• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.2003.tde-18072012-110448
Document
Author
Full name
Carlos Molina Mendes
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2003
Supervisor
Committee
Abdalla, Elcio (President)
Abramo, Luis Raul Weber
Lima, José Ademir Sales de
Matsas, George Emanuel Avraam
Saa, Alberto Vazquez
Title in Portuguese
Propagação de campos em buracos negros esféricos
Keywords in Portuguese
Buracos Negros
Gravitação
Propagação de Campos
Abstract in Portuguese
O estudo de perturbações em buracos negros tem sido um campo de pesquisa ativo nas últimas décadas, levando a importantes contribuições para o entendimento da física de corpos compactos em geral. Para o caso de geometrias esféricas assintoticamente planas quadridimensionais, existe um panorama muito bem delineadi para a dinâmica de diversos campos de interesse. A introdução de uma constante cosmológica nas equações de Eisntein muda o caráter assintótico das soluções tipo buraco negro e neste caso, muito menos é conhecido. No trabalho desenvolvido nesta tese abordamos alguns aspectos da propagação de campos em geometrias esféricas assintoticamente de Sitter e anti-de Sitter, considerando inclusive geometrias com dimensão maios que quatro. No regime quase extremo a dinâmica é mais simples. Neste caso, são obtidas expressões analíticas para os potenciais efetivos e para os modos quase-normais, caracterizando completamente a dinâmica. Em geral, entretando, somos forçados a recorrer a métodos semi-analíticos e numéricos. Empregamos estes métodos para uma análise ampla da forma de decaimento dos diversos campos. Nossos resultados esboçam um quadro geral bastante coeso em uma grande gama de situações.
Title in English
Propagation of fields in spherical black holes
Keywords in English
Black Holes
Gravitational
Propagation Field
Abstract in English
The study of pertubations in Black holes hás been na active Field of research in the last decades, leading to a better understanding of the physics of compact objects in general. In the case of asymptotically flat spherical geometries with four dimensions, there is a schematic Picture regarding the dynamics of many fields of interest. The introduction of a cosmological Constant in the Einstein equations changes the asymptotic character of the Black hole solutions, and in this case much less is known. In the work developed in this thesis we treat some aspects of the fiels propagation in spherically symmetric geometries which are asymptotically de Sitter and anti-de Sitter, considering also geometries with dimension greater than four. In the near extreme regime the dynamics is simpler. In this case, we obtain analytic expressions to the effective potentials and to the quasinormal modes, completely characterizing the dynamics. In general we are forced to use semi-analytics and numerical methods.These methods are employed in na extensive analysis of the decay modes of the fields cosidered. Our results sketch a general Picture in a wide sample of situations.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
41279Mendes.pdf (16.65 Mbytes)
Publishing Date
2012-07-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.