is observed that certain moments in the average membrane
potential temporal series of the first layer exhibit a non-zero characteristic time. This
implies that the first layer may be more sensitive to network inputs, but there is no
indication that this sensitivity is associated with significantly different inputs (different
distributions).

Finally, we examined the classification of random images done by the output layer.
Despite images having different probability distributions, the neural network provides the
same response, often classifying random images as “2” or “3”, and occasionally as “8”.
This may be associated with the size of the basin of attraction of these labels, since for
any random input, its classification is the same. Leading that the peak of correlation time
only appears when the recognition of the input changes.
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Figure 3.10: The movie input (no anesthesia α = 1) contains a sequence of 500 ran-
dom images (M0 type) following a uniform distribution (green) and 500 of ”1” (orange)
from the MNIST database. (A) The membrane potential of output neurons responsi-
ble for classification of labels during the movie, (B) The characteristic time of decay of
correlations of the fluctuations of the average activity, of spikes and average membrane
potentials of the second hidden layer. (C) Average activity. (D) Spike train: raster plot
of a few neurons of hidden layer 2. (E) Average membrane potential.
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Figure 3.11: The movie input (no anesthesia α = 1) contains a sequence of 500 random
images (M0 type) following a Gaussian distribution (green) and 500 random images
(M0 type) following a uniform distribution (orange). (A) The membrane potential of
output neurons responsible for classification of labels during the movie, (B) The charac-
teristic time of decay of correlations of the fluctuations of the average activity, of spikes
and average membrane potentials of the second hidden layer. (C) Average activity. (D)
Spike train: raster plot of a few neurons of hidden layer 2. (E) Average membrane po-
tential.
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Figure 3.12: Same as Figure 3.11, but for the first hidden layer.

3.5 Avalanches

In a context of large systems composed of simple units subject to constant external
inputs, an avalanche can be defined as a fast chain reaction involving these units between
long periods of silence to bring the system to a new state of equilibrium. This means
that there is a separation of timescales between the lifetime of avalanches and the inputs
made by the external environment. As mentioned earlier, for a complete understanding
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Figure 3.13: An avalanche
starts and ends when in-
tegrated network activity
crosses a threshold value.
Image taken from reference
[65].

of avalanche dynamics, a boundary of dissipation and volume conservation must be taken
into account. Therefore, to establish a good definition of avalanches, we must integrate
these elements into our artificial neural network context.

First, we should note that, in contrast to numerous models, in our case, spontaneous
activity is absent, as activity is only observed when inputs are presented to the network.
As an immediate implication, the notion of relaxation time present in models explained
by SOC is not present. This means that the activity for our model does not lead to
any equilibrium state, since in a supervised learning process the objective is only to
characterize the images of the dataset into categories. Therefore, it becomes clear that
the classical definition of avalanches will not be exhibited by our neural network, since we
do not have stable or unstable configurations. Thus, we must seek a better understanding
of how avalanches can be incorporated into our situation.

Before that, let’s recall that criticality revolves around detecting power-law distribu-
tions for the relevant variables of our problem. For example, we say that the system
operates at the critical point if the avalanches of a system with the characteristics men-
tioned above follow a power-law. As detecting peaks in the characteristic time of internal
activity leads to the distribution of long tails in regimes when label transitions are slow, it
is evident that we must delve deeper and ask ourselves how we could make a more refined
statistical characterization of these correlated fluctuations and link them with criticality.
We can proceed as follows: avalanches in our context will be restricted to the analysis
of neural network activity. Inspired in the previous work [65], we say that a ρ avalanche
in the hidden layers, is happening when ρ(t) =

∑
l ρ

(l)(t), summed over hidden layers, is
above a threshold R̄. An avalanche’s size is the integrated area below ρ(t) between the
crossings to ρ > R̄ and back to ρ < R̄, and the duration is the difference in time between
those consecutive occurrences, as illustrated in Figure 3.13. Through this definition, it is
evident that avalanches are subject to the chosen threshold value, and as a result, their
size and duration distribution as well. What can be considered is selecting a range of
thresholds where the distribution of avalanches is very similar. This gives us confidence
in the statistics that govern the network activity. Based on reference [65], the average of
activity will be used as the threshold R̄.

As our model has finite size, signs of criticality are not just about looking in the
distribution of avalanche size and duration. It is important to keep in mind that each
distribution observed is linked to a specific network size. One consequence is that the
larger the number of neurons in the layer, the greater the maximum size of the avalanche
present in the temporal series of activity. Known as a cutoff, this will follow a power law
with respect to the network size if criticality is present. Taking this into consideration,
we use the MF movie to generate several fast input transitions so that the final output
alternates between different categories, to simulate a free moving agent in a rich environ-
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ment. This input generates a large amount of variability in the internal representations
and avalanches will be measured. Histograms are shown in Figure 3.14.A and B. While
we kept the number neurons in the hidden layers equal N (l) = N for all hidden layers, we
ran simulations with different values of N (50 and from 100, 200, · · · to 1200).

Each point in Figure 3.14.C shows the duration and size of an avalanche. For the
characterization of power laws we use a standard procedure [66]. The size and duration
exponents τ, τt give a crackling exponent [38]

γ =
τt − 1

τ − 1
≈ 1.44. (3.8)

A direct fit of a power law in Figure 3.14.C yields a different γ∗ ≈ 1.15. The uncertainty
of the fits, from [66] are too optimistic, being rather of the order of .2, not 0.03. It is not
possible to affirm that power laws are present in this case. Note that the procedures that
yield these exponents are very sensitive, see e.g. [67], not only to choices of maximum
and minimum values, but also to sub-sampling and to the noise process that is used to
model the fluctuations in the data. Since we are not defending this to be a signature
of criticality we don’t delve into the details of the fit. If however the reader finds this a
compelling argument for criticality, which we don’t, it is clearly not in the class of directed
percolation.

Finally, we also tried to fit the avalanches distributions when the neural network was
not trained, i.e, when the accuracy is zero, as a control experiment. The result is shown
in Figure 3.15. In this situation, we are not able to fit a power law distribution, indicating
that heavy-tail distribution is associated with optimal information processing.

3.6 Perturbational Complexity Index

Perturbational Complexity Index (PCI) is an empirical complexity-related index of
brain’s information processing. Based in the early Tononi’s studies about the relationship
between consciousness and complexity [68], its purpose is to define an objective mea-
surement of conscious experience. In short, PCI calculation is done by two steps: first,
perturbing the cortex through a transcranial magnetic stimulation (TMS) and second,
a complexity algorithm to measure the recorded spatio-temporal neural activity of the
brain. Compressing the binary matrix of significant source SS(x, t)1 by means of the nor-
malization of the Lempel-ziv complexity, the typical PCI curve increases monotonically
in time, illustrated in Figure 3.16. The temporal evolution of PCI curve shows that it
is possible to distinguish consciousness and unconsciousness patients. It can be done by
two ways, using the rate of change of PCI, or we could take the stationary PCI value at
the end of stimulus and associate each number of conscious experience to a complexity
marker.

Why did we choose PCI? Well, consciousness is inherent a subjective experience and
the definition of a marker for objective determination of conscious state is beyond inter-
esting. The last argument is that it is fully tailored to our neural network model. We are
using spiking units network, and so, a binary spatio-temporal activity is generated by a
sequence of inputs. Easily come to mind if it is possible to establishment a complexity
index in artificial intelligence systems.

The methodology that will be used here is essentially composed of the same elements.
The only different is in the perturbation, since, obviously, there is no TMS in our context.

1(x, t) is the position and the moment that TMS evokes significant cortical activity.
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Figure 3.14: (A) Size and (B) duration avalanches. Power law fit using [66] are very
sensitive to the choices of the minimum and maximum values.
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Figure 3.15: (A) Size and (B) duration avalanches. Here, the neural network was not
trained, i.e, the accuracy is zero. As a consequence, power law fit was not fitted accu-
rately.
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Figure 3.16: The temporal evolution of
PCI, PCI(t), was constructed by calculat-
ing the cumulative time series of the nor-
malized Lempel-Ziv complexity of SS. The
rate of complexity divergence between the
conscious and unconscious groups, DPCI(t),
was calculated from single-subject differ-
ences between the temporal evolution of
PCI during wakefulness and loss of con-
sciousness, with 25-ms time bins. Upper
panel: Single-subject curves of PCI(t) cal-
culated during both wakefulness (light red
lines) and loss of consciousness (light gray
lines). The dark gray and red lines repre-
sent averaged PCI(t). Lower panel: Per-
centages of DPCI(t) generated in each tem-
poral bin and the statistical significance
(asterisks) with respect to the average value
across bins (*P = 0.002, Mann-Whitney).
Image and caption took by reference [52].

For that reason, the complexity index will be computed only in situations where exter-
nal parameters change. Based on experiments investigated previously, such as learning
process and effect of anesthesia, we aim to determine the meaning of complexity for each
experimental condition.

3.6.1 Complexity of Learning Process

Complexity of learning process reefers how significant the information processing of
hidden layers is during the training. Following the same previous procedure, we will
train again a classifier spiking neural network with the same parameters as the table 2.3.
Consequently, an accuracy curve very similar to the Figure 2.9 (A) will be obtained, with
three significant phases of learning. Thus, for each training time, a fast transition between
classes movie MF will be presented to neural network and then the PCI of hidden layers
will be recorded.

As shown in Figure 3.17, we observe that for both hidden layers, PCI increases as the
learning process approaches the saturated phase. However, at the beginning of training,
the PCI for each layer exhibits distinct behaviors. In the early stages of training, during
the first learning phase, the PCI of the first layer increases significantly, but decreases
as it reaches the second learning phase. Conversely, for the second layer, the PCI starts
from zero and increases continuously. As we move from the second training phase to the
final training phase, PCI increases uniformly.

Before understanding the PCI’s behavior, let’s revisit Figure 2.9 (C). Throughout the
learning process, the empirical distribution of synaptic weights in the first layer changes
much more significantly than in the second layer. Initially following a uniform distribution,
the histogram of the first layer gradually transitions towards a Gaussian-like distribution
by the end of the last training phase. Consequently, the response of the first layer’s
activity, during the learning, to sequential inputs will not be equal to that of the second
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Figure 3.17: PCI in the hidden layers for each training time step over MNIST dataset.
We use MF movie as inputs. (A) First hidden layer. (B) Second hidden layer.

layer. Given that the second layer is closer to the output layer, its response tends to
be more cohesive, exhibiting a smoother behavior. Bringing the results from the slow
transition between classes section, we argue that the formation of the attraction basin is
more relevant in the first layer than in the second one.

3.6.2 Complexity of Perception

We would like to address how information processing is affected by the anesthesia
effect. For this experimental condition, the same methodology was employed as in the
previous experiment. For each anesthesia dose effect, we presented an MF type of movie,
and then we recorded the PCI for each hidden layer. Figure 3.18 shows the results.

Upon first glance, it is apparent that the PCI evolution curve closely resembles the
pattern observed in training time. Again, the second layer has a much more uniform
behavior than the first one. Additionally, The PCI of the first layer begins to increase
continuously just at the moment when the accuracy of neural network classification starts
to rise (α ≈ 0.35), see Figure 3.18 (C). This phenomenon was also observed in the learning
process experiment, as it occurs when the network moves to the second phase of training,
during which the accuracy starts to increase from zero.

Besides the similarity in the PCI curve, there is also a resemblance in the accuracy
curve, which takes on an S shape. It is quite intriguing, considering that in the anesthesia
experiment, the synaptic weights between layers remain the same, whereas in the learning
process, they do not. Nevertheless, the hidden layers’ response to both regimes seems to
be quite similar.
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Figure 3.18: PCI in the hidden layers for each effect of anesthesia over MNIST dataset.
We use MF movie as inputs. (A) First hidden layer. (B) Second hidden layer. (C) Ac-
curacy (output layer) in function of anesthesia effect.



Chapter 4

Conclusion

‘You cannot make a machine to think for you.’ This is
a commonplace that is usually accepted without question.
It will be the purpose of this paper to question it.

Alan Turing, Intelligent Machinery, A Heretical
Theory (1951)

In this study we trained a spiking neural network with deep architecture as a classifier
on standard databases and subjected it to different experimental conditions, recording
time series of the activity of the hidden layers. We show that persistent correlations in
the internal representations (IR) activity appears associated to the transition when inputs
of different labels, belonging to the dataset, are presented to the neural network. This is a
signature of broad tail distribution of the temporal correlation of fluctuations of internal
activity. We interpret this phenomenon in the light of an attractor basin dynamics. The
neural network learns the concept associated of an image label, and we can investigate
the dynamics within its internal layers. When inputs from distinct categories prompt the
system to converge towards new attractors, generating long-range correlations, the output
layer response follows this dynamics by correctly classifying the new presented image. This
is demonstrated when we present random inputs. In this scenario, transitions of images
of distinct distributions do not produce long tails distribution in IR, as there is no search
for any attractor basin. We illustrate that transitioning to a new attractor may differ
depending on the label, as the dataset classes are scattered in a high-dimensional space
following a specific structure, which is reflected in the peak size of the correlation time.

The aim of this study was also to investigate how the learning process occurs in the
hidden layers, taking into account the three training phases. We demonstrate that the
formation of attraction basins occurs in the regime where recognition accuracy is still
zero. This leads us to argue that the first training phase is crucial element. In the last
phase, where the accuracy plateau is reached, the attraction basins are already formed.
Thus, we can conclude that despite no modification occurring in the output layer response,
significant information processing is already taking place in the early layers.

We then address whether the large increase of ξτ is a criticality signature. We have
defined avalanches and tried to fit power laws to the empirical distributions of size and
duration in function of the network size, for the partially and fully trained neural net-
work as well as for the anesthetized model. In addition, the exponents of the power law
distributions of the coupling between the size and duration of avalanches, γ and γ∗, were
also estimated. Since the exponents are not equal, taking into account the fitting error,
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crackling noise scaling relations are not satisfied, a strong suggestion that there is no
criticality. In light of these findings, it is evident that the search for a new attractor leads
to large fluctuations without criticality.

We extended this study in the article entitled “Internal Representations in Spiking
Neural Networks, criticality, and the Renormalization Group”, attached in the appendix of
this dissertation, where we provide examples of non-critical physical systems that exhibit
long-tailed distributions. This includes the dynamics of a particle undergoing Brownian
motion in a slowly varying time-dependent potential, with two attraction basins which
periodically alternate in strength. There is an increase in the characteristic correlation
time of the particle’s position as its trajectory moves from one minimum of the potential
to another. Additionally, magnetic systems, such as the Ising model on an infinite lattice
subjected to an external field, are considered. Outside the critical temperature, as the
external field changes slowly, the expected value of magnetization shifts between two or-
dered phases, and consequently, fluctuations become correlated on a timescale larger than
the change in the external field. Finally, all of this is interpreted from the standpoint of
renormalization group theory. Simulations using the Monte Carlo Renormalization Group
(MCRG) method on a 2D Ising model with nearest-neighbor interactions subjected to a
slowly varying uniform external field showed that susceptibility peaks, for conditions out-
side or at the critical point, are more pronounced in the renormalized system. This has
some implications. First, the role of the external field in magnetic systems resembles
input patterns in neural networks. In other words, as we change the label of the image,
correlation peaks emerge without signs of criticality. Second, in a neural network with
feedforward architecture, the multiple internal layers serve to filter the microscopic con-
figurations of the images and represent them in macroscopic states in order to perform
classification correctly.

Also, the perturbational complextiy index (PCI) was measured in the hidden layers
when the classifier is processing several fast transition of inputs between classes of dataset
in scenarios such as the training section and under the effect of anesthesia. It was expected
that the complexity of the system would increase as a significant task is tackled, implying
that “complexity meets learning”. However, we found even more intriguing results for
understanding the role of hidden layers in representing information from the outside world.
For both experimental conditions, the behavior of the PCI is similar. The complexity of
activity of second layer tends to have a smoother behavior, while the first layer is less
cohesive when the model is in the early stages of learning or when the effect of anesthesia
is high. This indicates that the representation of images in the first hidden layer is more
susceptible to changes in learning situations or conditions where incoming information is
reasonably different from what has been learned, since this layer is closer to the input layer.
As we go deeper into the network, the representation becomes simpler, as the output layer
represents an image of many pixels (degrees of freedom) in just one label. This is directly
connected to the evolution of the empirical distribution of synaptic weights between layers
during the training, where in the first layer the change is greater than in the second. This
means that as we add more layers, fewer modifications of the connections between neurons
closer to the output layer will be observed. In short, these experiments say that PCI can
distinguish spatio-temporal patterns of activity across different information processing
regimes, which it is an important methodology to quantify complexity inside artificial
neural networks.

Finally, feedforward neural networks are certainly not models of the brain, but, cer-
tainly the cortex of freely behaving and even anesthetized animals, are constantly stimu-



63

lated by changing inputs, which have to be processed by extracting relevant information
to drive behavioral decisions. This can induce changes in the basin of attraction of the
different concepts being identified and this search for the new attractor, generate per-
sistent fluctuations of neuronal activity. A concrete example is the result in [69], where
the “stimulus onset quenches neural variability”, which they claim to be a rather general
property of the cortex.
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Abstract

Optimal information processing in peripheral sensory systems has been associ-
ated in several examples to the signature of a critical or near critical state. Fur-
thermore, cortical systems have also been described to be in a critical state in both
wake and anesthetized experimental models, both in vitro and in vivo. We investi-
gate whether a similar signature characterizes the internal representations (IR) of a
multilayer (deep) spiking artificial neural network performing computationally sim-
ple but meaningful cognitive tasks, using a methodology inspired in the biological
setup, with cortical implanted electrodes in rats, either freely behaving or under
different levels of anesthesia. The increase of the characteristic time of the decay
of the correlation of fluctuations of the IR, found when the network input changes,
are indications of a broad-tailed distribution of IR fluctuations. The broad tails are
present even when the network is not yet capable of performing the classification
tasks, either due to partial training or to the effect of a low dose of anesthesia in a
simple model. However, we don’t find enough evidence of power law distributions
of avalanche size and duration. We interpret the results from a renormalization
group perspective to point out that despite having broad tails, this is not related to
a critical transition but rather similar to fluctuations driven by the reversal of the
magnetic field in a ferromagnetic system. Another example of persistent correlation
of fluctuations of a non critical system is constructed, where a particle undergoes
Brownian motion on a slowly varying potential.

Keywords: Neural Networks, Internal representations, Statistical Mechanics, Renormaliza-

tion, Critical Brain.

1 Introduction

The idea that the brain operates at a critical point of a phase transition has been
present in the field of Neuroscience since the first experimental description of neuronal
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†ncaticha@usp.br
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avalanches, with its size and duration scale-free bursts of neuronal activity, by Beggs
and Plenz [1]. Further extensive activity has discussed and given theoretical support
[2, 3, 4, 5, 6, 7, 8] to the critical brain hypothesis. A possible evolutionary reason for
criticality is that it has been shown to be related to optimal information processing, in
the sense of maximum dynamic range in neural networks of excitable units that model
sensory systems, as shown by Kinouchi and Copelli [2], where criticality is associated to
the network topology, i.e. bond percolation of the couplings. Self organized criticality
can occur due to learning in a recurrent neural network, driven by random inputs [8].
However, experimental or numerical signatures such as power laws and scaling are possible
without criticality, with examples [9, 10, 11] in general areas of biology or in particular in
neural networks models. It is interesting to further investigate putative critical behavior
in systems with slowly decaying correlations and broad tail distribution.

In this paper we investigate the statistics of fluctuations in the internal layers of a feed-
forward Neural Network of spiking neurons when the network is performing a “meaningful
cognitive” task of pattern recognition. This is done (see details in section 2) to mimic
the data collection in an experiment of cortical implanted electrodes in rats exposed
to a free environment illustrated in Figure 1. We study the time truncated-correlation
of fluctuations of the average spike activity, of trains of spikes and average membrane
potentials of the internal representations in the network’s hidden layers and measure their
characteristic decay times, generically denoted ξ. Large values, as are typically associated
to criticality, can be seen when the time dependent input changes and the classifier network
changes the classification. Networks exposed to a sequence of different images in the
same category do not present such “diverging” (much longer) ξ’s. We also investigate
size and duration of neuronal activity avalanches. These broad-tailed distributions are
apparently similar to those which have been summoned to justify the term critical, are
only found when the network classifies a changing environment. However, despite the
allure of calling this a (near-) critical state, we are doubtful about this interpretation. In
section 4 we show a simple dynamical model with broad tailed distribution of fluctuations
of its state, associated to the shifts of the basin of attractions, similar to the dynamics
the network undergoes, when the category of the input changes. This adds to the models
that shows that long tailed distributions can occur without critical behavior. This very
low dimensional system serves only as a simple metaphor for the appearance of broad
tails, so we search for systems with non critical collective behavior with broad tails and
their description using Statistical Mechanics and the Renormalization Group.

The methods of Statistical Mechanics have been extensively applied [12, 13, 14, 15, 16]
to study computational properties of artificial neural networks. This allows the description
of brain inspired dynamical systems in the language of emergent collective phenomena.
The Statistical Mechanics description of emergent properties of the thermodynamics state
is analogous to concept formation [17, 12, 13].The methods of Statistical Mechanics have
been extensively applied [12, 13, 14, 15, 16] to study computational properties of artificial
neural networks. This allows the description of brain inspired dynamical systems in the
language of emergent collective phenomena. The Statistical Mechanics description of
emergent properties of the thermodynamics state is analogous to concept formation [17,
12, 13].

The Renormalization Group (RG) is the main theoretical tool to analyze systemat-
ically the multiple scales, spatial and/or temporal, relevant in the critical region of a
second order phase transition. In general the RG is a map from measures to measures or
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between Hamiltonians. Here we adopt the simplifying description as a map between con-
figurations, which despite being limited in the scope of what the RG is, avoids discussing
peculiarities of the renormalized measures or Hamiltonians, which may only occur, if at
all, in the thermodynamic limit. As no single scale is dominant, power laws are associated
to the critical state. Since there are simpler theoretical methods useful in the noncritical
regions of parameter space, there is a tendency to associate the RG to the study of the
critical region, despite being useful elsewhere. Globally we can look at the RG as a clas-
sifier which maps microstates into order parameters that characterize thermodynamics
states in the whole range of parameters.

The evolution of probability distributions under exact RG transformations [18, 19] are
an example of entropic dynamics [20]. The RG works by systematically marginalizing
the degrees of freedom of a joint distribution of the degrees of freedom in all scales. The
distribution of degrees of freedom at the coarser scale results from a MaxEnt implementa-
tion of constraints imposed by the coarsening procedure. This amounts to implementing
a filtering process, where the filters are chosen a priori. A feed-forward neural network,
with either deep or shallow architecture, also implements a filtering process [21, 22, 23,
24, 25], with the difference that the filters are designed automatically during the learning
process and not imposed by prior knowledge. Of course, for the RG, prior knowledge
about the adequate filters came from the seminal work of Kadanoff [26], Wilson [27] and
others. This identification is specially clear in the Monte Carlo version of real space RG
(MCRG) [28, 29] which we discuss in 4.2 as an example of a convolutional neural network.
An application of the MCRG to a 2d Ising model with a slowly changing external field,
shows that large susceptibility, and the broad tail distribution of fluctuations it entails,
can occur despite being clearly away from the critical region. In the case where in ad-
dition to the external field, there is a random field contribution at each site (normal,
µ = 0, σ = R) and T = 0 [30, 31], the field reversal dynamics is only truly critical with
power laws of the Barkhausen noise at a critical value R. The transition is due to the
reversal of the external magnetic field, which plays the role of the input pattern to the
neural network. In our study, broad-tailed distributions are not associated to a criti-
cal transition, but rather to the shifting nature of basins of attraction that accompanies
changes in the images presented to the network.

2 Materials and Methods

2.1 Experimental models: the neural networks

We constructed a classifier using a deep architecture, i.e a multilayered feed-forward
fully connected, from layer to layer, neural network of spiking neurons shown in Figure 1.b.
It was subject to supervised learning with the goal of recognizing images from standard
datasets, the MNIST and the Fashion-MNIST. Both tasks had the same structure with
respect to data set size, training and testing splits, composed of 60.000 training and 10.000
testing 28x28 gray scale images of 0 to 9 handwritten digits and of 10 categories of fashion
products, respectively.

We use a simple and general purpose neuron model for large-scale training of artificial
neural networks. The leaky integrate-and-fire (LIF) neuron, that goes back to Lapique
[32] (see [33, 34]), captures the essential behavior of the electric potential difference in
nerve cells, it is computational cheap and adequate for our purposes. The LIF follows
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Figure 1: (a) Typical experimental setup, using electrodes for studying cortical activity
during a visual perception task. (b) This experiment is simulated with an artificial neu-
ral network setup. The diagram shows the fully connected feed forward spiking neural
network used in this paper. Each unit is a LIF spiking neuron and the loop arrow sym-
bolizes the time-dependent changes of the membrane potential. The “electrodes” collect
information from the hidden layers.

the principle of integration of inputs combined with a reset mechanism. The dynamics of
each ith LIF neuron in the lth layer, with a reset by subtraction of threshold θ, is written
as a discrete time step equation





S
(l)
i [t] = Θ

(
U

(l)
i [t]− θ

)
=

{
1 if U

(l)
i [t] > θ

0 otherwise,

U
(l)
i [t+ 1] = βU

(l)
i [t] +

N(l−1)∑

j=1

w
(l)
ij S

(l−1)
j [t+ 1]− θS

(l)
i [t],

(1)

where S
(l−1)
j is the presynaptic input of the jth neuron in the previous layer (l − 1), w

(l)
ij

is the adjustable synaptic coupling between the jth neuron in the previous layer (l − 1)
and the ith neuron in layer (l) and β controls the membrane potential decay.

To determine an appropriate learning algorithm for this class of neural network, neu-
ronal communication must be precisely defined. Rate coding relates to the transmission
of meaningful information only by means of neuron firing rates, i.e, the response of spike
train frequency increases as the sum of weighted input increases. We implemented rate
coding, which can be simply adapted to our model. The output layer has n = 10 neu-
rons, so that in the classification problem each individual response of output neurons is
connected to the “recognition” of the category of the input image: ‘It is a zero’ or ‘It is a
shoe’. This is the behavioral report, a visual perception of a labeled input. For training,
we used the error backpropagation through time (BPTT) [35] with the surrogate gradient
approximation [36, 37]. S = Θ(U(t) − θ), as a function of U is a step function, and as
a function of t is a spike, firing when the potential becomes larger than the threshold
and coming back to zero after the subsequent reset of the potential. This function is
substituted by a differentiable function S̃, to be used only in the backward computation
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Hyperparameters
Neural Network Neuron
d = 28× 28 1st Order Leaky Integrate and Fire Neuron

N (1) = 300, N (2) = 300, N (3) = 10 β = 0.5
Batch size = 128 θ = 1

Epochs = 1 tU = 25
η = 5× 10−4

Optimizer: Adam Reset Mechanism: Subtract
Accuracy metric: Spike Count Backward pass: Fast Sigmoid

Loss: Cross Entropy Spike Count

Table 1: Hyperparameters used on training. We used standard training for networks with
N (1), N (2) neurons in the 2 hidden layers.

step. A component of the gradient of the loss function L is:

∂L
∂w

(l)
ij

=

tU∑

t=0

∂L(t)
∂S

(l)
j (t)

∂S̃
(l)
j (t)

∂U
(l)
j (t)

∂U
(l)
j (t)

∂w
(l)
ij

, (2)

where tU is an integration time over the dynamics of the membrane potential. For the
gradient, we use a threshold-shifted sigmoid curve,

S̃ =
1

1 + eθ−U(t)
,

∂S̃

∂U
= (1− S̃)S̃. (3)

Hyperparameters were chosen according to table 1. The training section was composed
by an epoch, a pass over the training set, where the neural network attained an accuracy
above of 80% depending of dataset. Accuracy is measured by attribution the classification
label to the output neuron with the highest firing rate. Figure 2 shows the loss and
accuracy as a function of the number of subsets (mini-batches) of previously randomly
shuffled training set and test set. Training time refers to each interaction over mini-
batches of the dataset. The confusion matrix, a table of true positive and false positive
matches according to the data labels is shown in Figure 2.C. Training shows three distinct
phases. A short initial phase where the network still cannot implement the task, a fast
rising effective learning phase, and an almost saturated phase showing good performance.
After training, the confusion table becomes practically a diagonal matrix, indicating that
the model classification is most likely a true positive. Figure 3 shows the firing rates of
the correct output showing different learning time thresholds for the different categories
being learned.
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Figure 2: Training session over MNIST train and test set. (A) Loss (left axis) and
Accuracy (right axis). Three different phases can be seen: an initial plateau or slowly
rising accuracy phase, a fast rising and a saturated plateau. (B) Confusion matrix over the
test set after the training. (C), (D) and (E) The evolution of the empirical distributions
of weights between the layers, during training, show no sign of topological criticality. The
results for the Fashion-MNIST data set are not shown since they are not significantly
different.
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Figure 3: Evolution with training time of the firing rate f
(3)
k of output neuron k when

input patterns of type k are presented. Note that it takes different training times until
the network can identify different categories. MNIST dataset.

2.2 The mathematical characterization

We use the following notation for the time average at time t of any quantity f in a
time window of width ∆t

〈
f(t)

〉
=

1

∆t

t+∆t∑

t′=t

f(t′) . (4)

When f , for fixed t, is an array, so is the above expression and the sums are point wise.
The fluctuation of a quantity is f = f − ⟨f⟩. The un-normalized truncated correlation is

cf,g(t, τ,∆t) =
〈
f(t) g(t− τ)

〉
, (5)

f g is a dot product for arrays, and the normalized correlation of fluctuations or the
truncated correlation is

Cf,g(t, τ,∆t) =
cf,g√
cf,fcg,g

. (6)

The spike activity in the lth layer is described by an N (l)-dimensional array at time t

S(l)(t) =
[
S
(l)
1 (t), · · · , S(l)

N(l)(t)
]
, (7)
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where N (l) is the number of neurons and S
(l)
i = {0, 1}, the binary output specifying

whether neuron i has fired at t. To characterize the fluctuations of internal representations
in layers lth and kth we use CS(l),S(k)(t, τ,∆t).

We also define the following macroscopic variables (aggregated): the average activity
of the lth layer at time t

ρ(l)(t) =
1

N (l)

N(l)∑

i=1

S
(l)
i (t), (8)

and the average membrane potential in the lthlayer at time t

u(l)(t) =
1

N (l)

N(l)∑

i=1

U
(l)
i (t). (9)

In the simulations we measure CS(l)S(l)(t; τ,∆t), Cρ(l)ρ(l
′)(t; τ,∆t) and Cu(l)u(l′)(t; τ,∆t),

functions of the three parameters t, τ and ∆t. From an analogy to spins systems, we
expect these correlations to decay with τ as the product of a fast decaying exponential with
characteristic time ξτ and a slow decaying algebraic function. If criticality is approached
ξτ grows and there is a crossover to purely algebraic decay, but only in the thermodynamic
limit. For finite systems an exponential function is a good model and we consider

C(τ ; t,∆t) ∼ exp

{
− τ

ξτ

}
. (10)

ξτ plays a similar role as the correlation length. Fixing t and ∆t, we can see how the
temporal correlation varies with τ . The correlation time can be computed for each time
step t from a fit to equation 10.

We also define what we mean in this context by avalanches of activity and analyze
their distribution. We say that a ρ avalanche in the hidden layers, is happening when
ρ(t) =

∑
l ρ

(l)(t), summed over hidden layers, is above its time average R̄. An avalanche’s
size is the integrated area below ρ(t) between the crossings to ρ > R̄ and back to ρ < R̄,
and the duration is the difference in time between those consecutive occurrences.

2.3 Simulations

We use “movies”, sequences of images described in Table 2 as inputs to the NN during
the simulations. The set of numerical experiments is shown in Table 3. α is a parameter
introduced to simulate partial blocking of the input to the network. Every pixel of an
input pixel is multiplied by α in the interval (0, 1]. It is a simplistic model of the effect of
anesthesia acting only on the input layer. It is used just to study the pattern recognition
of a dim input and not as a model of the effects of a particular type of anesthesia itself.
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Table 2: The “movies”

Movie type Composition Description δt Measures
M0 Random

inputs
New random
image every
time step

none ξτ

MS 2 or more
classes

Few slow
transitions
between
classes

δt ≈ 400−500 ξτ

MF 2 or more
classes

Several fast
transitions
between
classes

δt ∼ tU ∼ 25 Avalanches
and

Complexity
Index

For MS and MF , δt is the number of presentations of random choices of examples in the
same class between transitions. It measures the variability of the environment presented
to the NN.

Table 3: Simulations.

Training Phase Movie Conditions
early M0 α = 1

intermediate M0,MS,MF 0 < α ≤ 1
saturated M0,MS,MF 0 < α ≤ 1

The intensity of the “anesthesia” is 1− α.

3 Results

At a given point in the training time (Figure 2) we study the IR that occur when a
“movie” is presented to the NN. We start analyzing the fully trained network. Several
types of movies can be presented, see Table 2. First, we present a movie of MS type for
intervals comprising ∼ 500 frames random examples of one of the ten categories is shown,
then for another ∼ 500 frames, examples from another category are presented. Nothing
interesting happens except for a small region in time starting at the transition with large
and persistent fluctuations, see Figure 4. In Figure 5 we show results from a typical run
with several input class changes. The NN is working satisfactorily as shown in 5.A, since
the output cell with the dominant U (3) is the correct one.
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Figure 4: IR fluctuations temporal correlation as a function of τ measured on a sliding
window centered at time t for the single image change movie. Left: the raw measured
correlations. Right: For each t, the best fit of an exponential decay e−

τ
ξτ , equation 10.

At the region of the transition of images, the decay time ξτ increases a few orders of
magnitude.
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Figure 5: The MS movie input (no anesthesia α = 1) contains a sequence of 500 random
images of label “0” (green), then 500 of label “1” (orange), 500 of label “6” (purple), and
500 of “7” (yellow) from the MNIST database. (A) The membrane potential of output
neurons responsible for classification of labels during the movie, (B) The characteristic
time of decay of correlations of the fluctuations of the average activity, of spikes and
average membrane potentials of the second hidden layer. (C) Average activity. (D) Spike
train: raster plot of a few neurons of hidden layer 2. (E) Average membrane potential.

Figure 5.B shows results for the second hidden layer IR. A very large increase in ξτ
following the input label transitions. A similar behavior, with smaller peaks, is seen for
the IR in the first hidden layer. While the NN moves rapidly toward the new classification,
IR show persistent fluctuations, around the transitions. Is this peak in time correlation
length the signature of criticality? We argue in section 4 that it is not.
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A second numerical experiment investigates the results of partial training. We show
results in Figure 6 for a training time of 25, when as Figure 3 shows, only category
“0” is partially recognizable in the output layer. It may be expected that since the
category attractors are not yet fully developed, persistent fluctuations should not appear.
However, despite not achieving correct classification over all data labels, such persistence
occurs during the transition of input categories. This is observed in distinct cases, first
during the transition of a correctly classified input to one not yet learned (“0” → “1”).
Second, when the neural network still has not learned both input labels (“1” → “6” →
“7”). This is evidence that during the learning process, attractors of the dynamics are
partially present in the hidden layer, while still sub-threshold in the output layer.

Figure 6: Same as Figure 5 but for a partially trained NN, where only “0” is recognizable.
Transition regions show persistent fluctuations, independently of output recognition.
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In a third experiment, the fully trained network, used in figure 5, is presented to a
MS movie with a dimmed input, every pixel input is multiplied by α < 1, which we call
a model for anesthesia. Figure 7 shows again that for inputs on which the output is not
correct due to diminished input sensibility, the sub-threshold images can elicit persistent
correlations with large characteristic times. Finally, we notice there is no peak presence
in correlation time when movie M0 is being exposed. These results, which only serves as
a control test, are not shown.

Figure 7: Same as Figure 5 but with neural network under effect of anesthesia, α = .4,
with a MS input. (A) The network is not able to correctly categorize the inputs, which
generate sub threshold activity at the output layer: there is no communication of the
computation to the outside world. . (B) Nevertheless, the transition of inputs generates
persistent fluctuation correlation. (C, D) show the activity in the second hidden layer,
but (E) u(2) fails to exceed the threshold.
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We use the MF movie to generate several fast input transitions so that the final
output alternates between different categories, to simulate a free moving agent in a rich
environment. This input generates a large amount of variability in the IR and avalanches
can be measured. Histograms are shown in Figure 8.A and B. While we kept the number
neurons in the hidden layers equal N (l) = N for all hidden layers, we ran simulations with
different values of N (50 and from 100, 200, · · · to 1200 .)
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Figure 8: (A) Size and (B) duration avalanches. Power law fit using [38] are very sensitive
to the choices of the minimum and maximum values.

Each point in Figure 8.C shows the duration and size of an avalanche. For the char-
acterization of power laws we use a standard procedure [38]. The size and duration
exponents τ, τt give a crackling exponent [31]

γ =
τt − 1

τ − 1
≈ 1.44. (11)

A direct fit of a power law in Figure 8.C yields a different γ∗ ≈ 1.15. The uncertainty of
the fits, from [38] are too optimistic, being rather of the order of .2, not 0.03. It is not
possible to affirm that power laws are present in this case. Note that the procedures that
yield these exponents are very sensitive, see e.g. [39], not only to choices of maximum
and minimum values, but also to sub-sampling and to the noise process that is used to
model the fluctuations in the data. Since we are not defending this to be a signature
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of criticality we don’t delve into the details of the fit. If however the reader finds this a
compelling argument for criticality, which we don’t, it is clearly not in the class of directed
percolation.

4 Broad tails without criticality

4.1 Langevin dynamics on a time dependent potential

We now present a toy problem which is not critical in any sense and yet, it yields
broad tail distribution in the style of what was found in the neural network of the previous
section.

With r, r0 ∈ R2, let V (r,±r0) be potential wells with a single minimum at ±r0. We
construct a time dependent potential

U(r, t) = h1(t)V (r, r0) + h2(t)V (r,−r0), (12)

where for example we choose h1 = | cos(|ωt)|)k and h2 = | sin(|ωt)|)k and use as a typical
example k = 6. The potential changes from one well to another in periodic fashion,
located at ±r0. The process described by the discrete time Langevin dynamics

rt+∆t = rt − η∇U(r, t) +W , (13)

with W a two dimensional normal random process. r has a similar behavior to that of the
IR of the previous section. It evolves from being around a minimum, drifting to the other
as it becomes prominent, Figure 9. The dynamics obviously is not critical, nevertheless it
has long time persistence of the correlation decay when there is no clear minimum present,
as shown in Figure 10.
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Figure 9: A trajectory of the two dimensional model equation 13 starting from the green
dot. It spends time in one well until it becomes very shallow and then wonders towards
the other minimum that is becoming dominant. The contours show the time average of
the potential. Minima at ±r0 = ±(5, 5), η = 0.15, σW = 0.1.
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Figure 11: (A) Free energy functional of an infinite range Ising model at zero external
field, undergoing a critical second order transition between the disordered phase (black,
green dashed curves) and the broken symmetry phase (orange, blue dashed lines). (B)
Same model at temperature above critical. As the external field changes, the expected
value of the magnetization transitions between two different ordered states ( h > 0 orange
and blue dashed lines, h < 0 black and green dashed lines). For both graphs, transitions
points represented by the continuous red line.

A second analogy is based on the infinite range Ising spin system in an external field,
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which plays the role of the input pattern to the neural network of section 2.3,

H = −1

2
(

N∑

1=1

si)
2 +

∑

i

hisi (14)

At each site i the magnetic field changes very slowly between the value ξ1i and ξ2i . If
the change is sufficiently slow, we can solve for the thermodynamics of the model for an
external field fixed in time, and at each site the magnetization is obtained from

mi(t) = tanh(β(mi(t) + hi(t)) (15)

If hi = 0, the exact solution is a minimum of the free-energy functional shown in Figure
11.A, with the typical second order transition occurring at the crtical value β = 1. Now we
consider a case where β < 1, so the system is not critical and hi changes slowly in time.
Then mi follows the minimum of the curve shown in 11.B. In both cases, fluctuations
measured in a time scale faster than the slow change of the external field, show broad
tails independent of being critical or not.
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4.2 Monte Carlo Renormalization Group: convolutional classi-
fier of the thermodynamic state
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Figure 12: Monte Carlo Metropolis simulation of 2d Ising model with a time dependent
external field for temperatures below critical, critical and above critical: TB = 2 < Tc ≈
2.26 < TA = 2.5. Short time averages (equations 16, r = .9) for top: Magnetization.
Continuous lines for original Ising (128×128 lattice, nearest neighbor interaction), dashed
lines for system renormalized by a factor b = 2, six times. Bottom: Susceptibility, divided
by its maximum value. The susceptibilities of the renormalized system are much larger
(≈ 200 times) than those of the unrenormalized, and are non zero during a much shorter
time, since the transition to a new classification is much faster.

We present a third analogy of a non critical system with large fluctuations. We use the
MCRG algorithm as developed by Swendsen [29], for the nearest-neighbor model in 2d in
the presence of a slowly changing external uniform field. We use the majority rule with a
scale renormalization parameter b = 2. Figure 12 shows the results of the simulation as a
function of time, measured in Monte Carlo steps, for temperatures above, below and at the
critical temperature. Since we are not interested in the well known equilibrium properties
of the model, our order parameters are the magnetization M(t) and susceptibility and
χ(t) estimated by a moving average with relaxation:

M(t+ 1) = (1− r)M(t) + rm(t),

µ2(t+ 1) = (1− r)µ2(t) + rm(t)2,

χ(t+ 1) = µ2(t+ 1)−M(t+ 1)2, (16)

where m(t) =
∑

k sk/NRG, for a renormalized configuration with NRG spins.
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In Figure 12 (top) we show the magnetization as the external field changes for three
temperatures. The continuous lines are for the unrenormalized model on a 128 × 128
square lattice and the dashed lines for the majority rule MCRG, scale parameter b = 2,
6 times renormalized. Two relevant things can be seen; first, the transitions are qualita-
tively the same, independent of temperature. Second, the magnetizations characterize the
macroscopic state that the system would be if the field had been kept constant. Notice
that the renormalized magnetization has a much sharper transition of classification than
the unrenormalized magnetization. The MCRG magnetization can be seen as the result
of a classifier analogous to a convolutional Neural Network, where regions of size b × b
are used to define the “activity” or Kadanoff block spin, in the next layer, i.e the next
renormalization stage. The “movie” presented to this network is generated by the Monte
Carlo procedure. In Figure 12 (bottom) we show, with the same color code, the suscep-
tibilities. The peak at the transitions show that the Monte Carlo dynamics is exploring
larger regions of configurations than when the field has a clear sign. The renormalized
susceptibilities are larger in magnitude( ∼ 200 times) but present much sharper peaks,
consistent with the abrupt change in magnetization. the indicator of the classification
of microscopic states into macroscopic state. This MCRG uses a predetermined convolu-
tional filter, the simple majority rule. A tunable version [40, 41], with probabilistic filters
shows, for the Ising 3d nearest neighbor model, a much faster approach to the critical
point than with the majority rule. In the language of neural networks this means that
adjustments in the weights of the filters may lead to the possibility of the reduction of
the number of hidden layers need to converge to a classification.

5 Conclusions

We have presented results from simulations of spiking neural networks trained as a
classifier. The change in the environmental stimulus induces broad tail distributions of
the truncated correlation of fluctuations of activity in the internal representations in the
NN. Before and after this transient period the network settles into a state where these
correlations show very short characteristic time or reduced fluctuations variability. This
is similar to results in [42], where the “stimulus onset quenches neural variability”, which
they claim to be a rather general property of the cortex. These broad distributions after
input transitions, are found even if we disturb the performance of the classifier by in-
complete training or decreased intensity of the input, a simple model of an animal under
the effect of anesthesia. We have defined avalanches and tried to fit power laws to the
empirical distributions of size and duration, for the partially and fully trained NN as
well as for the anesthetized model. Crackling noise scaling relations show that, even if
there is a critical state, it is not in the directed percolation universality class. But the
large increase of ξτ is not a criticality signature. Instead we argue that the role of the
external stimulus, analogous to a magnetic field, is to lead the dynamics from a disap-
pearing basin of attraction to a new one. The crossover from one attractor to another
leads to large fluctuations without criticality. To illustrate cases where this occurs, we
discussed, first a toy model where a particle moves in two dimensions under the influence
of an oscillating potential and normal noise. Second, an infinite range Ising model in
an oscillating external field, exactly solvable under the separation of time scales of fast
spins and slowly evolving field. Third, we present a MCRG study of an Ising model in
2 dimensions. The interesting thing is that the renormalization of the configurations is
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mathematically equivalent to a feed-forward convolutional neural network, acting as a
classifier. The increases in susceptibility driven by a changing field, are present below,
at and above the critical temperature. For the renormalized system the duration of the
susceptibility decreases and its height dramatically increases. These are indications that
the renormalization procedure, that filters high frequency spatial Fourier components, is
selecting the correct degrees of freedom to classify the thermodynamic state. The exper-
iments with the spiking neural network show that in a changing environment, where the
external world stimulus has to drive the dynamics of the network toward a meaningful
interpretation, persistent fluctuations of the internal representation will appear as a re-
sult of the search for the new basin of attraction associated to a concept that represents
the external world. Feed forward neural networks are certainly not models of the brain,
but, certainly the cortex of freely behaving and even anesthetized animals, are constantly
stimulated by changing inputs, which have to be processed by extracting relevant infor-
mation to drive behavioral decisions. This can induce changes in the basin of attraction
of the different concepts being identified and this search for the new attractor, generate
persistent fluctuations of neuronal activity.
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