• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.43.2002.tde-23022012-155648
Documento
Autor
Nome completo
Andre de Pinho Vieira
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2002
Orientador
Banca examinadora
Salinas, Silvio Roberto de Azevedo (Presidente)
Alcaraz, Francisco Castilho
Becerra, Carlos Castilla
Gonçalves, Lindberg Lima
Miranda, Eduardo
Título em português
Efeitos de desordem ou aperiodicidade sobre o comportamento de sistemas magnéticos
Palavras-chave em português
Interações aperiódicas
Modelo XY quântico
Sistemas de spins mistos
Sistemas magnéticos desordenados
Sistemas quase-unidimensionais
Resumo em português
Consideramos os efeitos de desordem ou aperiodicidade sobre três sistemas magnéticos distintos. Inicialmente, apresentamos um modelo fenomenológico para descrever a dependência térmica da magnetização remanente induzida por diluição numa classe de antiferromagnetos quase-unidimensionais. O modelo trata exatamente as correlações ao longo da direção dominante, levando em conta as demais interações por meio de um campo efetivo. Em seguida, utilizamos uma aproximação autoconsistente de Bethe-Peierls para avaliar os efeitos de um campo cristalino aleatório sobre os diagramas de fases de um modelo de Ising de spins mistos. Mostramos que a desordem é capaz de modificar a natureza dos pontos multicríticos existentes no limite uniforme do modelo. Finalmente, estudamos os efeitos de interações aleatórias ou aperiódicas sobre o comportamento da cadeia XX quântica em baixas temperaturas, através de câlculos numéricos baseados no mapeamento do sistema em um modelo de férmions livres. Apontamos evidências de que, em temperatura zero, existe um único ponto fixo universal, característico de uma fase de singleto aleatório, que governa o comportamento do modelo na presença de interações desordenadas. No caso de interações aperiódicas,obtemos resultados consistentes com previsões de grupo de renormalização, indicando, para uma certa classe de seqüências de substituição, um comportamento semelhante àquele associado à desordem.
Título em inglês
Effects of disorder or aperiodicity on the behavior of magnetic systems
Palavras-chave em inglês
aperiodic interactions
Disordered magnetic systems
mixed spin systems
quantum XY model
quasi-one-dimensional systems
Resumo em inglês
We consider effects of disorder or aperiodicity on three different magnetic systems. First, we present a phenomenological model to describe the thermal dependence of the dilution-induced remanent magnetization in a class of quasi-one-dimensional antiferromagnets. The model treats correlations along the dominant direction in an exact way, while including the remaining inte-. i ractions via an effective field. Then, we use a self-consistent Bethe-Peierls ~ j .. approximation to gauge the effects of a random crystal field on the phase diagram of a mixed-spin Ising mode!. We show that disorder may have profound effects on the multicritical behavior associated with the uniform limit of the mo de!. Finally, we study effects of random or aperiodic interactions on the behavior of the quantum XX chain at low temperatures, by performing numerical calculations based on a mapping of the system onto a free-fermion mo de!. . We present evidence that, at zero temperature, there exists a single, universal fixed-point, associated with a random-singlet phase, which governs the behavior of the model in the presence of disordered interactions. In the case of aperiodic interactions, our results are consistent with renormalizationgroup predictions, indicating, for a certain class of substitution sequences, a behavior similar to the one induced by disorder.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
36194Vieira.pdf (6.21 Mbytes)
Data de Publicação
2012-06-14
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.