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Abstract

We compute topological entanglement entropy for a large set of lattice models
in d-dimensions. It is well known that many such quantum systems can be
constructed out of lattice gauge models. For dimensionality higher than 2 there
are generalizations going beyond gauge theories. They are called higher gauge
theories and rely on higher-order generalizations of groups. Our main concern
is a large class of d-dimensional quantum systems derived from Abelian higher
gauge theories. In this work, we calculate the bipartition entanglement entropy
for this class of models. Our formalism allows us to do most of the calculation
for arbitrary dimension d. We show that the entanglement entropy SA in a
sub-region A is proportional to log(GSDÃ), where GSDÃ is the ground state
degeneracy of a particular restriction of the full model to A. When A has the
topology of a d-dimensional ball, the GSDÃ counts the number of edge states.
In this case, SA scales with the area of the (d − 1)-dimensional boundary
of A. The precise formula for the entropy we obtain is in agreement with
entanglement calculations for known topological models.
Keywords.- Gauge theories, Topological Order, Entanglement Entropy



Resumo

Nós calculamos a entropia de emaranhamento topológica para um grande con-
junto de modelos em dimensão d. Sabe-se que muitos sistemas quânticos
podem ser construídos a partir de teorias de gauge na rede. Em dimensões
maiores a 2 existem generalizações além das teorias de gauge. Chamadas
higher gauge theories, estas são baseadas em generalizações de ordem supe-
rior do conceito de grupo. O nosso objeto de estudo é um conjunto grande
de modelos d-dimensionais, que são obtidos a partir de teorias Abelianas de
higher gauge. Neste trabalho, calculamos a entropia de emaranhamento para
dito conjunto de modelos. O nosso formalismo permite fazer a maior parte
do cálculo para dimensão arbitrária d. Mostramos que a entropia de emaran-
hamento SA, em uma sub-região A do sistema, é proporcional à log(GSDÃ),
onde GSDÃ é a degenerescência do estado fundamental de uma restrição par-
ticular do modelo na região A. Quando A tem a topologia de uma bola de
dimensão d, a quantidade GSDÃ conta o número de estados de borda. Neste
caso, SA escala com a área da borda (d − 1)-dimensional de A. O resultado
exato da entropia que obtemos está em concordância com os resultados con-
hecidos na literatura.
Palavras-chave.- Teorias de Gauge, Ordem Topológica, Entropia de Emaranhamento
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Chapter 1

Introduction

On our daily experience we can easily distinguish between different phases of matter by
mere naked-eye observation. For instance, the gas, solid and liquid phases of water are
part of our quotidian and we can clearly differentiate and even describe to some level
of detail these many phases. There are, however, more intricate states of matter that
can occur in different situations and scales. Take plasmas, Bose-Einstein condensates,
quantum spin liquids or superfluids as examples.

States of matter are, in general, classified into phases that can be connected to each
other via phase transitions. This can be seen as follows: different states of matter are
distinguished by their internal structure (order). Take the example of a solid at some
finite temperature where the atoms are arranged in a regular (or almost regular) pattern
depending on its constituents, their interactions and the external conditions such as pres-
sure and temperature. If we choose to vary some of these conditions, say, the temperature,
eventually the crystal order will be destroyed and the solid will suffer a transition into
a liquid phase where the motion of the atoms is now less correlated. If the temperature
continues to be raised the system will again go through a transition into a very disordered
phase, namely, it will become a gas, where the motion of an atom hardly depends on the
motion of the other constituents.

Thus, phases of matter in principle could be classified by means of phase transitions,
under this scheme different states or phases of matter have different internal structure,
or order. The properties of a material are mainly determined by how its constituents are
organized rather than the specifics of the constituents themselves. Phases, in this sense,
can be understood as emergent since the several properties a material can have, depend
on the several ways the constituents are organized, or ordered. Different orders lead to
different materials or phases which in turn lead to different properties of the material.
One key step in order to develop a general theory that could ultimately classify these
phases of matter was the realization that the internal orders of a system are related to
the symmetries of its elementary constituents. This means that if two phases of matter
are different is because they differ on their symmetries. As a material undergoes a phase
transition the internal symmetries of the system change. This is the fundamental idea
in what is known as the Ginzburg-Landau theory of phase transitions [6, 7, 8] that was
originally developed to describe the transition to a superconductor phase of matter by
means of a local order parameter and its fluctuations. For a long time it was thought that
this theory could describe all phases of matter and their phase transitions.
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Introduction

However, the discovery of the Fractional Quantum Hall Effect (FQHE) by Tsui et al.
[9] revealed that Landau’s scheme, based on local order parameters, was not enough to
have an exhaustive classification of phases of matter. The conceptual novelty brought by
the discovery of FQHE states is that they appear to exhibit internal orders or “patterns”
that do not have any relation with any kind of local symmetries (or the breaking of
them) and thus cannot be described by the usual Ginzburg-Landau symmetry-breaking
scheme. It is this global motion pattern that corresponds to the topological order in FQHE
states [10], in this sense, the FQH states stand as the first observation of a topological
phase of matter [11, 12]. The word topological in this context comes from the fact that
there are no local order parameters able to distinguish between different phases, this is,
global parameters must be considered instead. One example of such a global quantity is
the ground state degeneracy (GSD) that depends on the underlying topology where the
system is realized [10, 13, 14, 15]. Another example of such phases can be found in the
study of Spin Liquids [16, 17, 18, 19]. In particular the so called chiral spin liquids [20],
studied with the intention to explain high Tc superconductivity. For some time people
tried to use the symmetry-breaking scheme in order to characterize the chiral spin liquid.
Wen [14] realized that there are several different chiral spin liquids with the exact same
symmetry. So, definitely, the characterization must take this into consideration, symmetry
is not enough.

1.1 Topological Order

Although there is no precise definition of topological order, a notion of topological order
can be given through some measurable quantities, which in turn are related to topological
invariants. We already mentioned one of such quantities, namely, the ground state de-
generacy (GSD), as in the FQHE case. But the features of topologically ordered systems
are not restricted to the topology dependent ground state degeneracy. The excitations of
such systems exhibit characteristic properties such as the fractionalization of the charge
and anyonic statistics. In particular, for the FQHE states, which arise in systems whose
constituents are electrons each one with charge e, the excitations carry a charge that is a
fraction of e. This is closely related to the degeneracy as it can be shown that fractional-
ization implies the degeneracy of the ground state [21, 22]. Another feature involving the
quasi particle excitations of such systems is that they obbey exotic statistics. In 3 spatial
dimensions it is known that the quantum states of identical particles behave either as
bosons or fermions under the exchange of a pair, even though this fact may seem simple
it is fundamental for the understanding of nature, and it is at the root of the classification
of elements as we know them since the Pauli exclusion principle holds only for fermions.
Nevertheless, in two dimensional systems, such as the FQHE states, there are new possi-
bilities for quantum statistics that interpolate continuously between those of bosons and
fermions. Under an exchange of two quasi-particles the quantum state can acquire an
overall phase eiθ, where the special cases θ = 0, π correspond to the bosonic and fermionic
statistics respectively. The statistical angle θ can take different values, and the particles
obeying these generalized statistics are called anyons[23, 24, 25, 26, 27, 28].

Topological order is understood as a property of the quantum states of a system.
Specially the ground states, as one of the most robust observables is the GSD. It is an
emergent phenomenon since it depends mostly on how the elementary constituents of

2
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the quantum system organize between themselves. In this sense, topological order is
related to the entanglement in wavefunctions. Topological order is said to be intrinsic
whenever there is Long Range Entanglement (LRE). This can be understood by looking
at the microscopics of the system. Topological order is a property of a local quantum
system with total Hilbert space being a tensor product of local ones, H =

⊗
iHi. A

product state is an state of the form |Ψ〉 =
⊗

i |Ψi〉, where |Ψi〉 ∈ Hi. An state is
said to be topologically ordered if it cannot be deformed into a product state without
going through a phase transition that might have to do with a change in the underlying
topology. Such quantum states are said to be long range entangled. On the contrary,
gapped quantum states that can be deformed into a product state are said to have short
range entanglement, which when symmetry is unbroken, give rise to nontrivial phases,
called symmetry protected topological (SPT) phases, such as the Haldane phase [29]. The
mechanism here prevents the deformation of the state into a trivial state by the symmetry.

The above suggests that the nature of entanglement in a quantum state is by itself
a signature of topological order. In fact, entanglement entropy turns out to be a good
measure of the presence of topological order in a quantum state [30, 31], we refer the
reader to [32] for a detailed discussion about the relation between topological entanglement
entropy and topological order in 2 spatial dimensions. For two dimensional phases, such as
the FQHE states, it is shown that the scaling of the entanglement entropy has a constant
term correction [33, 34] often called topological entanglement entropy, this is examined in
detail for the simplest example in [35, 36, 37, 38] and in §2.3 example 2.3.2, for instance.

Hence there is a clear need for a general theory of topological phases and consequently
the need for a mathematical framework that could ultimately characterize and classify
these topological phases of matter. In the past years there has been a major interest
on the study of these phases of matter via a detailed analysis of exactly solvable lattice
models that exhibit the features of having topological order. The simplest example is the
so called Toric Code model (cf. §2.2) introduced by A. Kitaev in [1] which is constructed
as a many body interacting system defined over a 2-dimensional lattice. It exhibits the
features of a topologically order system as its ground state is 4-fold degenerate when the
lattice is embedded on the surface of a Torus, hence part of its name. The degeneracy is
protected from local perturbations that come as the elementary excitations of the model.
These elementary excited states can be interpreted as quasi-particle anyonic excitations
located at the vertices and faces of the lattice, they display bosonic statistics when braided
among themselves while composite excitations show fermionic statistics. The model can
be interpreted as a particular lattice gauge theory [39] where the gauge group is the abelian
Z2 group. Furthermore, for any finite group G, in [1] Kitaev introduces a more general
class of models called Quantum Double Model (QDM) defined through a Hamiltonian that
is written as a sum of mutually commuting projectors [40, 41, 42, 43] (cf. §2.1), which
are Lattice Gauge Theories with group G in the Hamiltonian formalism. The elementary
excitations of this models are anyons whose fusion and braiding properties depend on
the specific choice of the group G giving rise to the possibility of having non-abelian
anyons that can be used to implement a fault-tolerant quantum computation process
[44, 45, 46, 47], where unitary transformations are obtained by the braiding of anyons and
the final measurement is performed by the joining of pairs of excitations.

In general, two dimensional topological phases have been exhaustively studied and
are rather well understood; A large class of 2D topological orders are identified by the

3
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systematic construction of the so called string-net models [2, 48] where it is shown that
each topological phase is associated to particular tensor category called fusion category,
the QDM being a subclass of these models as shown in [49]. Exactly solvable models
coming from gauge theories, such as string-nets and QDMs appear to be very efficient
when characterizing topological order, at least in two spatial dimensions. In the sense
that they realize all types of anyonic excitations. The same cannot be said for higher
dimensional topological phases, since much less is known about them. For example, the
3D versions of the QDM are not enough to account for all topological phases in 3D.
This is, in part, due to the difficulties of understanding higher dimensional topological
quantum field theories. Nevertheless, in recent years there have been serious improvements
in the level of understanding of such theories. Two main trends can be identified for
the study of higher dimensional topological phases: On one hand there is an increasing
interest in lattice models that come from higher dimensional analogues of gauge theories
[3, 50, 51, 52, 53, 54], which in general we call higher gauge theories, approach that we
ascribe for this work. On the other hand, the proposal of the so called fracton phases
[55, 56, 57, 58, 59, 60, 61, 62], arises from a slightly different strategy for the study of
higher dimensional topological phases, more precisely, the gauging procedure [60, 63, 64]
allows the construction of rather intricate lattice models with remarkable new properties.
Among these properties, in [65, 66] the topological entanglement entropy of several fracton
models is explicitly calculated, showing that they indeed appear as new quantum phases.

With respect to the approach we follow in the study of higher topological phases, in [50]
a class of Topological Quantum Field Theories involving 1-form and 2-form gauge fields
has been studied using 2-groups instead of the usual notion of 1-groups. Consequently, the
existence of gapped phases of matter that are protected by a 2-group instead of a 1-group
symmetry was proposed. Moreover, in [52], and independently in [67, 68], a Hamiltonian
formulation of the Yetter’s homotopy 2-type TQFT [69] was constructed with the aim of
understanding (3+1) topological phases of matter. Also, it is worth mentioning the works
of [70], where bosonic lattice realizations of SPT phases with higher form symmetry are
presented, and [71, 72], where their connection to fault-tolerant logical gates in topological
quantum codes is discussed. The common feature in all above attempts to unravel higher
dimensional phases are founded in the idea of more general kind of gauge symmetry, a
higher gauge symmetry and the use of some notion of n-groups to implement such higher
symmetry on actual quantum states.

In [3] we take a first step along the lines of higher gauge symmetries, this is, we
construct and study a class of models that could live in arbitrary dimensions and go
beyond usual gauge theories. These theories involve higher gauge fields and symmetries
in all possible dimensions. The notion of a gauge group is replaced by a more general
mathematical object, namely, a chain complex of abelian groups, which plays the role
of a n-group. As a consequence, the notion of gauge configuration is replaced by the
notion of maps between two chain complexes. In this mathematical framework is quite
natural to construct lattice Hamiltonian formulations of higher gauge theories on arbitrary
dimensions. The class of Hamiltonian models obtained from this picture are shown to have
a degenerate ground state subspace whose basis elements are in one-to-one correspondence
with special cohomology classes [73]. Furthermore, this formalism allows to explicitly show
that the ground state degeneracy (GSD) is a topological invariant, for which we give a
closed formula in terms of the order of the 0-th cohomology group with coefficients in the
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chain complex of abelian groups. Moreover, due to a theorem by Brown [73], the GSD
can be understood as exhibiting contributions from each dimension, therefore exhibiting
the different intrinsic topological orders involved.

In this thesis, we study the entanglement entropy of the Abelian higher gauge theories
defined in [3], all at once. This can be achieved using the language of homological algebra,
and the result we obtain for the entanglement entropy relates this quantity to the ground
state degeneracy of a model restricted to a subregion of the system, in a very particular
way as we will precisely show. This result seems to be in agreement with the holographic
principle, moreover, it also provides the corresponding topological correction whenever
topological order is detected.

The way the entanglement entropy is obtained, in essence, relies on the fact that the
lattice models are constructed as stabilizer codes [74]. The entropy calculation, is similar
in spirit to the one in [35, 75, 76, 77, 78]. The goal of this work is to show that the same
strategy allows to readily extract the entanglement entropy of any Abelian higher gauge
theory (in the sense of [3]), exhibiting the topological constant term in the presence of
topological order.

The calculation of entanglement entropy starts out by defining a density matrix from
the (possibly degenerate) ground states, |ψ〉, of a stabilizer Hamiltonian. This is, define
ρ := |ψ〉 〈ψ|. Then consider a bipartition of the system into a sub-region A and the
complement (B), such distinction allows to obtain the reduced density matrix, ρA = TrB(ρ)
by performing a partial trace over sub-region B. The entanglement entropy is then defined
as the von Neumann entropy of the reduced density matrix, namely,

SA := −Tr (ρA log ρA) . (1.1)

In a gapped phase, the entanglement entropy is expected to satisfy an area law as the
leading term; The topological information is contained in subleading terms and, in general,
it is not easy to extract. Several prescriptions [33, 34] were constructed in order to extract
the topological correction to the entanglement entropy in two dimensional gapped systems.
These prescriptions have been generalized [79, 80] for d = 3 and consequently used to
successfully obtain the entanglement entropy of paradigmatic fracton models [65, 66].

1.2 About this Manuscript

The objective of this manuscript is two fold. First, we intend to give a concise summary of
the main research activities concerning the Ph.D. project of Juan Pablo Ibieta Jimenez at
the DFMA-IFUSP under the supervision of Prof. Dr. Paulo Teotônio Sobrinho. We also
think this work could be seen as a pedagogical treatise of Abelian Higher Gauge Theories.

This manuscript is organized as follows, we begin the discussion with Chapter 2 where
we review the most simple class of 2D topological models in the lattice, the Quantum
Double Models (QDMs). These models are based on a discrete group G and they can
be thought of as the Hamiltonian version of lattice gauge theories with gauge group G.
The local degrees of freedom are labeled by group elements in G. The dynamics of the
model is determined by a Hamiltonian operator that acts on the entire many-body Hilbert
space H. The ground state subspace H0 ⊂ H has topological nature and we show this
using projection operator that we call ground state projector. This operator becomes very
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important later on this thesis as we will see on the subsequent chapters. In particular,
when the gauge group is the Abelian Z2 we recover the Toric Code model that was
originally introduced by Kitaev in [1]. We exhibit the topological nature of the models
using this example. The last part of Chapter 2 we introduce the quantity of main interest
for this thesis, namely, the entanglement entropy [34] of quantum states. We choose to
do this by exhibiting two explicit calculations, a simple two-qubit system and the Toric
Code. In the latter case, we obtain the known result [35, 36, 75, 76] for the entanglement
entropy of the ground states. This is, an area law together with a constant term called
topological entanglement entropy [33, 34].

Chapter 3 introduces quantum models that are interpreted as the Hamiltonian version
of Higher Gauge Theories in their Abelian version. We start by casting the QDMs of 2
as gauge theories in 2D which we call 1-gauge theories in reference to having the degrees
of freedom at links (1-dimensional objects). We then introduce two more 2D quantum
models, called 0, 1-gauge and 1, 2-gauge theories, while the former considers degrees of
freedom at both vertices (0-dimensional) and links (1-dimensional) of the lattice; whereas
the latter considers degrees of freedom at links (1-d) and faces (2-d) , hence the name for
these two theories. A 3D model coined 1, 2, 3-gauge theory is then introduced to show
that the generalization is carried over higher dimensions as well, in all the above cases we
give specific examples (we choose the gauge groups) and show the topological properties
encoded in the ground state subspace of this models. We end the chapter by defining the
most general class of models, which we call Abelian Higher Gauge Theories and that are
the main object of study in Chapter 4. Chapter 3 should be regarded as a pedagogical
introduction of the kind of theories we will treat in this work.

On chapter 4 we study the topological properties of the ground state subspace of
Abelian higher gauge theories in general. To do that we write the models using the
language of Homological Algebra. This chapter is based on [3]. For this reason, the
exposition encountered in chapter 3 can be complemented by looking at [3, 81]. The
construction considers an underlying manifold, X, of arbitrary dimension and that could
hold arbitrary gauge fields living on vertices, links, faces, volumes, etc. of the lattice.
The model consists in a geometric part which we choose to be a simplicial chain complex
C(X) and an algebraic part, that plays the role of the gauge group. This generalized gauge
group is the Abelian version of an n-group and it is given by an abstract chain complex of
Abelian groups. The important concepts of gauge transformations, gauge configurations
and holonomies are encoded in Abelian groups hom(C,G)p for p = −1, 0, 1, respectively,
and we show that the small sequence,

hom(C,G)−1 δ−1

−−→ hom(C,G)0
δ0−→ hom(C,G)1,

is all we require to define an (Abelian) higher gauge theory in its most general form.
The ground states of the models are shown to be characterized by the 0-th cohomology
group H 0(C;G) which in turn decomposes into usual cohomology groups through a
theorem by R. Brown [73]. We end chapter 4 with four illustrative and detailed examples
corresponding all the examples introduced in chapter 3.

In chapter 5 we show the main result of this work. The entanglement entropy SA

of the models in chapters 3 and 4. We show how the language of Homological Algebra
is very convenient to perform the calculation of the entanglement entropy which follows
practically the same scheme shown in the example 2.3.2 of §2.3. Thus, we show that the
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entanglement entropy of an (Abelian) higher gauge theory is related to the ground state
degeneracy of a restricted version of the model. Moreover, this ground state degeneracy
essentially counts the number of edge states, which in turn reveals the nature of entangle-
ment in such states. We show how the area law plus the topological correction term are
obtained by calculating SA for particular examples, this is, we show that entanglement
entropy is indeed a good probe for the presence of topological order in quantum states.
Remarkably, all ground states of (Abelian) higher gauge theories appear to follow the area
law for entanglement entropy.

We finish the manuscript with concluding remarks and outlook for future research
that can be thought of as extensions of this work. I would like to end this introductory
chapter by mentioning that this work, which is mainly focused on the models developed
in [3], is a small part of the result of a joint research work that includes the efforts of the
research group lead by Prof. Dr. Paulo Teotônio Sobrinho and integrated by the Ph.D.
students Marzia Petrucci, myself and former members of the group.
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Chapter 2

Quantum Double Models and

Topological Entanglement Entropy

We start the Chapter with a simple but in-detail review of a class of two dimensional
models known as Quantum Double Models [1, 82, 83, 84, 85]. They are quantum models
defined by many-body quantum Hamiltonians acting on the global Hilbert space H. The
local degrees of freedom are labeled by group elements of a finite and discrete group
G. The ground states subspace of these quantum models are of particular interest since
they posses topological properties. To showcase this, we choose a particular example
of a QDM, known as Toric Code. This model is obtained when the gauge group is set
to be G = Z2. The ground states of the Toric Code are sensitive to the underlying
topology of the lattice amongst other properties. This comes as a result of the long range
entanglement of the states. Moreover, in [33, 34] the entanglement entropy is recognized as
a probe for long range entanglement (and topological order) in two dimensional quantum
states. Specifically, they show the existence of a universal constant term that signals
the presence of long range entanglement. This is known as Topological Entanglement
entropy and is the main focus of the second part of this Chapter. In this sense, we end
the discussion calculating the entanglement entropy for the Toric Code. The entaglement
entropy exhibits an area law contribution together with the topological term, a known
result [35, 36, 75, 76].

2.1 Quantum Double Models

To start our discussion about higher dimensional topological phases, let us begin with a
brief description of the class of (2+1)D quantum models known as Quantum Double Model
with group G; These quantum models can be understood as the Hamiltonian formulation
of a (2+1)D lattice gauge theories where the gauge group isG and were originally described
in [82, 86] from a field theoretical point of view. The standard construction of the model
[1] defines a many body interaction Hamiltonian over a two dimensional oriented lattice
ΛΣ (usually squared). The Hamiltonian is made of two types of localized projection
operators that commute with each other, commonly refered to as vertex and plaquette
operators. Every edge of the lattice is oriented and it joins two adjacent vertices. So
the lattice consists on vertices, edges and plaquettes. Although both the lattice and the
orientation of the edges can be arbitrary, we consider a square lattice with the orientation
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shown in Fig.(2.1) for no other reason than simplicity. Moreover, a local Hilbert space Hl

is associated to each edge l ∈ Λ spanned by basis elements {|g〉}g∈G labeled by the group
elements g ∈ G. The dimension of this local vector space is dimHl = |G|, the order of the
group. Consequently, the full Hilbert space is naturally constructed as being the tensor
product of all local Hilbert spaces Hi, namely,

H :=
⊗

i∈Λ

Hi, (2.1)

such that the orthonormal basis is written:

{|g1, g2, . . . , gN〉 := |g1〉 ⊗ |g2〉 ⊗ · · · ⊗ |gN〉 , gi ∈ G},

where N stands for the number of edges in Λ and the inner product in H is the usual one.

(a) (b)

Figure 2.1: In (a), a square lattice with oriented edges is shown, where we highlight arbitrary vertex and pla-
quette, note that we fix he orientation of each plaquette of the lattice as being counterclockwise.

Whereas, in (b) the process of inverting the orientation of an arbitrary link is exhibited.

Even though the lattice is oriented, meaning that both links and plaquettes have an
orientation, the model itself is made orientation independent by assigning the following
convention: Consider an arbitrary link l, associated to it there is a local basis element |g〉
(g ∈ G). A change in the orientation of the link l is related to the inversion of the group
element that labels the basis state, as depicted in Fig. 2.1(b). Often and throughout
this work we will use graphical representations of states. This is, let |g1, g2, g3, g4, . . . , gN〉
be an arbitrary basis state where g1, g2, g3 and g4 are the link configurations around a
particular vertex v, we will represent such state as:

|g1, g2, g3, g4, . . . , gN〉 ≡ .

The dynamics of the model is ruled by a Hamiltonian operator that consists on localized
gauge transformations and localized holonomy measurements, as in a Lattice Gauge The-
ory. These localized operations are enhanced on quantum states by two operators, which
we describe next. For any vertex v and plaquette p of the lattice L we define a set of local
operators Ag

v and Bp that act trivially on all edges in L except for those contained in v
and p respectively. This notion will be precisely stated in the following lines. So, consider
an arbitrary vertex v ∈ L, there are four (in a square lattice) local Hilbert spaces Hi,
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i ∈ v corresponding to the four adjacent edges, the elementary gauge transformation, Ag
v

can be defined via its action on arbitrary basis states, as follows:

Ag
v = , (2.2)

where we write the group operation in G additively. In the above expression it is under-
stood that the operator acts trivially on the rest of the Hilbert space. This is, it acts non
trivially on the four edges around the vertex v as shown in Fig.(2.2). Equivalently we say
this operator acts on the subspace Hv ⊂ H consisting on the four edges around the ver-
tex in question. This operator is interpreted as implementing the local gauge symmetry
labeled by group elements g ∈ G. The operator that is actually part of the Hamiltonian
operator consists on a weighted sum over all gauge parameters, this is:

Av :=
1

|G|
∑

g∈G

Ag
v. (2.3)

The other kind of local operators are in charge of making measurements, they consist on
diagonal operators that measure the holonomy around the smallest closed loop, namely,
a plaquette, defined by:

Bp = δ(a + b− c− d, 0) . (2.4)

where 0 is the identity element of G. In the above definition, j1, . . . , j4 are the edges at
the boundary of p listed following a counterclockwise order.

Figure 2.2: The local Hilbert spaces over which the Av and Bp operators act are shown on the lattice in red
and blue respectively.

Finally, we can write the Hamiltonian of the Quantum Double Model. Let Λ be a 2-
dimensional oriented lattice and H the Hilbert space of Eq.(2.1). We define HQD : H→ H

as:

HQDM := −
∑

v∈L

Av −
∑

p∈L

Bp. (2.5)
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In the above definition, the Av operators perform gauge transformations and thus
project out states that are not invariant under the action of Ag

v for all elements g ∈ G
(and for each vertex v ∈ Λ). On the other hand, the operator Bp projects out the states
with non-trivial holonomy around the plaquette p ∈ Λ. Both types of operators in HQD

are projectors and they all commute with each other. We refer the reader to [1, 84, 87]
for details about the construction of this model.

2.1.1 Ground States

Let us now discuss, very briefly, about the topological nature of the QDMs. This analysis
can be performed in a detailed fashion since both vertex and plaquette operators are
mutually commuting projectors, namely

A2
v = Av, B2

p = Bp,

[Av, Bp] = 0, ∀v, p ∈ Λ, (2.6)

which implies there is a simultaneous basis of eigenstates for all Av and Bp. We are
interested the subspace H0 ⊂ H that contains all states |ψ〉 with the lowest energy
eigenvalue. In fact, it is easy to realize that the ground state subspace is defined by:

H0 := {|ψ〉 ∈ H |Av |ψ〉 = |ψ〉 , Bp |ψ〉 = |ψ〉} , (2.7)

for all v, p ∈ Λ. There is a canonical way of constructing a basis for this subspace which
we outline in the following lines. First of all we note that such subspace is not empty, to
see this, consider the trivial seed state:

|ψ0〉 :=
⊗

l∈Λ

|0〉l , (2.8)

where e is the identity element of the group G. Notice that this state fulfills the ground
state condition of Eq. (2.7) only for the plaquette operators, as the vertex operators
perform gauge transformations by group multiplication. Therefore, we can construct an
actual ground state if we perform all possible gauge transformations to the seed state of
Eq. (2.8), this is, consider the following state:

|ψ0
G〉 :=

∏

v∈Λ

Av |ψe〉 ,

it is straightforward to see that the above state is indeed a groud state of the HQD from
the following observation:

Av′

∏

v∈Λ

Av = Av′Av′

∏

v 6=v′

Av = Av′

∏

v 6=v′

Av =
∏

v∈Λ

Av,

a similar expression also holds for the product of plaquette operators Bp. This motivates
the definition of an operator that projects basis states of H to the ground state subspace
H0.

12



Quantum Double Models

Definition 2.1.1 (Ground State Projector). Consider the operator Π0 : H→ H0 defined
by:

Π0 =
∏

v∈Λ

Av

∏

p∈Λ

Bp, (2.9)

where Av and Bp are those of Equations (2.3) and (2.4), respectively.

To understand the ground state projector let us consider its action on an arbitrary
basis state |ψ〉 ∈ H, this is:

1. The first part of the projector, namely,
∏

v∈ΛAv projects into gauge equivalent
states, to see this it is enough to look at the notion of gauge equivalence. Consider
two basis states |ψ〉 , |φ〉 ∈ H, we say they are gauge equivalent if there is some
gauge transformation Ag

v with g ∈ G such that Ag
v |ψ〉 = |φ〉. Now, from Eq.(2.3)

and Definition 2.1.1 it follows that:

∏

v∈Λ

Av =
1

|G||Λ0|

∏

v∈Λ

∑

g∈G

Ag
v,

as a consequence, two states |ψ〉 , |φ〉 ∈ H are gauge equivalent if
∏

v∈Λ Av |ψ〉 =∏
v∈ΛAv |φ〉. Furthermore, from the above expression it is clear that

∏
v∈Λ Av maps

a state |ψ〉 ∈ H into a superposition of gauge equivalent states.

2. The part of the ground state projector that consists on a product of plaquette
operators, namely,

∏
p∈ΛBp projects into states with trivial holonomy. This can be

seen from the very definition of Bp in Eq. (2.4). Therefore, any state |ψ〉 is invariant
under the action of

∏
p∈ΛBp only if it is invariant under the action of each Bp for

all p ∈ Λ. This condition is exactly the same condition the state |ψ〉 must fulfill in
order to be a ground state of the Hamiltonian in Equation (2.5).

From the above discussion, the action of Π0 on an arbitrary basis state |ψ〉 ∈ H is given
by:

Π0 |ψ〉 =
{
|ψ〉 , if |ψ〉 ∈ H0,

0, otherwise.

Therefore, a basis for the ground state subspace is canonically obtained by the action of
Π0 on basis states of H. Moreover, the ground state projector is a diagonal operator with
only 1 and 0 as entries. Thus, the trace of such operator gives, precisely, the ground state
degeneracy of the model, namely,

GSD = tr (Π0) .

In the next section we exhibit the most common example of a QDM. It corresponds of
taking the gauge group to be G = Z2 and it already showcases the topological features of
such models.
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2.2 Example: G = Z2 (Toric Code)

In this section we describe an special case of the class of models known as QDMs. The
model was originally proposed by Kitaev in [1] as the simplest topological quantum error
correction code and usually called Toric Code (TC). This example is obtained by choosing
the gauge group G to be the cyclic group of order 2 usually denoted as Z2 = {0, 1 : 1+1 =
0}, e being the identity element of the group. Canonically, the group algebra C(Z2) is
a 2-dimensional vector space over the complex numbers spanned by the basis vectors
{|0〉 , |1〉}. In this case, the vertex operator Av, is given by:

Av =
1

2

(
1i1 ⊗ 1i2 ⊗ 1i3 ⊗ 1i4 + σx

i1
⊗ σx

i2
⊗ σx

i3
⊗ σx

i4

)
. (2.10)

On the other hand, the operator in charge of implementing the local flatness condition is
given by:

Bp =
1

2

(
1j1 ⊗ 1j2 ⊗ 1j3 ⊗ 1j4 + σz

j1 ⊗ σz
j2 ⊗ σz

j3 ⊗ σz
j4

)
. (2.11)

Then, the Hamiltonian of the Z2 Quantum Double model (Toric Code) is given by:

HTC := −
∑

v∈L

Av −
∑

p∈L

Bp, (2.12)

where the plaquette and vertex operators are those obtained in Eqs.(2.11) and (2.10).
The states of this model are elements of the Hilbert space H which in turn is a tensor
product of local Hilbert spaces Hi = C(Z2) corresponding to each edge of the lattice L.
Clearly any state |ψ0〉 ∈ H such that

Av |ψ0〉 = |ψ0〉 = Bp |ψ0〉 , (2.13)

for any vertex v and plaquette p on the lattice L, will be a ground state of the model.
Consider the following state:

|ψ0〉 =
∏

v∈L

Av

⊗

i∈L

|0〉i , (2.14)

where the product runs over all vertices in the lattice and by the tensor product we mean
that each edge l of the lattice L carries a |e〉 state. The state |ψ0〉 is indeed a ground
state of the Hamiltonian (2.12), i.e.

Av |ψ0〉 = Bp |ψ0〉 = |ψ0〉 , ∀v, p ∈ L, (2.15)

this can be shown by using the commutation relations between vertex and plaquette
operators [Av, Av′ ] = 0 = [Av, Bp]. This state is interpreted as a linear combination
of Loop states, where the loops are a graphical way to represent the action of gauge
transformations. To see this, consider the non-local operators:

Z(γ) :=
⊗

l∈γ

σz
l , (2.16)

X(γ∗) :=
⊗

l∈γ∗

σx
l , (2.17)

14



Quantum Double Models

where γ and γ∗ are paths in the direct and dual lattice, respectively. Notice that any
product of vertex (plaquette) operators will act trivially on |ψ0〉, equivalently, any operator
Z(γ) or X(γ∗) where γ and γ∗ define contractible loops on the direct and dual lattice,
respectively, will act on |ψ0〉 in a trivial way. This ground state is interpreted as being a
Loop Gas, where the loops are the result of the action of vertex operators on the initial
configuration

⊗
l∈∂p |e〉l. Each term on the product of eq.(2.14) will produce a combination

of loops defined on the dual lattice and the ground state is a linear combination of all
resulting states, some of them are shown in Fig.(2.3). The red closed loops on the graphical

(a) (b)

(c) (d)

Figure 2.3: Some illustrative constituents of the ground state |ψ0〉 are shown, where (a) corresponds to the
first term in the expansion of Eq.(2.14), (b) corresponds to a term in this expansion for which
there is a single Av acting on the |e〉 states around v, in (c) and (d) we show terms that include

the action of several vertex operators.

representation stand for the action of products of Av operators on the state with all edges
holding |e〉, it is in this sense that the ground state of the Toric Code can be interpreted
as a Loop Gas, containing all possible contractible loops that could be defined on the
lattice. From now on we consider the lattice to be embedded on the surface of a Torus.
We know the torus has two non-contractible loops, see Fig.(2.4). Thus, the operators
X(γ∗1), X(γ∗2), Z(γ1) and Z(γ2) can be defined and will not be made of products of vertex
or plaquette operators, correspondingly. The action of the X(γ∗1) and X(γ∗2) operators is
to interchange between different ground states since they commute both with the vertex
and plaquette operators [1, 88, 89].

Consider the operator X(γ∗1) where the path γ∗1 winds the Torus along a horizontal
non-contractible loop on the dual lattice, the action of this operator on the ground state
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Figure 2.4: The non-contractible paths γ1 and γ2 are shown. The paths γ∗1 and γ∗2 are analogously drawn in
the dual lattice.

|ψ0〉 is given by:

X(γ∗1) |ψ0〉 =
∏

v∈Λ0

AvX(γ∗1)
⊗

l∈L

|0〉l

=
∏

v∈L

Av

⊗

l /∈γ∗

1

|0〉l
⊗

l′∈γ∗

1

|1〉l′ = |ψ1〉 , (2.18)

where in the first line we used the commutation relation [X(γ∗1), Av] = 0, and the action
of the winding operator X(γ∗1) on the basis states |e〉 along the non-contractible loop γ∗1
consists on changing them into |a〉. Clearly this is still a ground state under the action
of any vertex operator Av, and it is straightforward to show that

Bp |ψ1〉 = |ψ1〉 , (2.19)

by noticing that the plaquette operators acting on edges being crossed by γ∗1 will act triv-
ially, since loop γ∗1 will necessarily cross any plaquette through two of its edges, therefore
the configuration of the degrees of freedom on the plaquettes will be vortex free. Thus, we
have shown that this new state is a ground state of the Toric Code Hamiltonian. Again
it can be interpreted as a Loop Gas, some of its constituents are depicted in Fig.(2.5).
Notice that the particular path defined by C ′

1 along the dual lattice is not relevant as long
as it winds the Torus through a non-contractible one, since all possible deformations of
the path are already contained in the Loop Gas. Since this dual path cannot be written
as a product of vertex operators, the ground state |ψ1〉 cannot be written in terms of |ψ0〉

Likewise, acting with X(γ∗2) on |ψ0〉 we can create another ground state, namely:

X(γ∗2) |ψ0〉 = |ψ2〉 . (2.20)

Also by acting with X(γ∗1) and X(γ∗2) simultaneously on |ψ0〉 we create another ground
state, i.e.:

X(γ∗1)X(γ∗2) |ψ0〉 = |ψ1,2〉 . (2.21)

Thus, |ψ0〉, |ψ1〉, |ψ2〉 and |ψ1,2〉 are the four ground states of the Toric Code, and their
existence is guaranteed as long as the lattice is embedded on a Torus. Note that if we allow
the lattice to be embedded on a more general surface with genus g more ground states can
be constructed, depending on the number of homotopically inequivalent non-contractible
loops that can be defined on such surface. Hence the dependence of the ground state on
the topological properties of the surface the model is defined in.
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(a) (b)

(c) (d)

Figure 2.5: The path γ∗1 winds the torus along a non-contractible loop, the operator X(γ∗1 ) defined on this
path transforms the degrees of freedom that lie on γ∗1 , the state |ψ1〉 is composed of all such

transformations that can be gotten by the action of vertex operators in L.

2.3 Topological Entanglement Entropy

Entanglement arises amongst the fundamental features of quantum mechanics, it essen-
tially refers to the nature of quantum states in systems that are composed of several
subsystems. In particular, a many body quantum state that cannot be decomposed as
a product of its subsystems’ local states is said to be entangled. Naturally, we can ask
whether there is a measurement for how much entangled a quantum state is, or equiva-
lently, how much more entangled is quantum state compared to another. The concept of
entanglement entropy appears as a way to answer this question, and the idea behind how
this quantity reveals information about the entanglement of a quantum state is essentially
the same as its classical counterpart, the Shannon entropy. The relation between these
two is better understood in the context of information theory and we refer the reader
to Nielsen and Chuang’s book [90] for a detailed explanation. Consider, for instance, a
source emitting information, it could be some signal detector emitting a bunch of 0’s and
1’s. Shannon asked: what is the minimum physical resources needed to store the informa-
tion emitted by the source? ; Remarkably, the answer to this question is precisely Shannon
entropy, this is known as Shannon’s noiseless coding theorem [91].

Similarly, entanglement entropy is a measure of how quantum information is stored
in a quantum state and to define it we need to recall some basic notions from quantum
mechanics. Let ρ be the density operator representing a given quantum state, its von
Neumann entropy is defined as:

S(ρ) := −Tr (ρ log ρ) . (2.22)

One of the practical uses of the above quantity is as a tool for describing the subsystems
of a composite quantum system, such as the ones we treat in this work. The description of
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subsystems is provided by the reduced density matrix. Suppose we have a physical system
split in two parts A and B, more precisely, we are considering a quantum system described
by the Hilbert space H = HA ⊗ HB, where HA,B ⊂ H are subspaces corresponding to
regions A and B. Then, the reduced density matrix of subsystem HA is given by:

ρA = TrB ρ, (2.23)

where the operation TrB : H → HA is known as partial trace over B. The entanglement
entropy is nothing but the von Neumann entropy of the reduced density matrix,

SA = −Tr (ρA log ρA) , (2.24)

where the trace is now taken over subsystem A. To gain a better understanding about
this quantity we will calculate it for two very simple quantum systems.

Example 2.3.1 (2 qubit system). Consider a quantum system composed of two qubits
with a bipartition H = HA ⊗B such that each HA,B = span(|0〉 , |1〉). Equivalently,

H = span (|00〉 , |01〉 , |10〉 , |11〉) .
Consider, also, the following pure state:

|ψ〉 = 1√
2
(|00〉+ |11〉) ,

its density operator is just given by ρ = |ψ〉 〈ψ| and the reduced density matrix is:

ρA = TrB ρ =
1

2
12×2,

where 12×2 is the identity operator. Since the reduced density matrix is proportional
to the identity operator, the state is said to be maximally mixed, and the initial state
|ψ〉 is maximally entangled. The calculation of the entanglement entropy now follows
straightforwardly:

SA = −Tr (ρA log ρA) , (2.25)

= −2 × 1

2
log(1/2), (2.26)

= log(2). (2.27)

usually the log is taken in base 2, so we get: SA = 1. This result illustrates a useful way
to understand entanglement entropy, since it essentially counts the number of entangled
bits between regions A and B. If we had considered regions A and B to be composed of k
qubits instead of 1, then the entanglement entropy of a maximally entangled state would
have been given by: SA = k log 2. Moreover, for this maximally entangled state it is clear
that SA grows with the number of constituents in A, in other words,

SA ∼ Volume(A),

most states in the Hilbert space H have this scaling for the entanglement entropy. How-
ever, ground states of local Hamiltonians often have entanglement entropies that obey
special scaling laws, different from the Volume law. One interesting case of entropy scal-
ing is called Area Law, where the entanglement entropy obeys:

SA ∼ ∂(A).
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Remarkably, entanglement entropy arises as an interesting probe for the presence of
topological order in many-body quantum states [32, 33, 34], in other words, entanglement
entropy is able to detect states with no local order parameters. Essentially, topological
order in quantum state is detected by the presence of a correction term in the entanglement
entropy. To illustrate this, we outline the calculation of SA for the Toric Code model of
§2.2.

Example 2.3.2 (Toric Code). To showcase the usefulness of entanglement entropy as a
source of information about the entanglement properties of topologically ordered states,
let us outline the calculation of SA for the ground states of the Toric Code, this quantity
was first calculated in [35, 76], where they show how a constant term in the entanglement
entropy indicates the presence of topological order in the state, this correction term is
known as topological entanglement entropy. The calculation we outline here is, in spirit,
the same as the one performed in chapter 5 to obtain the main result of this work. Hence,
this section is also intended as a warm up for chapter 5.

Consider, then, the Toric Code model of §2.2 defined over a discretization of a Torus
which we take to be a k × k square lattice. In this setting, there are Nv = k2 vertices,
Nl = 2k2 links and Np = k2 plaquettes. The Hilbert space is just

H =
⊗

l

Hl,

where each Hl = span(|0〉 , |1〉). The Hamiltonian of the model is the one in Eq.(2.12)
and we do not write it here. The starting point of the entanglement entropy calculation
is the density matrix operator, ρ, which in this case we take to be proportional to the
ground state projector of Definition 2.1.1 more precisely,

ρ :=
1

GSD
Π0 =

1

GSD

∏

v

Av

∏

p

Bp, (2.28)

where Av and Bp are the vertex and plaquette operators of Eqns.(2.10) and (2.11), respec-
tively. Now, we consider a bipartition of the total Hilbert space H = HA ⊗HB induced
by the geometric partition shown in Fig. 2.6.

The next step is to find the reduced density matrix ρA, by taking a partial trace over
B. To do so, we will introduce a very convenient way of expressing the ground state
projector as a sum of group elements. Notice, by the form of Av and Bp (see §2.2), that
expanding the products on vertices and plaquettes in Π0 results in a sum of operators,

Π0 =
∏

v

Av

∏

p

Bp =
1

|G|
∑

g∈G

g,

where each g ∈ G is an operator g : H→ H of the form:

g = g1 ⊗ g2 ⊗ g3 ⊗ · · · ⊗ g2k2,

and each local operator gl : Hl → Hl is generated by {1, σx, σz}; Recall that σx and σz

are both traceless operator while Tr(1) = 2, this fact will be important later. The order
of the group |G|, essentially counts the number of independent elements g, which in the
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case of the Toric Code can be calculated very straightforwardly, to do that we need to set
the dimensions of the lattice and its bipartition as shown in Fig. 2.6. This is, the lattice
(a Torus) is of size k × k and the A region is of size R × R. Since the model consider
degrees of freedom on the links of the lattice, the dimension of the Hilbert space follows
immediately,

dim(H) = 2Nl = 22k
2

.

Figure 2.6: The shape and dimensions of the lattice and its bipartition into A and B are shown.

In order to calculate the order of G we need to count the number of inequivalent
elements g = g1⊗g2⊗g3⊗· · ·⊗g2k2. The operators that make the ground state projector
Π0 are:

Av =
1

2

(
A0

v + A1
v

)
,

Bp =
1

2

(
B0

p +B1
p

)
,

the A0
v and B0

p operators are nothing but the identity operator and such terms do not
generate inequivalent elements g ∈ G other than the trivial operator. Non trivial elements
in G are thus obtained from products involving A1

v and B1
p (see §2.2 for the exact form of

these operators), moreover, it is not difficult to note that:

∏

v

A1
v = 1, and

∏

p

B1
p = 1,

this is enough to calculate the number of independent elements g ∈ G, from the above
discussion there are 2Nv−1 non-equivalent operators coming from products of Av and 2Np−1

from the products of Bp. Hence, we have:

|G| = 22(k
2−1). (2.29)

The density matrix is then written as:

ρ =
1

GSD

1

|G|
∑

g∈G

g. (2.30)
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Note that the product GSD |G| = 22 22(k
2−1) = d dim(H). Any g ∈ G can be written as

g = gAgB where gA = gA ⊗ 1B and gB = 1A ⊗ gB are operators acting non-trivially only
on HA and HB respectively. The reduced density matrix is obtained by taking the partial
trace of ρ, namely ρA = TrB(ρ). Write {|i〉B}, i = {1, 2, . . . , |HB|} for a basis of HB. By
writing g = gAgB the reduced density matrix is written as:

ρA =
1

(dimH)

∑

i

∑

g

〈i|B gAgB |i〉B ,

=
1

dim(H)

(
∑

gA

gA

)
TrB(1B),

where the last line is obtained by observing that the only terms that survive the partial
trace are gA = gA⊗1B since Tr(σx,z) = 0. The elements gA ∈ GA are generated by products
of A0,1

v and B0,1
p that have support exclusively on HA. These operators essentially comprise

vertex operators for the internal vertices only, and plaquette operators for all plaquettes
in A. This gives us the order of the group GA by noting that there are (R − 1)2 internal
vertices and R2 plaquettes in region A, this is:

|GA| = 2R
2+(R−1)2 .

The trace of the identity operator is: Tr(1B) = dim(HB) = 2Nl,B , where Nl,B is the
number of links in region B. So, in the end we have for the reduced density matrix:

ρA =
dim(HB)

dim(H)

∑

g∈GA

gA,

=
1

dim(HA)

∑

gA∈GA

gA.

The entanglement entropy SA = −Tr(ρA log ρA), so we actually need to find log ρA first,
this is done using series expansion so let us calculate the square of the reduced density
matrix:

ρ2A =

(
1

dim(HA)

)2
(
∑

gA∈GA

gA

)(
∑

hA∈GA

hA

)

=
|GA|

dim(HA)

(
1

dim(HA)

∑

gA

gA

)
,

where in the last line we rearranged the sums into one and factored the equivalent ele-
ments. Hence, we can write ρ2A = λ ρA. The constant factor λ contains all the essential
information for the entanglement entropy, as we will see. It is not hard to realize that
log ρA = ρA

λ
log(λ), which in turn gives for the entanglement entropy:

SA = −Tr (ρA log ρA)

= log(1/λ),
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where we have used Tr(ρA) = 1. So, to find the entanglement entropy of the ground states
of the Toric Code we only need to find λ, yielding for the entanglement entropy:

SA = log

(
dim(HA)

|GA|

)

= log

(
22R(R+1)

2R2+(R−1)2

)

= log(24R−1).

Taking the logarithm we obtain:

SA = 4R− 1, (2.31)

the first term exhibits the area law since ∂(A) = 4R and the constant term (−1) is known
as topological entanglement entropy.
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Chapter 3

Quantum Models from Abelian Higher

Gauge Theories

In Chapter 2 we exhibited a known class of models for topological phases, i.e., the Quan-
tum Double Models with finite group G. In this chapter we introduce the first general-
izations of the QDMs in the Abelian case, by example. We restrict for Abelian groups
only in order to be able to use the mathematical apparatus of Homological Algebra in
the next chapter. As a warm up, we start with the Abelian version of the QDMs casted
as a 1-gauge theory in 2D, we do this to introduce the relevant concepts that are going
to be generalized in what follows. Next, we introduce two natural generalizations of the
QDMs in 2D, which we call 0,1-gauge and 1,2-gauge theories for reasons that will be clear
in due time. We also exhibit a 3D example and by doing so we intend to show how the
generalization is carried over higher dimensions. To end the chapter we write the most
general case of an Abelian higher gauge theory, the central object of study in Chapter 4.

All models are described in the usual way, this is, as many-body quantum systems
defined on a lattice. The Hilbert space H is a tensor product of local spaces attached
to the elements of a lattice such as vertices, links, plaquettes, etc.. The dynamics of all
models is determined by a Hamiltonian operator H : H → H made of commuting local
projectors, as we shall see.

With the intuition gained in this chapter, we dedicate Chapter 4 to showcase the
formalism that allows us to treat all models of this class in a unified way for all dimensions,
as defined in [3]. This is made possible by employing a few constructions coming from
homology theory. At this point, we don’t need to be concerned with all the details but
we will point out some of the chain complexes that will be of essential importance for the
construction of Chapter 4.

3.1 1-Gauge Theory in 2D

Let us start with the simplest example for d = 2, namely the Quantum Double Model
based on a gauge group G [1, 92, 93]. The model has been defined in detail in §2.1 so
we do not exhibit all the operators and relations between them in this section. There is
nothing new here, of course, but it will help us fix notation over a familiar model.

We start with an oriented lattice that for simplicity we will think of as a squared lattice,
representing the discretization of a surface Σ. Denote by K0, K1 andK2 the set of vertices,
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3. Quantum Models from Abelian Higher Gauge Theories

links, and faces of the lattice respectively. Contrary to the other examples -to come- we
place quantum degrees of freedom on the links l ∈ K1 only. In other words, for every
link l ∈ K1 there is a local Hilbert space Hl generated by basis elements {|g〉} , g ∈ G.
The inner product between any two vectors |k〉 , |m〉 ∈ Hl given by 〈k|m〉 = δ(k,m). We
consider all these G-spins to be independent, so the total Hilbert space is spanned by the
tensor product of local ones,

H =
⊗

l∈K1

Hl. (3.1)

The dynamics of the model is determined by the Hamiltonian operator which consists
on two classes of projection operators: labeled by a vertex v ∈ K0, the gauge transforma-
tion Av acts on the links connected to v; and labeled by a plaquette p ∈ K2, the holonomy
operator Bp acts on the links around plaquette p.

H1 = −
∑

v∈K0

Av −
∑

p∈K2

Bp, (3.2)

All the operators in the two classes commute between each other (c.f. Appendix ??). The
holonomy operator realizes the flatness condition, giving eigenvalue one only when the
product of the degrees of freedom at links equals the identity of G, this is,

Bp = δ(a+ b− c− d, 0) . (3.3)

On the other hand, the vertex operator performs all possible symmetries of the group; it
consists of a normalized sum of the elementary transformations, Ag

v, namely,

Av =
1

|G|
∑

g∈G

Ag
v, where Ag

v = . (3.4)

Section 2.1.1 is dedicated to the ground states of this model. There, we show that they are
realized by simultaneously minimizing every operator in the Hamiltonian. Its degeneracy
is related to the invariant of the discretized initial surface, its fundamental group pi1(Σ).

We now pay attention on the algebraic data we need to cast this model into the general
formalism of Chapter 4: a pair of chain complexes.

The first chain complex comes as a description of the lattice and its boundary relations.
In this sense, Cn is the Abelian chain group freely generated by the finite sets Kn and
the usual boundary maps between them. For a quick review on chain complexes we refer
the reader to Appendix A.2. The composition of subsequent maps is null, ∂n+1 ◦ ∂n = 0.
Hence in 2 dimensions, we have the following diagram,

C2
∂2−→ C1

∂1−→ C0. (3.5)

The second chain complex describes the abelian higher gauge group we are dealing
with.

0 →֒ G2
∂G
2−→ G1

∂G
1−→ G0 → 0. (3.6)

where Gk are abelian groups and ∂Gk are group homomorphisms such that ∂Gk+1 ◦ ∂Gk = 0.
For the case of a 1-gauge theory there is a single gauge group G and this chain complex is
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almost trivial, namely G2 = 0, G1 = G and G0 = 0, where the trivial groups are denoted
by zeros:

0 →֒ 0 −→ G −→ 0→ 0. (3.7)

where we don’t need to specify the obvious maps.
At this point, we already exhibited what we consider as being the most important

ingredients in a lattice gauge theory, namely, the classical gauge configurations that span
H, the local gauge transformations, implemented by Av, in charge of quantum entangle-
ment, and the Bp operator that implements the local flatness condition by measuring the
holonomy along an elementary plaquette and checking if is equal to the identity element,
e ∈ G. We make emphasis on these three concepts as they are the ones to be generalized
in order to construct what we call Abelian Higher Gauge Theory in Chapter 4. More
precisely, a gauge configuration can be thought of as a map that assigns a group element
to each edge l ∈ K1, an elementary gauge transformation is labeled by a group element
in G and is localized at (the co-boundary of) a vertex v ∈ K0, whereas the holonomy
measurement is carried along the boundary of an elementary plaquette p ∈ K2.

3.1.1 Example: Toric Code (G = Z2)

We already know that the simplest example of a QDM is the so called Toric Code[1],
which we analyze in more detail in §2.2. Let us consider the discretization of a Torus (T 2)
and the group G = Z2, this results on Eq.(3.2) being the Hamiltonian of the Toric Code.
As we have seen in §??, the holonomy operator has eigenvalue one whenever there is an
even number of red lines along the plaquette p, while the vertex operator is a normalized
sum of the original state and one with the opposite configuration.

Bp = , (3.8)

Av =
1

2

(
+

)
. (3.9)

The ground state (see §2.2) is sometimes called loop gas, because it is composed by all
possible closed red lines. The lines which are non contractible to a point, define different
ground state sectors. Having two non-contractible loops on a torus results on a four-fold
degeneracy.

3.2 0,1-Gauge Theory in 2D

Now we are ready to present a first generalization in the sense of a higher gauge theory.
The model we construct in this section can be understood as being built on the top of the
previous one (§3.1). In addition to the states localized on the links l ∈ K1 and labeled
by G1, we also place quantum degrees of freedom at the vertices v ∈ K2 that are labeled
by another Abelian group G0. This class of models corresponds to the Abelian version
of the models constructed in [87, 94]. It is the lattice version of a scalar field coupled to
a gauge field. The interaction between the two kind of degrees of freedom is driven by a
group homomorphism ∂G1 : G1 → G0.
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Let K0, K1 and K2 be as in section 3.1. For each vertex v ∈ K0 we have a Hilbert
space Hv with basis {|h〉} , h ∈ G0. For each link l ∈ K1 we have a Hilbert space Hl

with basis {|g〉} , g ∈ G1. For this reason, we call this kind of model 0, 1-gauge theories
to indicate that there are quantum states associated with both sets K0 (vertices) and K1

(links). Ordinary gauge theories, as in the previous example, have degrees of freedom
localized at elements of K1 and are called 1-gauge theories.

The degrees of freedom are independent hence the total Hilbert space is just the tensor
product over all vertices and links of the lattice, namely

H =
⊗

v∈K0

Hv

⊗

l∈K1

Hl (3.10)

The Hamiltonian operator resembles its 1-gauge analog given by Eq.(3.2) in the sense
that it is made of mutually commuting projectors, that act locally. The novelty in the
present case comes as a new set of operators, Bl, associated with the links l ∈ K1 of the
lattice. It is a diagonal operator similar in nature to Bp. Recall that Bp, one for each
plaquette p ∈ K2, measures the holonomy of the gauge configurations at the boundary
of plaquette p. In the language of higher gauge theories, it is said to measure the 1-
holonomy. The higher dimensional counterparts are called 2-holonomies, 3-holonomies
and so on. What we have here is actually a lower dimensional counterpart. Thus, we say
that Bl measures the 0-holonomy of the link l, this will be clear by looking at the precise
definition of the operator in what follows.

Hence, the Hamiltonian operator consists on a sum of gauge transformations and
operators that measure the two types of holonomy of the theory:

H0,1 = −
∑

v∈K0

Av −
∑

l∈K1

Bl −
∑

p∈K2

Bp. (3.11)

The 1-holonomy operator is identical to its 1-gauge theory analogue of Eq. (3.3).
However, the 0-holonomy operator, Bl, compares the gauge fields of adjacent vertices
with the map ∂1 applied to the degree of freedom sitting in the link between them. More
precisely,

Bl = δ(x− y, ∂(g)) (3.12)

Another difference from the models in §3.1 can be found in the action of the local
gauge symmetry which is translated as the definition of the vertex operator, since it acts
on the vertex as well as on the links around it,

Av =
1

|G1|
∑

g∈G1

Ag
v, where Ag

v = . (3.13)

With respect to the data needed to cast this model into the formalism of Chapter
4, namely the pair of chain complexes. The first one, describing the 2D lattice, has not
changed.

C2
∂2−→ C1

∂1−→ C0. (3.14)

The difference comes into the chain complex of Abelian groups, the higher gauge group.
Since we now have two Abelian groups G0, G1 and a group morphism ∂G1 : G1 → G0.
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This fixes the second chain complex to be:

0 →֒ G2
∂G
2−→ G1

∂G
1−→ G0 → 0, (3.15)

where G2 = 0 is the trivial group and ∂G2 is the obvious map. In other words,

0 →֒ G1
∂G
1−→ G0 → 0, (3.16)

The chain complexes (3.25) and (3.16) are what we need to recover this model from
the formalism of Chap. 4. The classical gauge configurations in this case are defined by
configurations in both vertices v ∈ K0 and links l ∈ K1. For this reason they can be
thought of as maps f = {f0, f1}, with fi : Ki → Gi for i = 0, 1 assigning G0-spins to the
vertices and G1-spins to the links. Essentially, classical gauge configurations can be seen
as maps:

Figure 3.1: Classical gauge configurations of a 0,1-gauge theory seen as maps f = {f0, f1}.

Similar to the case of a 1-gauge theory (§3.1); elementary gauge transformations are
labeled by group elements g ∈ G1 and located at vertices of the lattice v ∈ K0. The
difference being that in the present case the local symmetry acts on the vertex v itself
along with all links around it, we will see how this notion gets codified naturally using the
language of Chapter 4. Regarding the local flatness conditions; the 0-holonomy operator
Bl favors flat configurations along links and taking into account the G0-spins at the
vertices, whereas the 1-holonomy operator favors flat configurations along plaquettes just
as in the 1-gauge case of §3.1. In the next section (3.3) we will see how the 1-holonomy
measurement along plaquettes gets modified by the presence of G2-spins at plaquettes of
the lattice.

For now, let us exhibit an example of a 0,1-gauge theory in detail. To do this, we
choose the two gauge groups G0 and G1 together with the homomorphism between them
∂G1 .

3.2.1 Example: G0 = Z2, G1 = Z4

We take the (square) lattice as coming from a discretization of a torus (T 2) with a Z2 =
{1,−1} degree of freedom associated with every vertex, and a Z4 = {1, i,−1,−i} at every
link. This is, the local Hilbert spaces are Hv = C[Z2] and Hl = C[Z4] at vertices and links
respectively. The homomorphism in charge of the interaction between the gauge fields is
defined by ∂ : Z4 → Z2, i 7→ −1.

Just as in the Toric Code case (see §2.2) it is convenient to have a graphic representa-
tion of basis states: a link holding a |−1〉l state is represented by a red line, likewise we
draw an oriented blue line for |±i〉l and nothing for |+1〉l, as shown in Fig. 3.2. Yet for
the vertices, we can draw a dual red surface for the state |−1〉v and nothing for vertices
holding |1〉v.
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(a)

(b)

Figure 3.2: (a) The graphical representation of the Z4-spin configurations at links is shown. From the left,
we represent: |1〉l , |i〉l , |−1〉l , |−i〉l.

(b) For the vertex Z2-spins we use a red surface or the lack of it to represent |−1〉v and |1〉v
respectively.

Operators and Hamiltonian

The Hamiltonian is that of Eq. (3.11) and we describe each kind of operator in detail. Let
us begin with the vertex operator in charge of gauge transformations, defined in Eq.(3.13)
it is given by:

Av =
1

4

(
A1

v + Ai
v + A−1

v + A−i
v ,
)

(3.17)

and each term is written in terms of known matrices:

A1
v = 1v ⊗ 1l1 ⊗ 1l2 ⊗ 1l3 ⊗ 1l4 , Ai

v = σx
v ⊗X3

l1
⊗X3

l2
⊗Xl3 ⊗Xl4 ,

A−1
v = 1v ⊗X2

l1
⊗X2

l2
⊗X2

l3
⊗X2

l4
, A−i

v = σx
v ⊗Xl1 ⊗Xl2 ⊗X3

l3
⊗X3

l4
,

where σx is the usual Pauli shift operator and:

X =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 , (3.18)

is the Z4 shift operator.
Let us now write the two holonomy measurement operators. The 0-holonomy operator

for this example is given by:

Bl =
1

2

(
1v1 ⊗ 1l ⊗ 1v2 + σz

v1
⊗ Z2

l ⊗ σz
v2
,
)

where v1, v2 ∈ K0 are the two vertices connected by the link l ∈ K1; σ
z is the usual clock

Pauli operator and:

Z =




1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i


 ,
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is the Z4 clock operator. While the 1-holonomy of the theory is measured by the plaquette
operators, Bp, which in this case is written as:

Bp =
1

4
(1l1 ⊗ 1l2 ⊗ 1l3 ⊗ 1l4 + Zl1 ⊗ Zl2 ⊗ Z3

l3
⊗ Z3

l4
+

+Z2
l1 ⊗ Z2

l2 ⊗ Z2
l3 ⊗ Z2

l4 + Z3
l1 ⊗ Z3

l2 ⊗ Zl3 ⊗ Zl4,

where the links l1, l2, l3, l4 ∈ ∂p. Using the above expressions it is straightforward to check
the commutativity of all operators in the Hamiltonian.

Ground States

Of particular interest are the ground states of this model, in particular we want to find
out whether they carry some topological information or not. Resembling the analysis we
did in §2.2, it is clear that the ground subspace, H0, consists on all states satisfying the
gauge equivalence and flatness conditions simultaneously, namely

H0 := {|ψ〉 ∈ H |Av |ψ〉 = |ψ〉 , Bl |ψ〉 = |ψ〉 and Bp |ψ〉 = |ψ〉 = |ψ〉},

for all v ∈ K0, l ∈ K1 and p ∈ K2. To understand the nature of the ground states of
this model, let us look at the ground state projector, very similar to the one of Definition
2.1.1 consists on the product of all operators in the Hamiltonian, this is,

Π0 :=
∏

v∈K0

Av

∏

l∈K1

Bl

∏

p∈K2

Bp. (3.19)

The action of this operator on an arbitrary state |ψ〉 ∈ H consists, essentially on two
parts:

1. Resembling the Toric Code case (see §2.2), the product of plaquette operators,
∏
Bp,

projects to states with trivial 1-holonomy, this is, satisfying Bp |ψ〉 = |ψ〉. It is not
difficult to note that such states will consist on configuration of loops, being them
red or (oriented) blue. Thus, it projects into states in H that can be pictured as a
loop gas where the loops can be red or blue (oriented).

Likewise, the product of link operators,
∏
Bl, projects into states with trivial 0-

holonomy, something that was not there in the Toric Code. A little bit of inspection
reveals that the trivial 0-holonomy configurations are such as the ones in Fig. 3.3.
So, combining these two projections, we see that the configurations that satisfy
both 0- and 1-flatness consist on closed red loops and blue (oriented) loops that
act as domain walls for the red surfaces. Such configurations have trivial 0- and
1-holonomies but they are still not ground states of the Hamiltonian.

2. The first two products on the ground state projector Π0 project into states in H with
trivial holonomies. To construct a ground state, we still have to apply the product
over all vertex operators

∏
v Av which projects the state |ψ〉 into a superposition of

states gauge equivalent to |ψ〉.

From the above discussion, the ground states are gauge equivalence classes of states with
trivial 0- and 1-holonomy. We show one component of such a state in Fig. 3.4.
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Figure 3.3: Typicial configurations with trivial 0-holonomy are exhibited. Observe that the presence of a red
line, (|−1〉l) has no effect on the vertex degrees of freedom; Yet a blue line, forces one of the

vertex spin to be flipped, represented by the red surface.

Figure 3.4: A component of a ground state showing the allowed configurations of both G0 and G1 spins in
the 0,1-gauge model with groups G0 = Z2, G1 = Z4 of 3.2.1. Such configurations include red

loops and oriented blue loops as domain walls for red surfaces.

This model has the same degeneracy of the Toric Code [3]. To see this, notice that the
state with neither red loops nor blue domain walls has trivial 0- and 1-holonomy. Thus,
its gauge equivalence class constitutes a, rather obvious, ground state. Which we call the
trivial state and write as:

|ψ0〉 =
∏

v∈K0

Av

⊗

v∈K0

|1〉v
⊗

l∈K1

|1〉l

In the torus, there are three additional ground states that correspond to red loops
winding the torus along its non-contractible paths. They can be written in terms of the
shift operator X2 of Z4 and the trivial state |ψ0〉, where:

X2 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 .

Since its action on a the trivial link state: X2 |1〉l = |−1〉l, or equivalently, to create a
red curve crossing the link. For convinience let us define the following operator, for any
(dual) path γ:

X2(γ) =
⊗

l∈γ

X2
l ,

that consists on a composition of X2 shift operators acting on all links crossed by the
path γ. Considering, then, the two non-contractible (dual) paths γ1 and γ2 shown in Fig.
2.4 the four ground states of the model can be written as:

|ψi,j〉 =
(
X2(γ1)

)i (
X2(γ2)

)j |ψ0〉 ,
for i, j = {0, 1}. Leaving for the ground state degeneracy:

GSD = 4. (3.20)

This result will be assured in the next chapter where we systematically calculate this
number for all Abelian higher gauge theory.
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3.3 1,2-Gauge Theory in 2D

The model we exhibit in this section can be thought of as yet another generalization of
an ordinary gauge theory. To begin with, we have states associated with the plaquettes
that are labeled by an Abelian group G2 in addition to the states localized on the links
and labeled by G1. This class of models corresponds to the Abelian version of the models
constructed in [52], where 2-groups were considered. We are not going to discuss all the
algebraic details regarding 2-groups and rather refer to [52, 53, 67] for details. Instead,
we are working with a particular case of Abelian 2-groups where the only data we need
is expressed by the group homomorphism ∂G2 : G2 → G1.

Just as in the two previous examples (§3.1 and §3.2) we consider a 2D lattice that comer
from a discretization of a manifold, where K0, K1 and K2 stand for the set of vertices,
links and plaquettes respectively. To each link l ∈ K1 we associate a Hilbert space Hl

with basis {|g〉 , g ∈ G1}. Likewise, for each plaquette p ∈ K2 we have a Hilbert space Hp

with basis {|α〉 , α ∈ G2}. We call this kind of model 1, 2-gauge theories to indicate that
there are quantum states associated with both sets K1 (links) and K2 (plaquettes). This
makes the total Hilbert space the tensor product over all the local Hilbert spaces.

H =
⊗

l∈K1

Hl

⊗

p∈K2

Hp (3.21)

The Hamiltonian operator is composed by three types of mutually commuting operators,
namely, the 1-gauge transformation, Av located at vertices and involving the G1 symme-
tries for the links; the 2-gauge transformation, Al, is located at links and implements the
G2 symmetry of the theory, finally we have the 1-holonomy operator Bp that is nothing
but a slight modification of its 1-gauge analogue of Eq.(3.3).

H1,2 = −
∑

v∈K0

Av −
∑

l∈K1

Al −
∑

p∈K2

Bp (3.22)

The vertex operator Av is exactly the same as in a pure 1-gauge theory defined in Eq.
(3.4), with the substitution G = G1, so we do not write it here. The new class of gauge
transformations, Al, consists on the averaged sum of more elementary transformations
applied over the plaquettes adjacent to the link in question. The elementary gauge trans-
formation, Aβ

l , acts on the adjacent plaquettes by β ∈ G2 and on the link by ∂G2 (β), so
g′ = g∂G2 (β), more precisely,

Al =
1

|G2|
∑

β∈G1

Aβ
l , Aβ

l = . (3.23)

The 1-holonomy of the theory is measured at plaquettes p ∈ K2, as in any other
gauge theory we treat in this work. However, the inclusion of the G2 degrees of freedom
at plaquettes modifies the notion of this 1-holonomy. As a result, the 1-holonomy in a
1,2-gauge theory is measured by comparing the product of the link degrees of freedom
along the plaquette with the result of applying the ∂G2 map over the degree of freedom at
the plaquette itself, this is,

Bp = δ
(
a+ b− c− d, ∂G2 (α)

)
. (3.24)
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For simplicity of notation, we will denote ∂G2 (α) simple by ∂α whenever there is no
danger of ambiguity.

Figure 3.5: The non trivial support of the vertex, link and plaquette operators is shown.

To summarize the contents of this theory let us say a few words about the three con-
cepts that give rise to the gauge theory. In a 1,2-gauge theory, the classical configurations
(that label basis states of H) are nothing but assignments of G1 and G2 labels to the links
l ∈ K1 and p ∈ K2 respectively. We can be a bit more precise by considering the data
needed to cast this model into the formalism of Chapter 4. The first chain complex, the
geometric one, is common to all 2D examples and given as:

C2
∂2−→ C1

∂1−→ C0. (3.25)

The algebraic content that plays the role of the higher gauge group is also a chain
complex of the form

0 →֒ G2
∂G
2−→ G1

∂G
1−→ G0 → 0, (3.26)

where G0 = 0 and ∂G1 the trivial map. In other words,

0 →֒ G2

∂G
2−→ G1 −→ 0→ 0. (3.27)

In this terms, a classical gauge configuration is seen as being determined by a collection
of maps f = {f1, f2}, where fi : Ki → Gi, i = 0, 1, this is,

Figure 3.6: The classical configurations of a 1,2-gauge theory are determined by such maps.

Regarding gauge transformations, this model presents two different kinds of them the
first being the usual 1-gauge transformation of a pure 1-gauge theory. We would like to
point out that the presence of G2 degrees of freedom does not alter the nature of how
the 1-gauge symmetry is implemented in the theory by the vertex operator Av, leaving
this operator unchanged from that of a pure 1-gauge theory. However, the G2-spins
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at plaquettes make a 1,2-gauge theory to have a second type of gauge transformations,
which we call 2-gauge transformations since they enhance symmetry operations labeled
by the second group G2. We will see in Chapter 4 how all these different notions of gauge
transformations are treated on equal footing and in a compact way using some elements
of Homological Algebra.

Finally, the concept of holonomy is essential for a gauge theory. Different from the
previous case (0,1-gauge) of §3.2, an Abelian 1,2-gauge theory in 2 dimensions has one
type of holonomy only, namely the 1-holonomy with a subtle modification. Since the
1-holonomy of a plaquette p ∈ K2 also considers the degree of freedom sitting at the
plaquette itself.

In what follows we exhibit the main features of a 2 dimensional 1,2-gauge theory
by an example. We will see how the ground state of such example contains topological
information different from what we have seen for both the pure 1-gauge theory and the
1,2-gauge theory.

3.3.1 Example: G1 = Z2, G2 = Z4

In this example, we take the lattice as coming from a discretized sphere S2. The groups
that label degrees of freedom are chosen to be G1 = Z2 = {±1} and G2 = Z4 = {±1,±i}.
Moreover, the homomorphism that relates both gauge fields gets completely defined by
∂(i) := −1. As usual, we use a graphical description for the basis states by assigning a
transverse red line for every link holding a |−1〉l state; Similarly, for the plaquette degrees
of freedom, we can assign a (±) blue dot to any plaquette that holds a |±i〉p state, and a
red dot whenever it holds a |−1〉p.

The Hamiltonian is that of Eq. (3.11), of course. The operators that make the
Hamiltonian can be written in terms of shift and clock matrices, as follows. The 1-gauge
symmetry implemented by the vertex operator is:

Av =
1

2

(
1l1 ⊗ 1l2 ⊗ 1l3 ⊗ 1l4 + σx

l1
⊗ σx

l2
⊗ σx

l3
⊗ σx

l4

)
,

where σx is the shift Pauli matrix and X the shift operator of Z4 as in Eq. (3.18). Note
that the above expression is identical to the one in Eq.(3.9). The 2-gauge transformation
defined in Eq. (3.23) is localized at links l ∈ K1 performing the transformation at the
link and the two adjacent plaquettes, which for this particular example can be written as:

Al =
1

4

(
1p1 ⊗ 1l ⊗ 1p2 +Xp1 ⊗ σx

l ⊗X3
p2
+X2

p1
⊗ 1l ⊗X2

p2
+X3

p1
⊗ σx

l ⊗Xp2

)
,

where p1, p2 ∈ K2 are the two plaquettes adjacent to link l ∈ K1. We now turn into the
only holonomy operator of the theory, the 1-holonomy is measured at plaquettes p ∈ K2,
it takes values in G1 and is written as:

Bp =
1

2

(
1p ⊗ 1l1 ⊗ 1l2 ⊗ 1l3 ⊗ 1l4 + Z2

p ⊗ σz
l1 ⊗ σz

l2 ⊗ σz
l3 ⊗ σz

l4

)
,

where the links l1, l2, l3, l4 ∈ ∂p ⊂ K1. Again, the commutation relations of these operators
can be readily checked using the above expressions.
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Ground States

It should be clear by analogy with the previous examples, that the ground state subspace
of the model is defined by states that are invariant under the action of each one of the
operators that constitute the Hamiltonian, in other words,

H0 := {|ψ〉 ∈ H |Av |ψ〉 = |ψ〉 , Al |ψ〉 = |ψ〉 , Bp |ψ〉 = |ψ〉} ,
for all v ∈ K0, l ∈ K1 and p ∈ K2. These states can be obtained by means of the ground
state projector, Π0 : H→ H0, which in this case is given by:

Π0 :=
∏

v∈K0

Av

∏

l∈K1

Al

∏

p∈K2

Bp. (3.28)

The action of Π0 on an arbitrary state |ψ〉 ∈ H is best understood in two parts. The
products in Eq. (3.28) that involve 1-holonomy operators Bl projects into what we call
flat states, states invariant under the action of plaquette operators. This flatness con-
dition favors configurations having closed red loops or red lines with blue dot endings
and plaquettes with red dots as depicted in Fig. 3.7. So, applying all inequivalent gauge
transformations over a flat state is that we obtain the actual ground state of the model.
This gets done by the products in Π0 that involve both gauge transformations Av and
Al. In other words, a state |GS〉 ∈ H is a ground state of the model if and only if,
Π0 |GS〉 = |GS〉.

In this particular case, the ground state is two fold degenerate; Both vacua consist on
gauge invariant states whose only difference is the basis state that is chosen as a seed.
One one hand, we have a seed state that consists on |1〉p at every plaquette and |1〉l at
every link, the trivial state. The other seed state has a single (arbitrary) plaquette degree
of freedom in the |−1〉p state, more precisely,

|GS1〉 =
∏

v

Av

∏

l

Al

⊗

l∈K1

|1〉l
⊗

p∈K2

|1〉p , (3.29)

|GS−1〉 =
∏

v

Av

∏

l

Al

⊗

l∈K1

|1〉l
⊗

p 6=p′

|1〉p ⊗ |−1〉p′ . (3.30)

Leaving for the ground state degeneracy:

GSD = 2.

The two ground states are identified from each other by measuring the global 2-holonomy.
In this case, the operator that performs such measurement is given by:

h2 :=
∏

p

Zp, ∀ p ∈ L,

clearly,

h2 |G1〉 = |G1〉 ,
h2 |G2〉 =− |G2〉 ,

Notice that the ground states can be stabilized (protected) by the bulk when the model
is defined on S2 × I, where I is the interval, since in this case no local perturbation can
lift the degeneracy.
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(a) (b)

Figure 3.7: (a) A representative configuration of the ground state, |GS1〉, for the 1,2-gauge model with
groups G1 = Z2, G2 = Z4, as in example 3.3.1.

(b) A representative of |GS−1〉

3.4 1,2,3-Gauge Theory in 3D

Our final example will be a 3D model, which we hope will help understanding how the
generalization works by going to higher dimensions. Let K0, K1, K2, K3 be the sets of
vertices, links, plaquettes, and cubes of a cubic lattice. A 1, 2, 3-gauge configuration
consists of assigning G1, G2, G3-spins respectively to the links, plaquettes, and cubes of
the lattice. In other words, we have local Hilbert spaces {Hl, l ∈ K1}, {Hp, p ∈ K2} and
{Hc, c ∈ K3} with basis {|g〉 , g ∈ G1}, {|α〉 , α ∈ G2} and {|ξ〉 , ξ ∈ G3}, respectively.

Again all the degrees of freedom are independent, so we consider the tensor product
of the local Hilbert spaces as the total Hilbert space.

H :=
⊗

l∈K1

Hl

⊗

p∈K2

Hp

⊗

c∈K3

Hc. (3.31)

The Hamiltonian is composed by a sum of commuting projectors as follows

H1,2,3 = −
∑

v∈K0

Av −
∑

l∈K1

Al −
∑

p∈K2

Ap −
∑

p∈K2

Bp −
∑

c∈K3

Bc. (3.32)

The definition of most of the operators in H1,2,3 is analogue to the previous examples. Let
us discuss them one by one.

The 1-gauge transformation is performed by Av, labeled by vertices v ∈ K0 it is defined
as:

Av =
1

|G1|
∑

g∈G1

Ag
v , where: Ag

v = , (3.33)

this operator establishes the local 1-gauge symmetry of the theory and acts on 1-gauge
degrees of freedom only.

On the other hand, the 2-gauge transformation, implemented by Al is a resemblant of
the one in Eq.(3.23), it acts on the link l ∈ K1 and all plaquettes p ∈ K2 adjacent to the
link. Its action is an averaged sum of more elementary 2-gauge transformations labeled
by elements in G2, namely

Al =
1

|G2|
∑

β∈G2

Aβ
l , (3.34)
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Figure 3.8: The action of Al on an arbitrary basis state is shown, involving the link in question l ∈ K1 and
the four adjacent plaquettes.

to see this action, let |a, α1, α2, α3, α4, . . .〉 be an arbitrary basis state in H, whose configu-
ration is depicted in Fig.3.8(a); Then, the action of the elementary 2-gauge transformation
Aβ

l on this state is given by:

Aβ
l |a, α1, α2, α3, α4, . . .〉 = |∂2(β)a, α1β, α2β, β

−1α3, β
−1α4, . . .〉 ,

which is depicted in Fig.3.8(b).
Analogously, the local 3-gauge transformation Aζ

p, with ζ ∈ G3 transforms by ζ the
degrees of freedom at cubes next to p and acts at p by ∂′3ζ , this is,

Ap =
1

|G3|
∑

ζ∈G3

Aζ
p , where: Aζ

p = . (3.35)

Regarding the two operators that enhance the flatness conditions of the theory, the 1-
holonomy operator Bp is equivalent to its 1,2-gauge analogue of Eq. (3.24), while the
2-holonomy operator collects the values at faces of the cube with the result of applying
∂G3 to the degree of freedom at the cube, in other words,

Bc = δ(
∑

j

(−1)ojαj , ∂
G
3 ξ) , (3.36)

where oj = {0, 1} takes care of the orientation dependent sum, giving a negative sign to
the group element that is sitting in a face with orientation opposite to the cube orientation.
To encode the essential information about the gauge theory we, once again, use a pair of
chain complexes. The Geometrical chain complex is, essentially, an extended version of
the chain complex of diagram (3.5), with the usual boundary maps.

C3
∂3−→ C2

∂2−→ C1
∂1−→ C0. (3.37)

The higher gauge symmetry is encoded in the second chain complex, where we now have
three Abelian groups G1, G2 and G3 and two group homomorphisms, ∂G3 : G3 → G2,
∂G2 : G2 → G1, this is

0 →֒ G3
∂G
3−→ G2

∂G
2−→ G1 → 0. (3.38)

Extending the interpretation we made in the previous sections, 1,2,3-gauge configurations
are determined by collections of maps f = {f1, f2, f3}, where fi : Ci → Gi, for i = {1, 2, 3}
as pictured in Fig. 3.9. We now showcase some details of a 1,2,3-gauge theory by looking
at an specific example
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Figure 3.9: The classical configurations of a 1,2,3-gauge theory are determined by such maps.

3.4.1 Example: G1 = G2 = G3 = Z4

Let us consider the lattice as coming from a discretization of a solid ball, S3, with groups
G1 = G2 = G3 = Z4 = {±1,±i}, while the homomorphisms between them are defined
by: ∂′3(i) = ∂′2(i) = −1.

To understand the dynamics of the model we can adopt a convenient graphic repre-
sentation of states, depicted in Fig. 3.11 and consisting of:

• a (±) blue dot at a cube whenever it holds a |±i〉c state, and a red dot if the volume
holds a |−1〉c,

• a red line through a plaquette when it holds a |−1〉p state, and an oriented blue line
for the |±i〉p states,

• for the links we picture a red surface orthogonal to it for |−1〉l state, and oriented
blue surfaces for |±i〉l states.

The Hamiltonian is the one of Eq. (3.32) and we write each operator using the shift and
clock matrices of Z4. The 1-gauge transformation is the usual one and it is given by:

Av =
1

6
(1l1 ⊗ 1l2 ⊗ 1l3 ⊗ 1l4 ⊗ 1l5 ⊗ 1l6 +Xl1 ⊗Xl2 ⊗Xl3 ⊗X3

l4
⊗X3

l5
⊗X3

l6
+

+X2
l1
⊗X2

l2
⊗X2

l3
⊗X2

l4
⊗X2

l5
⊗X2

l6
+X3

l1
⊗X3

l2
⊗X3

l3
⊗Xl4 ⊗Xl5 ⊗Xl6),

where {li}6i=1 are labels for the 6 links that meet at vertex v. The 2-gauge transformations
are performed by the Al operators labeled by the links of the lattice since their non trivial
support consists on the link l and the four faces that meet at l (Fig.(3.10)) in the following
way:

Al =
1

4
(1l ⊗ 1p1 ⊗ 1p2 ⊗ 1p3 ⊗ 1p4 +X2

l ⊗Xp1 ⊗Xp2 ⊗X3
p3
⊗X3

p4
+

+ 1l ⊗X2
p1 ⊗X2

p2 ⊗X2
p3 ⊗X2

p4 +X2
l ⊗X3

p1 ⊗X3
p2 ⊗Xp3 ⊗Xp4)

Finally, the 3-gauge transformations are performed by the Ap operators, they are labeled
by the plaquettes of the lattice as their non trivial action support consists on a face p and
the two volume degrees of freedom adjacent to p (see fig.(3.10)), i.e., the operator is given
by:

Ap =
1

4
(1p ⊗ 1c1 ⊗ 1c2 +Xc1 ⊗X2

p ⊗X3
c2 +X2

c1 ⊗ 1p ⊗X2
c2 +X3

c1 ⊗X2
p ⊗Xc2)
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(a) Ap operator. (b) Al operator.

Figure 3.10: The non trivial support of the 3-gauge transformation operator Ap and the 2-gauge transfor-
mation operator Al are shown. We represent the volume degrees of freedom as dual vertices.

Ground States

As usual for the gauge theories we study in this work, the ground states subspace is
composed by all states |ψ〉 ∈ H satisfying Π0 |ψ〉 = |ψ〉, with Π0 the ground state projector
given by:

Π0 :=
∏

v∈K0

Av

∏

l∈K1

Al

∏

p∈K2

Ap

∏

p∈K2

Bp

∏

c∈K3

Bc.

The flat configurations of the theory (seed states) are those that are invariant under
Bp and Bc for all plaquettes p ∈ K2 and cubes c ∈ K3 of the lattice. Such configurations
consist, in general, of blue loops, red loops or open red lines ending at oriented blue points,
conditions that are enforced by Bc. The 1-holonomy operator, Bp, implies that every blue
loop encloses a red surface.

Figure 3.11: Example of a flat configuration for the 1,2,3-gauge model with groups G1 = G2 = G3 = Z4, in
3.4.1.

Note that a configuration with an arbitrary cube holding |−1〉c satisfies all flatness
conditions, this makes the ground state subspace two fold degenerate; one ground state
comes from summing over all states gauge equivalent to the trivial state, for which every
degree of freedom is at the identity element 1 ∈ Gn. The other ground state considers a
state with one single arbitrary cube holding a |−1〉c, more precisely

|G1〉 =
∏

v

Av

∏

l

Al

∏

p

Ap

⊗

l

|1〉l
⊗

p

|1〉p
⊗

c

|1〉c , (3.39)

|G2〉 =
∏

v

Av

∏

l

Al

∏

p

Ap

⊗

l

|1〉l
⊗

p

|1〉p
⊗

c 6=c′

|1〉c ⊗ |−1〉c′ . (3.40)
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Clearly the seed states are not gauge equivalent since there is no 3-gauge transfor-
mation that can map between the two seed states. In this case the ground states are
distinguished from each other by the global 3-holonomy operator defined as:

h3 :=
∏

c

Zc, (3.41)

it can be checked by a straightforward computation that:

h3 |G1〉 = |G1〉 ,
h3 |G2〉 =− |G2〉 .

Leaving for the ground state degeneracy:

GSD = 2.

The above is not the only example of a gauge theory in 3 dimensions since one could
choose to place degrees of freedom on vertices as well, thus defining a 0,1,2,3-gauge theory,
or we could decide to give up the degrees of freedom at cubes and obtain a 0,1,2-gauge
theory, and so on. The detailed exploration of such models goes beyond the scope of
this work, thus we do not include them here. We would like to say, however, that there
are many things to be done yet. In particular, we hope these models help to deepen the
understanding of topological phases in 3 dimensions, by studying the excited states for
instance; The complete classification of (3+1)D topological phases remains being an open
problem [52, 53, 95, 96]. Moreover, there is a growing interest on the relation between
higher gauge theories and topological phases [54, 97, 98, 99, 100]; In what follows we focus
on the Abelian version of higher gauge theories on the lattice, to do that we first introduce
them as a natural higher dimensional extension of the models of §3.1, §3.2, §3.3 and §3.4.
The more general framework that is going to be exhibited in the next chapter also allows
for the straightforward calculation of the entanglement entropy, in the more general case,
as we will show in Chapter 5.
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Chapter 4

Abelian Higher Gauge Theories

In Chapter 3 we have exhibited several examples of Abelian higher gauge theories in 2 and
3 spatial dimensions with the intent of providing the reader with a detailed account of the
kind of models we will treat in this work, more importantly we expect Chap. 3 to have
helped the reader to develop some intuition about the models and their features. The
most general case of an Abelian higher gauge theory is going to be treated in this Chapter.
Remarkably the study of the ground states of these models gets extremely simplified when
describing using tools borrowed from Homological Algebra. The use of such language has
already been shown useful for the study of topological models [101, 102, 103] and this
chapter is dedicated to show how this holds for the class of models we call Abelian higher
gauge theories [3].

As it was stressed out in the previous chapter, by higher gauge theory we mean a theory
that allows degrees of freedom associated to higher (and lower) dimensional objects. This
is not enough to define a gauge theory though, an appropriate generalized notion of gauge
equivalence between states as well as a generalized notion of holonomy must also be given.
For instance, we have seen in §3.3 that a 1,2-gauge theory consists on gauge fields living
in both links x ∈ K1 and faces y ∈ K2 of the complex K. More than that, the theory
has two types of gauge transformations corresponding to each gauge group as well as a
generalized notion of 1-holonomy.

We have also indicated in the previous Chapter that the models are parametrized
by two chain complexes. The first one is geometrical in nature and accounts for the
structure of the lattice. As for the second, it is a chain complex of finite Abelian groups
encoding the higher gauge group of the model. There will be one model (Hilbert space
and Hamiltonian) for any such choice of chain complexes. These two chain complexes
actually form the co-chain complex (hom(C,G)p, δp) (see Appendix 6). In this chapter
we show the last complex is enough to describe an Abelian higher gauge theory in full
generality. For this reason, we begin the chapter by describing the model in Chapter 3
in terms of Homology: Starting from the generalized notion of gauge configurations, we
define the Hilbert space, H of the model. The Hamiltonian of the model is written in
homological terms to show how the ground state subspace H0 ⊂ H gets naturally labeled
by elements in a special cohomology group, this is the main result of [3]. We end the
Chapter with a couple of illustrative examples showing how the GSD of such models is
sensitive to the topological features of the discretized space where they are defined.
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4.1 General Description of the Model

The beginning point of this construction resides in the notion of gauge configurations and
consequently the definition of the Hilbert space H. In Chapter 3 we have seen that in the
case of 1-gauge theories (cf. §3.1) this notion consists on an assignment of labels g ∈ G
to 1-dimensional simplices x ∈ K1. This is, two mathematical structures were used to
define the model: a geometrical structure in the form of a 2-dimensional simplicial chain
complex C(K) and a higher gauge group G that was casted in the form of the chain
complex of Eq.(3.6). Furthermore, we have also shown how more general theories can be
constructed, such as the 1,2-gauge theory of §3.3 where we allow for a second group G2 to
label the 2-simplices p ∈ K2 of the lattice. A simplicial decomposition is a natural choice
for lattices of any dimension. Although the formalism can accommodate for any finite
cell decomposition we will assume that the lattice K is made of simplices:

K = K0 ∪K1 ∪ · · · ∪Kd,

where Kn is the (finite) set of n-dimensional simplices. We would like to point out that
there are no further assumptions on K, this makes the formalism very flexible. For
instance, K may have a boundary and may not have a uniform dimension.

It is a standard procedure [106] to associate to K a chain complex

Cd

∂C
d−→ Cd−1

∂C
d−1−−→ · · · ∂C

2−→ C1

∂C
1−→ C0 (4.1)

that we will denote by (C(K), ∂C). We recall that Cn is the Abelian group freely generated
by Kn. In other words, if we write the group operation as an addition operation, c ∈ Cn

is given by a formal linear combination

c =
∑

x∈Kn

n(x)x (4.2)

with n(x) ∈ N. The homomorphisms ∂Cn : Cn → Cn−1 are the usual boundary maps.
On the other hand, we need a the mathematical structure that plays the role of a gauge
group. In the previous chapter we saw that the model considers generalized spins placed
at every simplex of the geometrical complex. Such spins are labeled by groups Gn. In this
sense, we consider the abstract chain complex of Abelian groups (G•, ∂

G
• ) as the algebraic

content of the model and the one in charge of the higher gauge symmetry, the higher
gauge group. Schematically we have,

0 →֒ Gd

∂G
d−→ Gd−1

∂G
d−1−−→ · · · ∂G

2−→ G1
∂G
1−→ G0 → 0, (4.3)

where all groups Gn are finite Abelian groups and ∂Gn : Gn → Gn−1 are group homomor-
phisms, such that ∂n ◦ ∂n+1 = 0. Note that the ∂ in (4.1) and the one in eq.(4.3) stand
for different group morphisms.

4.1.1 Gauge Configurations and Hilbert Space

The notion of gauge configurations, as we have repeatedly seen in Chapter 3, consists
on the assignment of Gn-labels to the n-simplices, x ∈ Kn for all n = {0, 1, . . . , d} of
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the d-dimensional geometric chain complex C(K). We now introduce a way to describe
such assignments as determined by collections of maps f = {fn} for n = 0, 1, . . . , d where
each map fn : Cn → Gn is defined by its action on the generators of Cn, x ∈ Kn. More
precisely, we define a gauge configuration f to be an assignment of a group element g ∈ Gn

for each element x ∈ Kn. In other words, a sequence f = {fn}n=0,1,2,...,d of functions

fn : Kn → Gn, (4.4)

x 7→ fn(x). (4.5)

Strictly speaking, we should call f a higher-gauge configuration. Only in the case when
all groups except G1 are trivial f is a proper gauge configuration as can be seen from the
examples of last section. For simplicity, we will keep using "gauge configuration" (and
gauge transformation) to mean a generic f .

Each map fn in (4.4) defines a unique group homomorphism fn : Cn → Gn, as fn is
extended by linearity. Let c ∈ Cn as in (4.2), then

fn(c) =
∑

x∈Kn

n(x)fn(x).

The set Hom(Cn, Gn) of homomorphisms is also an Abelian group if we set

(fn + f̃n)(x) = fn(x) + f̃n(x), fn, f̃n ∈ Hom(Cn, Gn).

It is useful to collect all such Abelian groups in a single direct sum. This simple fact
allows us to view a gauge configuration f as an element of the direct sum

hom(C,G)0 :=

d⊕

n=0

Hom(Cn, Gn) (4.6)

of Abelian groups. That can be represented by a map between chain complexes as depicted
by the diagram in Fig. 4.1.

Recall from Chapter 3 that the Hilbert space of the models consisted of a tensor
product of local spaces such that: For each n-simplex x ∈ Kn there is a local Hilbert
space Hx whose basis {|g〉} is labeled by group elements g ∈ Gn, for all n = {0, 1, . . . , d}.
In other words, the Hilbert space is given by

H :=
⊗

n

⊗

x∈Kn

Hx, (4.7)

where, for x ∈ Kn, the local Hilbert space Hx has its basis {|g〉} labeled by group elements
g ∈ Gn with the usual inner product: 〈f |g〉 = δ(f, g).

We will now see how the notion of higher-gauge configurations comes in handy for
writing a very convenient basis for the Hilbert space H. To begin, note that for each
n = {0, 1, . . . , d} the collection of all maps fn : Cn → Gn forms an additive Abelian group
Hom(Cn, Gn) which consists of all group morphisms from the n-chain group Cn into the
gauge group Gn. The group operation is inherited from that of Gn, to see this consider
fn, f

′
n ∈ Hom(Cn, Gn), their sum which we denote as (f + f ′)n is also an element of

Hom(Cn, Gn) defined by:

(f + f ′)n(x) = fn(x) + f ′
n(x) ∈ Gn,
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this is true for each n ∈ {0, 1, . . . , d}. Each Hom(Cn, Gn) group encodes the different
ways Gn-labels can be assigned to all n-simplices, x ∈ Kn in order to label the local basis
states of Hx.

The total number of such assignments can be obtained by observing that the n-chain
group, Cn is finitely generated, which means that |Kn| is finite, for each n ∈ {0, 1, . . . , d}.
Additionally, every Abelian group on the chain complex of Eq. (4.3) is finite, giving
precisely |Gn| ways to color a single n-simplex x ∈ Kn. Thus the total number of possible
assignments of Gn-labels to the n-simplices is simply given by |Gn||Kn| = |Hom(Cn, Gn)|.
More importantly, this number coincides with the dimension of the n-th level Hilbert
space Hn :=

⊗
x∈Kn

Hx, the tensor product over of all local spaces Hx for all x ∈ Kn

and a single n. Consequently a basis for Hn can be given in terms of the elements of
Hom(Cn, Gn) for each n.

Collecting the groups Hom(Cn, Gn) for all n = {0, 1, . . . , d} we construct a new additive
Abelian group:

hom(C,G)0 :=
⊕

n

Hom(Cn, Gn), (4.8)

an element f ∈ hom(C,G)0 is a set of maps {fn}dn=0 where each fn ∈ Hom(Cn, Gn) and
the group operation is inherited from that of Hom(Cn, Gn) for each n, we refer the reader
to Appendix 6 for a detailed discussion on this group. Then, for a given f ∈ hom(C,G)0

the state,

|f〉 :=
d⊗

n=0

⊗

x∈Kn

|fn(x)〉 ,

where fn(x) ∈ Gn, is a basis element of the full Hilbert space H. In other words, the state
|f〉 ∈ H is determined by an element f ∈ hom(C,G)0 which in turn consist of a collection
of morphisms {fn}, ∀n ∈ {0, 1, 2, . . . , d} as depicted in Fig.(4.1). Each group element
f ∈ hom(C,G)0 defines a classical configuration of the generalized gauge field, the higher
gauge field and a basis of H is obtained by collecting all such elements, {|f〉}f∈hom(C,G)0 .
Any general state |ψ〉 ∈ H can be written as a linear combination:

|ψ〉 =
∑

f

ψ(f) |f〉 with f ∈ hom(C,G)0,

and it corresponds to quantum field configurations living on the space associated to the
geometrical chain complex C(K). The order of the classical gauge configurations group
is the dimension of the Hilbert space, namely

dim(H) = |hom(C,G)0| =
∏

n

|Gn||Kn| <∞. (4.9)

Amongst all classical gauge configurations the one defined by the identity element,
0 ∈ hom(C,G)0, determines what we call trivial state and it is given by the product state:

|0〉 =
⊗

p

⊗

x∈Kn

|0〉x , (4.10)

where 0 is the identity element of Gn, associated to the n-dimensional simplex x ∈ Kn.
As we will see in the following sections, this state will serve as a seed state that allows
the analysis of the model’s topological features from the properties of the operators of the
theory only.
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Figure 4.1: The higher gauge configurations as maps belonging to hom(C,G)0 are shown.

4.1.2 Higher Gauge Transformations and Holonomies

The two other essential notions of a higher gauge theory are: higher gauge transformations
and higher holonomies. The former implements the higher gauge symmetry of the theory
on quantum states whereas the latter imposes the local flatness conditions. The local
notions of higher gauge symmetry and flatness are model-dependent as we have shown
in chapter 3. However, the language we develop in this chapter will allow us to treat
these notions in a unified way. We now define the mathematical structures that allow for
this generalization. In the previous section we saw how a convenient basis for the global
Hilbert space can be given in terms of the elements of an Abelian group, f ∈ hom(C,G)0.

In order to define the operators of the theory we need to introduce more groups other
than hom(C,G)0. These can be constructed by considering morphisms gn : Cn → Gn−p.
For a given n, the collection of all such maps defines the Abelian group Hom(Cn, Gn−p).
Consequently, the set {gn} for n ∈ {0, 1, . . . , d} defines the following additive Abelian
group:

hom(C,G)p :=
d⊕

n=0

Hom(Cn, Gn−p), (4.11)

constituted by p skewed maps such as the ones shown in Fig. 4.2 for arbitrary elements
f ∈ hom(C,G)0 and g ∈ hom(C,G)1. Moreover, there is a co-boundary operator δp :
hom(C,G)p → hom(C,G)p+1 given by:

(δph)n = hn−1 ◦ ∂Cn − (−1)p ∂Gn−p ◦ hn, (4.12)

where h ∈ hom(C,G)p. Observe that δph ∈ hom(C,G)p+1 is actually a collection of
maps {(δph)n} for n = {0, 1, . . . , d} and each of these maps (δph)n : Cn → Gn−(p+1). It
is straightforward to show that δp+1δp = 0 which makes the sequence (hom(C,G)•, δ•)
a co-chain complex (cf. Appendix 6), of particular interest is the following part of the
sequence:

hom(C,G)−1 δ−1

−−→ hom(C,G)0
δ0−→ hom(C,G)1, (4.13)

since, as we will now see, it is enough to encode all the information of a higher gauge
theory. We refer the reader to [3, 81] for a detailed account.

Let us now delve into the discussion about how the sequence in Eq. (4.13) is enough
to describe the higher notions of gauge symmetry and holonomy. For instance, in §3.1
we saw that the elementary gauge transformations of a 1-gauge theory are implemented
on quantum states by means of the vertex operator, Ag

v, located at a vertex v ∈ K0

and labeled by a group element g ∈ G1, see Eq. (3.4). Thus, in a 1-gauge theory the
local gauge symmetry is implemented around vertices v ∈ K0 and its action is labeled
by group elements g ∈ G1. This suggests that the elementary gauge transformations of a
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Figure 4.2: Set of functions f ∈ hom(C,G)0 and g ∈ hom(C,G)1, we show the actual functions {gn} in
green and {fn} in black.

1-gauge theory can be parametrized by assignments of G1-labels to vertices v ∈ K1 of the
lattice. Hence, all elementary gauge transformations of a 1-gauge theory are parametrized
by elements of the group Hom(C0, G1). A map t ∈ Hom(C0, G1) associates 0-simplices
(vertices) v ∈ K0 to group elements t(v) ∈ G1.

Take now the example of a 1,2-gauge theory (§3.3), two kinds of gauge transformations
implemented the higher gauge symmetry in this case. The first kind, which we call 1-
gauge transformations are nothing but the usual vertex operators Ag

v with v ∈ K0 and g ∈
G1, and again the group Hom(C0, G1) parametrizes all such elementary transformations.
Similarly, the 2-gauge elementary transformation is locally enhanced by the link operator
Aβ

l of Eq.(3.23), located at links l ∈ K1 and labeled by group elements β ∈ G2; this in
turn suggests that all elementary 2-gauge transformations are parametrized by elements
of the group Hom(C1, G2), corresponding to all possible assignments of G2-labels to 1-
simplices (links) l ∈ K1. The parametrization of elementary gauge transformations by
elements of Hom(Cn, Gn+1) will allow us to define the more general notion of a higher
gauge transformation. In the most general case, where we could have all kinds of gauge
transformations, the elementary gauge transformations are all parametrized (at once) by
elements of the following additive Abelian group:

hom(C,G)−1 :=
⊕

n

Hom(Cn, Gn+1),

which consists of maps from 0-simplices to elements of the group G1, 1-simplices to G2,
2-simplices to elements of G3 and so on. The actual implementation of the higher gauge
symmetry on quantum states of |ψ〉 ∈ H is a task for the elementary operators that will
be defined in the next section.

The last ingredient needed to construct a higher gauge theory has to do with idea
of holonomy. For instance, in a 1-gauge theory, the notion of holonomy corresponds to
collecting G1-values along plaquettes p ∈ K2 of the lattice, as we saw in §3.1. This is,
holonomy measurements can be thought of assigning G1-labels to plaquettes p ∈ K2.
The collection of all such assignments for all p ∈ K2 is parametrized by Hom(C2, G1),
the set of all morphisms from the 2-chains C2 to G1. To see how this notion generalizes
into higher dimensions, consider the example of a 0,1-gauge theory (§3.2). In that case,
we had two different notions of holonomy, namely, the 0-holonomy which is measured
by the link operator Bl and the usual 1-holonomy measured by the plaquette operators,
Bp. Thus, in a 0,1-gauge theory, the 0-holonomy values can be parametrized by maps
m1 : C1 → G0 that send 1-simplices (links) l ∈ K1 to group elements m1(x) ∈ G0; In
other words, they are parametrized by the group Hom(C1, G0); Likewise the 1-holonomy
values can be thought of as associating G1-labels to the plaquettes p ∈ K2. They are
parametrized by elements of the group Hom(C2, G1). So, as the reader may now guess,
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in the most general case all holonomy values of a higher gauge theory in d-dimensions are
parametrized by the group:

hom(C,G)1 :=

d⊕

n=0

Hom(Cn, Gn−1). (4.14)

This additive Abelian group parametrizes all generalized holonomy values. However, the
measurement of such values is performed through the representations of hom(C,G)1. In
this sense and to complete the description we need to define a chain complex that is the
dual of (4.13). This will be done by dualizing the groupsGn as follows. Let Hom(Gn, U(1))
be the set of homomorphisms a : Gn → U(1). Since Gn are Abelian, this is nothing but

the set of irreducible unitary representations of Gn, denoted by Ĝn. We will give Ĝn

the structure of an Abelian group. Let a, b ∈ Ĝn and g ∈ Gn. Let us write the group
operation in Ĝn as a + b and the inverse of a as −a. The group is defined by setting
(a + b)(g) = a(g)b(g) and (−a)(g) = (a(g))−1. In order to dualize (4.13) we first define
the dual hom(C,G)p of (4.11) as

hom(C,G)p :=
d⊕

n=0

Hom(Cn, Ĝn−p). (4.15)

As before, an element m ∈ hom(C,G)p is a sequence {mn}n=1,2,··· ,d with mn ∈
Hom(Cn, Ĝn−p). Each mn is completely defined by their values on the generators x ∈ Kn.
That allows us to introduce a pairing

〈·, ·〉 : hom(C,G)p × hom(C,G)p → U(1)

(f,m) 7→ 〈m, f〉 (4.16)

given by

〈m, f〉 =
d∏

n=0

∏

x∈Kn

mn(x)(fn(x)). (4.17)

Let us to define a boundary map δp : hom(C,G)p → hom(C,G)p−1 given by

〈δpm, f〉 = 〈m, δp−1f〉, (4.18)

where m ∈ hom(C,G)p and f ∈ hom(C,G)p−1. Clearly δp ◦δp+1 = 0 is verified. The chain
complex dual to (4.13) that we will need is given by

. . . hom(C,G)−1
δ0←−−− hom(C,G)0

δ1←−−− hom(C,G)1 . . . . (4.19)

4.1.3 Elementary Operators

In the previous two sections we spend some lines discussing about how the sequence in
Eq.(4.13) is enough to encode the necessary concepts of a higher gauge theory in its
Abelian version. We started by using the group hom(C,G)0 to label the basis elements
of the Hilbert space H (§ 4.1.1); elements of this group f ∈ hom(C,G)0 are called higher
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gauge configurations and are the starting point of our construction. Next, in §4.1.2, we
discussed the notion of higher gauge symmetry and how it gets parametrized by the group
hom(C,G)−1, an element of this group t ∈ hom(C,G)−1 defines a higher gauge transfor-
mation that acts on basis states |f〉 , f ∈ hom(C,G)0 via the coboundary operator δ−1

as we will precisely see in this section. Moreover, the group hom(C,G)1 parametrizes the
generalized holonomy values of the theory and their measurement is performed by means
of the coboundary operator δ0 and the dual group hom(C,G)1 as we will see.

The elementary operators of the theory are called shift and clock operators because
of the two operations they perform. To see this, consider the group of higher gauge
configurations hom(C,G)0 and its dual1 group hom(C,G)0, consider also an arbitrary
element f ∈ hom(C,G)0 and its corresponding basis state |f〉 ∈ H.

Definition 4.1.1 (Shift and Clock Operators). Let |f〉 ∈ H a basis state. Given t ∈
hom(C,G)0 and m ∈ hom(C,G)0, we define the operators Pt, Qm : H→ H by:

Pt |f〉 = |f + t〉 ,
Qm |f〉 = 〈m, f〉 |f〉 ,

where χm(f) is the character of f ∈ hom(C,G)0 in the representation m ∈ hom(C,G)0
and it is given by eq. (4.17).

These operators enhance the most fundamental operations of the theory, this is, Pt

performs a permutation between basis states that is parametrized by t ∈ hom(C,G)−1

while Qm measures the character of a basis state in the representation m ∈ hom(C,G)1.
The algebraic relations these operators satisfy are obtained by a mere application on basis
states, it is straightforward to show that:

PsPt = Ps+t, QmQr = Qm+r,

QmPt =〈m, t〉PtQm, (4.20)

for all s, t ∈ hom(C,G)0 and m, r ∈ hom(C,G)0.
Note that the shift operator can be used Pt to write arbitrary basis states |t〉 ∈ H,

with t ∈ hom(C,G)0 as:

|t〉 = Pt |0〉 ,

where |0〉 ∈ H is the trivial state of Eq.(4.10) labeled by the identity element 0 ∈
hom(C,G)0. Using these elementary operators we construct the operators that perform
higher gauge transformations and higher holonomy measurements. The usual construc-
tion shown in Chapter 3 utilizes these notions locally, this means, the operators that
perform gauge transformations and holonomy measurements are local. However, the use
of elements in hom(C,G)0 to label basis states allows us to define a global notion of gauge
transformations and holonomy measurements.

1The group hom(C,G)0 is Abelian, therefore all its irreducible representations are of dimension one
and they form a group by themselves, which we call the dual group and denote hom(C,G)0, see Appendix
6 for a detailed account.
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Definition 4.1.2 (Higher Gauge Transformation). Let |f〉 ∈ H with f ∈ hom(C,G)0.
Let also t ∈ hom(C,G)−1. The higher gauge transformation At : H→ H is defined by:

At |f〉 = |f + δ−1(t)〉 ,

where δ−1 : hom(C,G)−1 → hom(C,G)0.

Equivalently we could write, At := Pδ−1t. Given this general idea of gauge transfor-
mation, the notion of gauge equivalence between states naturally extends to the higher
gauge case:

Definition 4.1.3 (Gauge Equivalence). Two states |f〉 , |g〉 ∈ H, with f, g ∈ hom(C,G)0,
are said to be gauge equivalent if there exists a t ∈ hom(C,G)−1 such that:

|f〉 = At |g〉 = |f + δ−1t〉 ,

or equivalently, g = f + δ−1t.

On the other hand, in Section 4.1.2 the group hom(C,G)1 was shown to parametrize
all generalized holonomy values; Now, the measurement of such values is carried over by
the dual group hom(C,G)1.

Definition 4.1.4 (Higher Holonomy Measurement). Let |f〉 ∈ hom(C,G)0 and m ∈
hom(C,G)1. Define the operator Bm : H→ H by:

Bm |f〉 = 〈m, δ0f〉 |f〉 ,

The definition of the higher holonomy measurement operator can be given in terms of
the boundary operator in eq. (4.18) by noting that:

Bm := Qδ1m,

where Qδ1m is as in Definition 4.1.1. So, the boundary operator δ1 is the one in charge
of measuring the general notion of holonomy. As we have already seen in the examples
(Chapter 3), holonomies not only measure the gauge fields along the boundary of an
n-chain but also consider the gauge value of the n-chain itself. To see how this general
notions of gauge transformations and holonomy measurements reduce to the familiar ones,
in Section 4.3 we show how to cast the examples of Chapter 3 utilizing the language we
have just presented.

The operators in Definitions 4.1.2 and 4.1.4 can be easily shown to satisfy the following
relations:

AtAt′ = At+t′ = At′At ; BmBm′ = Bm+m′ = Bm′Bm

BmAt = AtBm. (4.21)

For instance, the last identity comes from:

BmAt = Qδ1mPδ−1t = 〈δ1m, δ−1t〉Pδ−1tQδ1m = 〈m, δ0 δ−1t〉Pδ−1tQδ1m = AtBm,

where relation (4.20) was used; Also, the last step follows from δ0δ−1 = 0 and 〈m, 0〉 = 1
for all m ∈ hom(C,G)1. The above operators are the ones that enhance the general
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notions of gauge transformations and holonomy measurements on quantum states, they
are of global nature since the elements of hom(C,G)−1 and hom(C,G)1 are defined on the
entire complex C(K).

There is another set of operators that will become very important when analyzing
the ground state subspace, in the following we define the operators and list some of their
properties. The proofs of such properties can be found in [3, 81].

Definition 4.1.5 (Projection Operators). Given s ∈ hom(C,G)−1 and v ∈ hom(C,G)1,
we define:

As =
1

|hom(C,G)−1|
∑

t

〈s, t〉At, (4.22)

Bv =
1

|hom(C,G)1|
∑

m

〈m, v〉Bm, (4.23)

where t ∈ hom(C,G)−1 and m ∈ hom(C,G)1.

The above operators form a complete set of mutually commuting projectors, by this
we mean that they are projectors, they commute within themselves as well as with each
other and their sum adds up to the identity operator. More precisely:

Proposition 4.1.6. For all s, s′ ∈ hom(C,G)−1 and v, v′ ∈ hom(C,G)1, the following
relations for the generalized projector operators of Definition 4.1.5 are satisfied:

1. Pairwise commutation:

AsBv = BvAs.

2. Orthogonality:

AsAs′ = δ(s, s′)As, BvBv′ = δ(v, v′)Bv,

where δ(·, ·) is the Kronecker delta.

3. Completeness:
∑

s

As = 1,
∑

v

Bv = 1,

where 1 is the identity operator.

Proof. See [3, 81]

Remark 4.1.7. We highlight two particular cases of the generalized projectors of Definition
4.1.5:

1. The generalized projector A0 := As|s=0 , written as the sum:

A0 =
1

|hom(C,G)−1|
∑

t

At, t ∈ hom(C,G)−1 , (4.24)

which projects any state |f〉 ∈ H into an equal sum of gauge equivalent states and
consequently, can be used to characterize two states |f〉 , |g〉 ∈ H as being gauge
equivalent if A0 |f〉 = A0 |g〉, which is evident from the generalized notion of gauge
equivalence (Def. 4.1.3).
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2. The generalized B0 := Bv|v=0 , written as the sum:

B0 =
1

|hom(C,G)1|
∑

m

Bm, m ∈ hom(C,G)1 , (4.25)

which projects such states |f〉 ∈ H that satisfy f ∈ ker(δ0). A relation which is
easily obtained by using its definition and the characters orthogonality relations.

Finally, the algebraic relations between the operators of Definition 4.1.5 and the ones
in Defns. 4.1.2 and 4.1.4 will show to be very useful in the next section when studying
the ground state of the model. For this reason:

Proposition 4.1.8. Let f ∈ hom(C,G)0 and m ∈ hom(C,G)0 be arbitrary elements. It
holds:

1. BvPf = PfBv+δ0f , where v ∈ hom(C,G)1.

2. QmAs = As+δ0mQm, where s ∈ hom(C,G)−1.

Proof. See [3, 81]

In the next section we will exhibit a special set of maps in hom(C,G)−1 and hom(C,G)1

that will allow us to localize the generalized projectors of Definition 4.1.5. Making the
connection with the operators that make part of the Hamiltonians we of chapter 3. The
true power of this formalism will be seen when tackling the problem of characterizing the
ground state subspace of the model in Section 4.2 and once again when calculating the
entanglement entropy of the models in chapter 5.

4.1.4 Local Decomposition and Hamiltonian of the Model

The previous section was devoted to the study of the elementary operators of the theory,
we started defining the generalized notions of gauge transformations and holonomies and
from there we constructed more complicated operators. In this section we use such opera-
tors to actually write the Hamiltonian of an Abelian higher gauge theory. In that sense we
begin by exhibiting what we call as local maps that will lay down the connection between
the projectors of Def. 4.1.5 and the operators that make up the models of chapter 3. To
be able to write the Hamiltonian of the model we first need to have a notion of locality for
the operators we have defined so far. This notion of locality is determined by considering
generating sets of hom(C,G)p and hom(C,G)p, as we are about to see.

Definition 4.1.9 (Local Map 1). Let x ∈ Kn and g ∈ Gn−p. The local map e[g, n, x] ∈
hom(C,G)p is given by:

e[g, n, x](y) =

{
g, if x = y,

0, otherwise,

where y ∈ Km for 0 ≤ m ≤ d and 0 ∈ Gn−p is the identity element.
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Recalling that a map f ∈ hom(C,G)p consists on a collection of maps {fn}dn=0, each
one fn ∈ Hom(Cn, Gn−p); f can be written in terms of the above local maps, as follows:

f =

n∑

n=0

∑

x∈Kn

e[fn(x), n, x], (4.26)

where fn(x) ∈ Gn−p. In other words, the set of maps {e[g, n, x]} is a generating set of the
group hom(C,G)p.

Similarly, a generating set for the group hom(C,G)p can be defined in terms of the
following local maps:

Definition 4.1.10 (Local Map 2). Let x ∈ Kn, r ∈ Ĝn−p and t ∈ hom(C,G)p define the
map ê[r, n, x] ∈ hom(C,G)p by:

ê[r, n, x](t) = r(tn(x)),

where r(tn(x)) stands for the character of tn(x) ∈ Gn−p in the representation r ∈ Ĝn−p.

To see that it is a generating set consider an arbitrary element m ∈ hom(C,G)p, it
can be written as:

m =

d∑

n=0

∑

x∈Kn

ê[mn(x), n, x], (4.27)

where each mn ∈ Hom(Cn, Ĝn−p), in other words: for all x ∈ Kn, mn(x) ∈ Ĝn−p is an
irreducible representation of the group Gn−p.

Note that the above local maps can be used to expand the generalized gauge transfor-
mations and holonomies (the operators of Def. 4.1.2 and 4.1.4) in terms of local operators.
So, let us take arbitrary elements t ∈ hom(C,G)−1 and m ∈ hom(C,G)1, we can write:

At = A∑
n

∑
x e[tn(x),n,x] =

d∏

n=0

∏

x∈Kn

Ae[tn(x),n,x], (4.28)

Bm = B∑
n

∑
x ê[mn(x),n,x] =

d∏

n=0

∏

x∈Kn

Bê[mn(x),n,x], (4.29)

where the r.h.s. of each expression follows from Eq.(4.21). The operators Ae[tn(x),n,x] and
Bê[mn(x),n,x] act locally (around x ∈ Kn) and to see this it is enough to act with them on
arbitrary basis states, |f〉 ∈ H. We are one step away of writing the actual operators that
go into the Hamiltonian operator. However, before we do that let us spend some time
showing the usefulness of the local maps by proving the following identities:

Proposition 4.1.11. Let s ∈ hom(C,G)−1 and v ∈ hom(C,G)1, it holds:

1.
∑

t∈hom(C,G)−1

〈s, t〉At =
d∏

n=0

∏

x∈Kn

∑

tn(x)∈Gn+1

〈s, e[tn(x), n, x]〉Ae[tn(x),n,x],

2.
∑

m∈hom(C,G)1

〈m, v〉Bm =
d∏

n=0

∏

x∈Kn

∑

mn(x)∈Ĝn−1

〈ê[mn(x), n, x], v〉Bê[mn(x),n,x].
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Proof. From Eq.(4.28) and realizing that summing over all t ∈ hom(C,G)−1 is equivalent
to sum over all possible values of gx := t(x), this is, all possible values each n-simplex
x ∈ Kn can be mapped to by t ∈ hom(C,G)−1. We can write the l.h.s. of expression 1
as:

∑

t∈hom(C,G)−1

〈s, t〉At =
∑

gx

〈s,
∑

n

∑

x∈Kn

e[gx, n, x]〉A∑
n

∑
x e[gx,n,x],

=
∑

gx

d∏

n=0

∏

x∈Kn

〈s, e[gx, n, x]〉Ae[gx,n,x],

=

d∏

n=0

∏

x∈Kn

∑

tn(x)∈Gn+1

〈s, e[tn(x), n, x]〉Ae[tn(x),n,x].

A very similar proof holds for the second identity.

Now, we are ready to define the local projectors that make part of the Hamiltonian
operator of the theory, they come as the generalization of the operators defined in sections
3.1, 3.2, 3.3 and 3.4.

Definition 4.1.12 (Local Projectors). Given x ∈ Kn, g ∈ Gn−1, r ∈ Ĝn+1 define the
local gauge projector and local holonomy projector as:

Ar
n,x := Aê[r,n,x] =

1

|Gn+1|
∑

g∈Gn+1

r(g)Ae[g,n,x] and

Bg
n,x := Be[g,n,x] =

1

|Gn−1|
∑

r∈Ĝn−1

r(g)Bê[r,n,x].

Furthermore, the generalized projectors of Definition 4.1.5 can be written in terms of
the above local projectors, this is, a local decomposition.

Proposition 4.1.13. Let s ∈ hom(C,G)−1, m ∈ hom(C,G)1, then we can write:

As :=
d∏

n=0

∏

x∈Kn

Asn(x)
n,x , Bm :=

d∏

n=0

∏

x∈Kn

Bmn(x)
n,x , (4.30)

where sn(x) ∈ Ĝn+1 and mn(x) ∈ Gn−1

Proof. From Definition 4.1.5 we write:

As =
1

|hom(C,G)−1|
∑

t

〈s, t〉At,

=
1

|hom(C,G)−1|
d∏

n=0

∏

x∈Kn

∑

tn(x)

〈s, e[tn(x), n, x]〉Ae[tn(x),n,x],
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where t ∈ hom(C,G)−1 and we have used Proposition 4.1.11 in the last line. Recall that
s ∈ hom(C,G)−1 and the local map e[tn(x), n, x] ∈ hom(C,G)−1, thus evaluating the
character yields:

〈s, e[tn(x), n, x]〉 =
d∏

m=0

∏

y∈Km

s(e[tn(x), n, x](y)),

= s(tn(x)),

where we used Definition 4.1.9 to evaluate the local map e[tn(x), n, x](y) in the first line;

We then note that s(tn(x)) = sn(tn(x)) = sn(x)(tn(x)), where sn(x) ∈ Ĝn+1. Also,recall
that the order of the group:

∣∣hom(C,G)−1
∣∣ =

d∏

n=0

|Gn+1||Kn| .

With all these considerations in hand we can write, for the generalized projection operator:

As =

d∏

n=0

∏

x∈Kn

1

|Gn+1|
∑

tn(x)∈Gn+1

sn(x)(tn(x))Ae[tn(x),n,x],

=
d∏

n=0

∏

x∈Kn

Asn(x)
n,x .

A very similar proof holds for the second identity.

Finally, we are ready to define the Hamiltonian of the model:

Definition 4.1.14 (Hamiltonian). Define the operator H : H→ H by:

H := −
d∑

n=0

∑

x∈Kn

A0
n,x −

d∑

n=0

∑

y∈Kn

B0
n,y,

where 0 ∈ Ĝn+1 in A0
n,x is the trivial representation, whereas 0 ∈ Gn−1 in B0

n,y is the
identity element of the corresponding group. From now on we will write A0

n,x = An,x and
B0

n,y = Bn,y for the operators that go into the Hamiltonian.

This Hamiltonian enforces two kinds of constraints on the ground states. The first
kind, related to An,x, implies ground states must be gauge invariant. The second kind,
related Bn,x, projects to the trivial holonomy sector. As we shall see in the next section,
this leads to the topological features of the model and, in particular, to a topological
degeneracy for the ground state.

4.2 Ground States and GSD

In this section we focus on the properties of the ground state subspace H0 ⊂ H of the
Hamiltonian in Definition 4.1.14, and its relation with the topology of the underlying
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(hom(C,G)p, δp) cochain complex of Definition A.4.4. The result, which is the main
feature of [3], is presented in the form of Theorem 4.2.6. In order to begin, let us make
certain preliminary considerations about a suitable characterization of the ground state
subspace H0 ⊂ H. In fact, it is clear from Definition 4.1.14 that the ground state subspace
H0 is defined by:

H0 :=
{
|Ψ〉 ∈ H |A0

n,x |Ψ〉 = |Ψ〉 and B0
n,x |Ψ〉 = |Ψ〉

}
, (4.31)

for all x ∈ Kn, n = 0, 1, . . . , d. Furthermore, it can be easily shown that H0 is non empty,
therefore, frustration free. Nonetheless, as we stressed in the previous section, we can also
study the ground state space from an operator perspective only. Moving towards that
direction, we define:

Definition 4.2.1 (Ground State Projector). Define the operator Π0 : H→ H0 by:

Π0 := As=0Bv=0,

where s = 0 ∈ hom(C,G)−1 is the trivial representation and v = 0 ∈ hom(C,G)1 is the
identity element.

It is clear that Π0 is a projector operator as the name suggests, this follows easily from
Property 4.1.6 (ii). The fact that Π0 projects into the ground state space H0 follows from
the additive form of the Hamiltonian 4.1.14. This motivates the following:

Proposition 4.2.2 (Ground states). A state |Ψ〉 ∈ H is a ground state if and only if
satisfies

Π0 |Ψ〉 = |Ψ〉 ,

where Π0 is the ground state projector defined in 4.2.1.

The latter is the characterization we were looking for and represents the ground states
as the eigenvectors of the Π0 operator with eigenvalue one. However, to get a more physical
intuition, it is enough to consider the action Π0 on an arbitrary basis state |f〉 ∈ H:

1. A0 projects to gauge equivalent states. This can be easily seen by considering the
notion of gauge equivalence in this formalism. Consider f, g ∈ hom(C,G)0 and the
associated basis states |f〉 , |g〉 ∈ H. These states are said to be gauge equivalent
if there exists a t ∈ hom(C,G)−1 such that |f〉 = At |g〉 = |g + δ−1t〉. Now, recall
from Definition 4.1.5 and Remark 4.1.7, that the generalized projector A0 is written
as a sum over all elements t ∈ hom(C,G)−1:

A0 =
1

|hom(C,G)−1|
∑

t

At. (4.32)

Consequently, two states |f〉 , |g〉 ∈ H are gauge equivalent if A0 |f〉 = A0 |g〉. More-
over, A0 maps a state |f〉 ∈ H into an equal weight superposition of all gauge
equivalent states which is evident from Eq.(4.32).
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2. B0 projects to configurations with trivial generalized holonomy. We can see this
from the local decomposition of 4.30, in particular, B0 operator can be written in
the form:

B0 =
∏

n

∏

x∈Kn

B0
n,x,

where B0
n,x is as in Definition 4.1.12. Therefore, any state |g〉 is invariant under the

action of B0 only if it is invariant under the action of all B0
n,x for all x ∈ Kn and

all n = 0, 1 . . . , d. This condition is exactly the same condition the state |g〉 must
fulfill in order to be a ground state of the Hamiltonian in Definition 4.1.14.

From the above discussion, a gauge invariant state can be constructed out of any
arbitrary state |Ψ〉 ∈ H by the action of the A0 projector, this is, consider the state
|ΨG〉 ∈ H given by:

|ΨG〉 :=A0 |Ψ〉 ,
=
∑

f

Ψ(f)A0 |f〉 ,

=
∑

f

Ψ(f) |fG〉 (4.33)

where f ∈ hom(C,G)0 labels the basis states of H and the state |fG〉 := A0 |f〉, is the
gauge invariant state related to the equivalence class of f ∈ hom(C,G)0 under gauge
transformations. From here is immediate that:

Proposition 4.2.3. The ground state subspace H0 ⊂ H in not empty.

Proof. We prove this by construction. Applying the operator Π0 over the state

|0G〉 := A0 |0〉 gives Π0 |0G〉 = |0G〉 , (4.34)

which, by Proposition 4.2.2, proves that |0G〉 ∈ H0. Moreover, this state is always non
zero and hence H0 6= ∅, since H0 always has at least one element.

Notice that the state |0G〉, by means of Eq. (4.33), can be understood as a superpo-
sition of all basis states that are gauge equivalent to the trivial state |0〉. This state will
have an important role in the following section.

4.2.1 Ground State Degeneracy

So far, we have shown that H0 in non empty. However, we can show that if this subspace
is degenerate, its degeneracy is topological in a sense that will be clear below. To begin,
we will show that the states in H0 are labeled by the subgroup ker (δ0) ⊂ hom(C,G)0,
the kernel of the coboundary map δ0, more precisely:

Proposition 4.2.4. Let f ∈ hom(C,G)0. The gauge equivalent state |fG〉 := A0 |f〉,
belongs to the ground state subspace H0, if and only if, f ∈ ker (δ0).

Proof. We prove this proposition in two steps:
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1. Let us take an arbitrary state |Ψ〉 ∈ H. From Proposition 4.2.2, the state |Ψ〉 ∈ H0

if and only if Π0 |Ψ〉 = |Ψ〉, which in turn implies that |Ψ〉 must be gauge invariant.
Moreover, from Eq.(4.33) any gauge invariant state is a linear combination of |fG〉 :=
A0 |f〉, for f ∈ hom(C,G)0; Hence it is enough to analyze |fG〉.

2. We then take our prototype state to be |fG〉 := A0 |f〉, for any arbitrary basis state
|f〉 ∈ H. Let us start assuming that |fG〉 ∈ H0, this means:

Π0 |fG〉 = |fG〉 , (4.35)

using the expansion of Eq.(4.25), we obtain:

Π0 |fG〉 = B0Pf |0G〉 ,

=
1

|hom(C,G)1|
∑

m

BmPf |0G〉 ,

=
1

|hom(C,G)1|
∑

m

〈m, δ0f〉Pf |0G〉 ,

=

(
1

|hom(C,G)1|
∑

m

〈m, δ0f〉
)
|fG〉 ,

where we have used that |fG〉 = Pf |0G〉 and BmPf = 〈m, delta0f〉PfBm; Clearly, in
order to satisify Eq.(4.35) necessarily:

1

|hom(C,G)1|
∑

m

〈m, δ0f〉 = 1,

which is only true if δ0f = 0 ∈ hom(C,G)0, or equivalently, if f ∈ ker(δ0). Similarly,
one just needs to reverse the argument to show that given an f ∈ ker(δ0), the state
|fG〉 is a ground state of the model, in other words, |fG〉 ∈ H0.

We can understand the above proposition as completely characterizing the ground
state subspace, since all configurations are exhausted by the group f ∈ hom(C,G)0. In
other words, any state |fG〉 with f ∈ ker(δ0) is a ground state of the model. However,
to determine the ground state degeneracy of the model we also need to characterize the
basis states of the ground state subspace, which we do below.

Proposition 4.2.5. The states {|fG〉 | f ∈ ker (δ0)} form a basis of the ground state sub-
space and are in one-to-one correspondence with elements of H

0(C;G) := ker (δ0) /im (δ−1),
the 0-th cohomology group of the co-chain complex (hom(C,G)•, δ•), see Def. A.4.4 in Ap-
pendix 6.

Proof. It is clear from Proposition 4.2.4 that |fG〉 ∈ H0 if, and only if, f ∈ ker (δ0).
Also, by gauge equivalence, |fG〉 = |gG〉 if, and only if, f − g ∈ im (δ−1). Therefore, the
equivalence class [f ] ∈ H 0(C;G) with representative |fG〉 is well defined; Furthermore,
we have a bijection between {|fG〉 |f ∈ ker (δ0)} and H 0(C;G). Projecting the basis {|f〉}
of H into a basis of H0 using the ground state projector Π0 leads to {Π0 |f〉 | Π0 |f〉 6=
0} = {|fG〉 | B0 |fG〉 6= 0} = {|fG〉 | f ∈ ker (δ0)}, and the result follows.
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Furthermore, proposition 4.2.5 also implies that, for each cohomology class [f ] ∈
H 0(C;G), there is a well defined operator

P[f ] :=
∏

g∼f

Pg = PfA0, (4.36)

that creates the ground states from the state |0〉, this last observation allows us to state
the main result of [3]: Given a finite simplicial complex K, its associated chain complex(
C(K), ∂C

)
, a graded group {Gn}, its associated chain complex of finite abelian groups(

G, ∂G
)

and H the Hilbert space of Def. 4.7 with Hamiltonian H : H→ H as defined in
4.1.14. The following theorem follows:

Theorem 4.2.6 (Dimension of the ground state subspace). The dimension of the ground
state subspace H0 is given by:

GSD = |H 0(C;G)| ∼=
∏

i

|H i(C,Hi(G))|

Proof. The proof follows immediately from Propositions 4.2.4 and 4.2.5, as well as the
Theorem A.4.5 found in the Appendix 6.

In physical terms, Theorem 4.2.6 underscores a very useful way to understand the
GSD; this is, there is a contribution coming from each individual usual cohomology group
H i(C,Hi(G)). Moreover, intricate relations between geometrical quantities (related to
the C complex) and gauge quantities (related to the G complex) can be present. Let us
exemplify the latter by restricting C as coming from a closed triangulable manifold. This
allows us to use the universal coefficient theorem (See [106] for a general reference), such
that we can decompose each contribution as:

H i (C,Hi (G)) = Hom (Hi (C) , Hi (G))⊕ Ext1 (Hi−1 (C) , Hi (G)) , (4.37)

for all 0 ≤ i ≤ n. Here is explicit that, if the G complex is not changed, any two
homological triangulable manifolds (X1

∼= X2 ⇒ C(X1) = C(X2)) will give the same
GSD. On the other hand, the appearance of two different homology groups(Hi (C) and
Hi−1 (C)) in the decomposition (4.37) makes the physical interpretation of the terms
somewhat cumbersome since it calls for a case by case study. Reason for which we write
the examples of Chapter 3 in the next section.

4.3 Examples

We started the discussion on higher gauge theories in Chapter 3 by introducing them
through examples. In this section we review these examples using the language we devel-
oped in Section 4.1; Furthermore, we exhibit how Theorem 4.2.6 readily applies to this
examples to find the GSD which is in agreement with Chapter 3.
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4.3.1 1-Gauge Theory

For simplicity we stick to a 2-dimensional simplicial complex C(K) although the formalism
accounts for any finite dimensional complex to play the role of the lattice. In the case of
a 1-gauge theory the classical gauge configuration group is simply given by:

hom(C,G)0 ≡ Hom(C1, G1), (4.38)

as a 1-gauge theory has G1 spins placed at 1-simplices (links) l ∈ K1. An element of this
group f ∈ hom(C,G)0 is just a single map f1 : C1 → G1 that assigns G1-spins to the
links of the lattice, l ∈ K1 (Fig. 4.3). Thus, for every link there is a local Hilbert space
Hl spanned by basis elements |f1(l)〉. The Hilbert space is just a tensor product over all
local Hilbert spaces:

H =
⊗

l∈K1

Hl,

with dimension dim(H) = |G1||K1| = |Hom(C1, G1)|.
The higher gauge symmetry is parametrized by hom(C,G)−1 ≡ Hom(C0, G1); an

element of this group is a map t0 : C0 → G1 that assigns G1 labels to the vertices of the
complex, v ∈ K0 (Fig. 4.3). So, given t ∈ hom(C,G)−1 and a classical gauge configuration
f ∈ hom(C,G)0, from Definition 4.1.2 we have:

At |f〉 = |f + δ1(t)〉 ,
= |f + t ◦ ∂C1 〉 ,
= |f(x1) + t ◦ ∂C1 (x1)〉 ⊗ . . . ⊗ |f(x|K1|) + t ◦ ∂C1 (x|K1|)〉 ,

where in the last line we expanded the actual state to show the action of a gauge trans-
formation on each local basis state.

0 C2 C1 C0 0

0 G1 0

∂C2 ∂C1

f1m2 t0

Figure 4.3: The chain complexes and maps for the Abelian QDM of Section 3.1 are shown.

The notion of holonomy in a 1-gauge theory reduces to the usual 1-holonomy that is
measured along the boundary of 2-chains, see Sections 2.1 and 3.1. More precisely, the
holonomy values of the theory are parametrized by elements of the group hom(C,G)1 ≡
Hom(C2, G1) that associates G1-values to 2-simplices (plaquettes), p ∈ K2. Hence, the

1-holonomy is measured by means of the dual group hom(C,G)1 ≡ Hom(C2, Ĝ1), such
that for m ∈ hom(C,G)1 consisting on a single map m2 : C2 → G1 (Fig. 4.3) and a
classical gauge configuration f ∈ hom(C,G)0 we have:

Bm |f〉 = 〈m, delta0f〉 |f〉 ,
=
∏

p∈K2

m2(f1 ◦ ∂C2 (p)) |f〉 ,
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where we have used the fact that the only non-trivial component of δ0f is:

(δ0f)2 = f1 ◦ ∂C2 ∈ Hom(C2, G1). (4.39)

From Def. 4.1.14, the Hamiltonian of an Abelian 1-gauge theory reduces to:

H = −
∑

x∈K0

A0
0,x −

∑

y∈K2

B0
2,y, (4.40)

= −
∑

x∈K0

(
1

|G1|
∑

g∈G1

Ae[g,0,x]

)
−
∑

x∈K0


 1

|G1|
∑

r∈Ĝ1

Bê[r,2,y]


 , (4.41)

where in the last line we used Definition 4.1.12 to show that it coincides with the ones
in Eqns. (3.2) and (2.5). To see how the formula for the GSD of Theorem 4.2.6 gives
the correct answer let us look at a particular example of a 1-gauge theory in 2 spatial
dimensions. We saw in Section 3.1.1 that the Toric Code model is recovered when the
gauge group G1 = Z2; The geometrical chain complex C(K) comes from a discretization
of the Torus (T 2). From Theorem 4.2.6, the ground state degeneracy of the model is given
by:

GSD = |H 0(C;G)| = |H1(C,H1(G)| = |Hom(H1(C), H1(G))| = 22,

where we have used the universal coefficient theorem of Eq.(4.37) to expand the terms in
H 0(C;G); Also H1(C) = H1(T

2) = Z⊕Z and H1(G) = Z2, from which the above result
follows.

4.3.2 0,1-Gauge Theory

Let us now look at the example we introduced in Section 3.2, where we allow the vertices
v ∈ K0 to hold G0-degrees of freedom along with the usual G1-spins at links l ∈ K1 of
the lattice. We consider a 2-dimensional torus for the chain complex C(K) ≃ T 2. The
classical gauge configurations are elements of the group:

hom(C,G)0 ≡ Hom(C0, G0)⊕ Hom(C1, G1), (4.42)

in other words, an element f ∈ hom(C,G)0 is made of a pair of maps f = {f0, f1} where
f0 : C0 → G0 labels the vertices with G0-spins and f1 : C1 → G1 assigns G1-labels to
the links of the lattice. These maps are used to construct a basis {|f〉}f∈hom(C,G)0 for the
global Hilbert space H, which in this case is given by:

H =
⊗

v∈K0

Hv

⊗

l∈K1

Hl,

with dimension dim(H) = |Hom(C0, G0)||Hom(C1, G1)| = |G0||K0||G1||K1|.
The higher gauge symmetry of the model is parametrized by elements of the group

hom(C,G)−1 ≡ Hom(C0, G1) that assigns G1-values to the vertices of the lattice. An
element t ∈ hom(C,G)−1 is a map t0 : C0 → G1 (see Fig. 4.4); To see how the symmetry
is implemented on actual quantum states we need to understand the co-boundary operator
δ−1 : hom(C,G)−1 → hom(C,G)0 that maps gauge symmetries into gauge configurations.
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0 C2 C1 C0 0

0 G1 G0 0

∂C2 ∂C1

f1 f0

∂G1

m2 m1 t0

Figure 4.4: The relevant maps for a 0,1-gauge model are shown. Where f = {f0, f1} ∈ hom(C,G)0 are the
classical gauge configurations, the maps t = {t0} ∈ hom(C,G)−1 parametrize the higher gauge
symmetry and m = {m1,m2} ∈ hom(C,G)1 encode the 0- and 1-holonomy values of the theory.

So, given a gauge symmetry t ∈ hom(C,G)0, the resulting map δ−1t ∈ hom(C,G)0 has
two non-trivial components, namely,

(
δ−1t

)
0
= ∂G1 ◦ t0,(

δ−1t
)
1
= t0 ◦ ∂C1 ,

where ∂G1 : G1 → G0 and ∂C1 : C1 → C0; Notice also that (δ−1t)0 ∈ Hom(C0, G0) and
(δ−1t)1 ∈ Hom(C1, G1), the former transforms the G0-spins at vertices whereas the latter
transforms the G1-spins at links, as we shall see. Consider a gauge configuration f ∈
hom(C,G)0, a vertex x ∈ K0 and a link y ∈ K1, both arbitrary. The gauge transformation:

At |f〉 = · · · ⊗ |f0(x) + ∂G1 ◦ t0(x)〉 ⊗ |f1(y) + t0 ◦ ∂C1 (y)〉 . . . ,

observe how all maps act consistently on the corresponding vertex and link degrees of
freedom.

On the other hand, the group hom(C,G)1 parametrizes the generalized holonomy
values of the theory, an element of such group consists on a pair of maps m = {m1, m2}
where m1 : C1 → G0 parametrizes the 0-holonomy associated to 1-chains (links) and
m2 : C2 → G1 encodes the 1-holonomy values associated to 2-chains (plaquettes). The
actual measurement of the holonomy values is obtained through representations of this
group. Such that, for f ∈ hom(C,G)0:

Bm |f〉 = 〈m, δ0f〉 |f〉 ,

where the non-trivial components of δ0f are:

(
δ0f
)
1
= f0 ◦ ∂C1 − ∂G1 ◦ f1 ∈ Hom(C1, G0),(

δ0f
)
2
= f1 ◦ ∂C2 ∈ Hom(C2, G1).

Observe that the second term, (δ0f)2 es identical to that of a 1-gauge theory, see Eq.(4.39);
The novelty brought by the inclusion of G0 degrees of freedom at vertices is the first term,
(δ0f)1, that encodes the 0-holonomy values of the theory. Consequently, the action of the
measurement operator is given by:

Bm |f〉 =
∏

x∈K1

m1(f0 ◦ ∂C1 (l)) m1(∂
G
1 ◦ f1(l))−1

∏

y∈K2

m2(f1 ◦ ∂C2 (p)) |f〉 ,
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where the product over links, x ∈ K1 measures the generalized values of 0-holonomies
while the product over plaquettes y ∈ K2 does it for the 1-holonomies.

The Hamiltonian operator of the theory is readily obtained from Definition 4.1.14 and
in this case reads:

H = −
∑

x∈K0

A0,x −
∑

y∈K1

B1,y −
∑

z∈K2

B2,z. (4.43)

The three type of operators in the above Hamiltonian are in charge of implementing the
higher gauge symmetry and to impose the flat-holonomy constraints on quantum states.
In particular, for x ∈ K0, the vertex operator is given by:

A0,x =
1

|G1|
∑

g∈G1

Ae[g,0,x],

and implements what we call as 1-gauge symmetry, since the symmetry transformations
are labeled by elements of G1, it is precisely the operator in Eqns. (3.4) and (2.3). The
next kind of operator in Eq.(4.43) has its action localized at links, so for y ∈ K1 we have:

B1,y =
1

|G0|
∑

r∈Ĝ1

Bê[r,1,y],

in charge of implementing the 0-holonomy1 flatness constraint, it is the operator in Eq.
(3.12). Finally, the second type of holonomy constraint is implemented by the plaquette
operators, so for z ∈ K2:

B2,z =
1

|G1|
∑

r∈Ĝ1

Bê[r,2,z],

in charge of imposing the 1-holonomy flatness constraint on quantum states and it corre-
sponds to the operators in Eqns. (2.4) and (3.3).

Now, let us showcase the appliance of Theorem 4.2.6 to this model. In this sense, let
us consider the example of Section 3.2.1, where we set G0 = Z2 and G1 = Z4 and a lattice
that comes from the discretization of a torus T 2. Then, the ground state degeneracy of
the model is given by:

GSD =
∣∣H 0(C;G)

∣∣ = |H1(, H1(G)| = |Hom(H1(T
2), H1(G))|,

this number is essentially counting the number of ways we can color the generators of the
Homology group H1(T

2) with elements of H1(G). For this particular 0,1-gauge theory,
we have:

H1(T
2) ≃ Z⊕ Z,

the first homology group of a discrete Torus. While the first homology group of the

algebraic sequence G1
∂G
1−→ G0 reads:

H1(G) =
ker∂G1
Im∂G2

≃ Z2

{} ≃ Z2,

leaving for the dimension of the ground state subspace:

GSD = 22 = 4,

which coincides with the result of Eq.(3.20).

1We call this quantity as 0-holonomy since it takes values in G0.
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4.3.3 1,2-Gauge Theory

We now move on to the next higher gauge theory we exhibited in Chapter 3. We stick
to a 2-dimensional lattice C(K) but the construction generalizes straightforwardly to any
dimensions, as we will show by the end of the section. Recall that in a 1,2-gauge theory
we allow for the existence of degrees of freedom at links and plaquettes of the lattice.
In other words, we place G1-spins at links l ∈ K1 and G2-spins at plaquettes p ∈ K2.
Naturally the Hilbert space is

H =
⊗

l∈K1

Hl

⊗

p∈K2

Hp.

Again, the group of classical gauge configurations hom(C,G)0 is used to label a global
basis for H denoted {|f〉}f∈hom(C,G)0 . An element of this group, i.e., a classical gauge
configuration is made of a pair of maps f = {f1, f2} where f1 ∈ Hom(C1, G1) and f2 ∈
Hom(C2, G2), this is,

hom(C,G)0 ≡ Hom(C1, G1)⊕ Hom(C2, G2), (4.44)

we encourage the reader to compare the structure of this group with those of Eqns.(4.38)
and (4.42). The dimension of the Hilbert space is :

dim(H) = |Hom(C1, G1)||Hom(C2, G2)| = |G1|K1|G2||K2|.

0 C2 C1 C0 0

0 G2 G1 0

∂C2

f2

∂C1

f1

∂G2

m2 t1 t0

Figure 4.5: The set of relevant maps for 1,2-gauge theory are shown. Classical gauge configurations
f = {f1, f2} and higher gauge transformations t = {t0, t1} com in pairs of maps, whereas

the generalized holonomy values consist of a single map m = {m2}.

The higher gauge symmetry of the model is parametrized by the group hom(C,G)−1

which in this case has two non-trivial components, namely,

hom(C,G)−1 ≡ Hom(C0, G1)⊕Hom(C1, G2),

this is, an element t ∈ hom(C,G)−1 actually consists of a pair t = {t0, t1} where t0 : C0 →
G1 and t1 : C1 → G2, see Fig. 4.5. The structure of hom(C,G)−1 is already telling us that
there are two types of gauge transformations, fact we already know from Section 3.3. To
see how the higher gauge symmetry is implemented on quantum states consider a classical
gauge configuration f ∈ hom(C,G)0 and a higher gauge symmetry t ∈ hom(C,G)−1, from
Definition 4.1.2 we have:

At |f〉 = |f + δ−1t〉 ,
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so, we need to find the non-trivial components of δ−1t which in this case turn out to be:

(
δ−1t

)
1
= t0 ◦ ∂C1 − ∂G2 ◦ t1,(

δ−1t
)
2
= t1 ◦ ∂C2 ,

such that for arbitrary link x ∈ K1 and plaquette y ∈ K2, we have:

At |f〉 = · · · ⊗ |f1(x) + t0 ◦ ∂C1 (x) + ∂G2 ◦ t1(x)〉 ⊗ |f2(y) + t1(y)〉 . . .

The generalized holonomy values of the theory are measured via representations in hom(C,G)1
which in this case takes the following form:

hom(C,G)1 ≡ Hom(C2, Ĝ1), (4.45)

this is, the only notion of holonomy in a (2-dimensional) 1,2-gauge theory is the 1-
holonomy associated to 2-chains (plaquettes) in C2. A representation m ∈ hom(C,G)1 is

a map m2 : C2 → Ĝ1, such that:

Bm |f〉 = 〈m, δ0f〉 |f〉 ,

where the map δ0f ∈ hom(C,G)1 has one non-trivial component, namely,

(
δ0f
)
2
= f1 ◦ ∂C2 − ∂G2 ◦ f2, (4.46)

thus yielding:

Bm |f〉 =
∏

x∈K2

m2(f1 ◦ ∂C2 (x))m2(∂
G
2 ◦ f2(x))−1 |f〉 .

where the local measurements are being carried over plaquettes x ∈ K2. The Hamiltonian
is obtained from Def. 4.1.14, giving:

H = −
∑

x∈K0

A0,x −
∑

y∈K1

A1,y −
∑

z∈K2

B2,z. (4.47)

The above operator is exactly the same as the one in Eq.(3.22). The 1-gauge symmetry
is implemented by vertex operators A0,x just as in a usual 1-gauge theory (cf. Sections
3.1 and 4.3.1). There is a new kind of gauge transformation, implemented on quantum
states through the link operator, for y ∈ K1

A1,y =
1

|G2|
∑

α∈G2

Ae[α,1,y],

which we call 2-gauge transformation since the symmetry transformations are labeled by
elements α ∈ G2. Note that this operator is exactly the same as the one in Eq.(3.23).

The last operator in Eq.(4.47) is in charge of enhancing the 1-holonomy flatness condi-
tion. From Eq.(3.24) in Section 3.3 we know that the notion of 1-holonomy of a 1,2-gauge
theory has a slight modification from that of a pure 1-gauge theory, this can be seen

64



4. Abelian Higher Gauge Theories

comparing Eq.(4.46) and Eq.(4.39). The local projection is carried over by the plaquette
operator,

B2,z =
1

|G1|
∑

r∈Ĝ1

Bê[r,2,y],

where z ∈ K2 is an arbitrary plaquette.
Let us, now, consider the example of Section 3.3.1, this is, a 1,2-gauge theory defined

on a discretization of a sphere C(K) ≃ S2; Where the gauge groups are G1 = Z2 = {1,−1}
and G2 = Z4 = {1, i,−1,−i} and the homomorphism between them ∂G2 : G2 → G1 is
defined by ∂G2 (i) = −1. Theorem 4.2.6 gives the ground state degeneracy of the model as:

GSD =
∣∣H 0(C;G)

∣∣ = |H2(C,H2(G))| = |Hom(H2(C), H2(G))|,

now

H2(G) =
ker∂2
Im ∂3

=
Z2

{ } ≃ Z2.

On the other hand, H2(S
2) = Z, therefore:

GSD = |Hom(Z,Z2)| = 2,

where the last equality holds since there are only two morphisms from the free Abelian
group Z to Z2, namely the one that sends every element of Z into the trivial element
0 ∈ Z2 and the one that sends the generator of Z into the generator of Z2. Observe that
this accounts for the ground states shown in §3.3.1.

We have seen that, in 2 spatial dimensions, the formalism of §4.1 accounts for the
models we presented in Chapter 3. To showcase the power of this formalism, let us
see how the algebraic structures are naturally modified by considering a 3-dimensional
1,2-gauge theory. It is not difficult to note that the main difference between a 2-dim
1,2-gauge theory and a 3-dim one comes in the generalized notion of Holonomies. To
see this, it is enough to look at the groups that parametrize gauge configurations, gauge
transformations and holonomy values, namely,

hom(C,G)0 ≡ Hom(C1, G1)⊕Hom(C2, G2),

hom(C,G)−1 ≡ Hom(C0, G1)⊕Hom(C1, G2),

hom(C,G)1 ≡ Hom(C2, G1)⊕Hom(C3, G2),

it is enough to compare the last expression with the one in Eq.(4.45) to see that a 1,2-
gauge theory in 3 spatial dimensions has a new notion of holonomy whose values are
parametrized by elements in Hom(C3, G2). Let us pay attention to this group, its elements
associate G2-values to 3-chains (volumes) of the lattice, which we call 2-holonomies. As
a consequence, a new operator kind of operator appears in the Hamiltonian of the theory
that enforces the flatness condition over these 2-holonomies. The details of how this
operator arises are similar to the example in the next section.

4.3.4 1,2,3-Gauge Theory

To end the detailed exposure of Abelian higher gauge theories and the formalism we use
to describe them in full generality we exhibit a 1,2,3-gauge theory in 3 spatial dimensions.
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This theory was introduced in §3.4 where we showed all operators and the ground states
for a particular example. In this section, we re-write the model using the formalism we
developed in this chapter. Let us begin with the three groups in the sequence of Eq.(4.13),
namely:

• Classical gauge configurations are parametrized by elements in:

hom(C,G)0 ≡ Hom(C1, G1)⊕ Hom(C2, G2)⊕ Hom(C3, G3),

in other words, we have G1-spins at links l ∈ K1, G2-spins at plaquettes p ∈ K2 and
G3-spins at cubes c ∈ K3.

• The higher gauge symmetry is labeled by the group:

hom(C,G)−1 ≡ Hom(C0, G1)⊕Hom(C1, G2)⊕Hom(C2, G3),

the structure of this group already tells us that there are three different notions of
gauge transformations, the 1-, 2- and 3-gauge transformations.

• Finally, the generalized holonomies of the theory take values in the group:

hom(C,G)1 ≡ Hom(C2, G1)⊕ Hom(C3, G2),

the first term accounts for the 1-holonomies of the theory, whereas the second term
Hom(C3, G2) does it for the 2-holonomies.

Elements of the above groups are shown in Fig. 4.6.

0 C3 C2 C1 C0 0

0 G3 G2 G1 0

∂C3

f3

∂C2

f2

∂C1

f1

∂G3 ∂G2

m3 m2t2 t1 t0

Figure 4.6: The set of relevant maps for a 1,2,3-gauge theory in 3 spatial dimensions are shown. Classical
gauge configurations f = {f1, f2, f3} are shown in solid. Higher gauge transformations t =
{t0, t1, t2} in dotted, whereas the generalized holonomy values m = {m2,m1} are shown as

dashed lines.

The Hamiltonian of the model is given by:

H = −
∑

x∈K0

A0,x −
∑

y∈K1

A1,y −
∑

z∈K2

A2,z −
∑

z′∈K2

B2,z′ −
∑

w∈K3

B3,w, (4.48)

and it corresponds to the Hamiltonian of Eq. (3.32). Consider the 1,2,3-gauge theory
defined on a discretization of S3. Moreover, let G1 = G2 = G3 = Z4, or:

1
∂4−→ G3

∂3−→ G2
∂2−→ G1

∂1−→ 1, (4.49)
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where ∂1 and ∂4 are trivial and ∂2, ∂3 are both defined by

∂j(i) = −1, j = 2, 3,

where i is the generator of Z4 = {1, i,−1,−i}. We have seen, in §3.4 that this model has
two ground states when defined in a discretization of the 3-sphere S3. This ground state
degeneracy of the model coincides with the result of Theorem 4.2.6, namely,

GSD = |H 0(C;G)| = |Hom(H3(S
3), H3(G))| = 2,

where the last equation comes from observing that the only non trivial homology group
of S3 is the third one. In particular H3(S

3) = Z and the third homology group of the
abstract chain complex of eq.(4.49) is given by:

H3(G) =
ker∂3
Im ∂4

=
Z2

{ } ≃ Z2.

The presence of topological order of all degrees can be reached by cleverly choosing
the groups and the maps between them. For instance, consider the following abstract
chain complex:

1
∂4−→ Z4

∂3−→ Z8
∂2−→ Z4

∂1−→ 1,

where the boundary maps are given by:

∂3(i) =ω
4,

∂2(ω) =− 1,

where i is the generator of Z4 and ω is the generator of Z8. The non trivial homology
groups of the complex chain are:

H3(G) = ker∂3 ≃ Z2, H2(G) =
ker∂2
Im ∂3

=
Z4

Z2

≃ Z2, and H1(G) =
Z4

Im ∂2
≃ Z2, (4.50)

thus, if the model is defined on S2×S1, for example, it would have Z2 1,2 and 3-topological
order.
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Chapter 5

Entanglement Entropy in Abelian

Higher Gauge Theories

The previous chapter was devoted to introduce the Homological description of Abelian
Higher Gauge Theories. Furthermore, Theorem 4.2.6 showcases the power of such descrip-
tion by efficiently encoding the topological degeneracy of the models in the cohomology
group H 0(C;G). Remarkably, this formalism seems adequate to extract information
about the Entanglement Entropy of such models, as we will precisely see. Hence, in this
Chapter we explicitly calculate the entanglement entropy for the class of models presented
in Chapter 3 using the formalism developed in Chapter 4 and [3]. We show that the obten-
tion of the entanglement entropy follows from a calculation very similar to that of 2.3. To
this intent, we begin the Chapter by precisely defining the bipartition of the

(
C(K), ∂C

)

chain complex (the lattice) into a subcomplex,
(
C(KA), ∂

C
A

)
, and its complement. We

then observe that an associated higher gauge theory can be defined in the subcomplex
(C(KA), ∂

C
A ) which will be useful for both the calculation and the interpretation of the re-

sults. As usual, we begin by introducing the density matrix ρ in terms of the ground state
projector of definition 4.2.1. The reduced density matrix ρA = TrB(ρ) is then obtained
and shown to be best written in terms of the local operators of the higher gauge theory
defined in the subcomplex

(
C(KA), ∂

C
A

)
. The entanglement entropy is the von Neumann

entropy of the reduced density matrix

SA := −Tr(ρA log ρA).

The result we obtain relates this quantity to a restricted gauge theory in region A. In
particular, we show that the entanglement entropy of a higher gauge theory with Hamil-
tonian as in definition 4.1.14 is equal to the logarithm of the ground state degeneracy
GSDÃ of a related higher gauge theory restricted to region A, in other words

SA = log (GSDÃ) .

In the text below the definition of GSDÃ is explained fully.

5.1 Bipartition of the Geometrical Chain Complex

As it was shown in Chapter 4, the geometrical content of the model is encoded in a chain
complex, which plays the role of the lattice; Again, we consider a simplicial chain complex,
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for convenience. Recall from §2.3 that the entanglement entropy calculation starts off by
defining a bipartition of the lattice. So, in order to calculate the entanglement entropy
for the class of models defined by the Hamiltonian in definition 4.1.14 we first need to
define the bipartition that is going to be considered. In this sense, the system is divided
into two regions A and B, as in §2.3 and [66, 75, 76]. This means the Hilbert space is
split into H = HA⊗HB, where HA is the Hilbert space associated to region A, the region
to which we will have access to. For convenience we want such region to be algebraically
described by a subcomplex of

(
C(K), ∂C

)
.

Recalling Eq. (4.1), the
(
C(K), ∂C

)
chain complex consists on a family of the finitely

generated chain groups Cn made by formal sums of the generators x ∈ Kn. Consider
then, K =

⋃d
n=0Kn a d-dimensional simplicial complex that we split into two regions A

and B in the following way: For each 0 ≤ n ≤ d we partition the set of n-simplices in
the form Kn = Kn,A ∪Kn,B where Kn,A stands for the set of n-simplices in region A and

Kn,B the set of simplices in region B. We do this in a way such that KA =
⋃d

n=0Kn,A is
a subcomplex of K, in the sense of Definition A.4.1 in App.(6).

Notice that we are splitting the simplicial complex K into a subcomplex KA and
its complement, which in general is not a simplicial complex on its own. This is not a
severe restriction will allow us to perform the calculation of the entanglement entropy in
the most general case using the formalism of Chapter 4. In fact, a higher gauge theory
strictly defined in region A can be described by the homological algebra language and
this ultimately allow us to have a physical interpretation of the entanglement entropy in
Abelian higher gauge theories.

Let Cn,A be the n-chain group generated by n-simplices, x ∈ Kn,A, and let also ∂Cn,A :
Cn,A → Cn−1,A be the canonical restriction of ∂Cn into the subset Kn,A, this is, ∂Cn,A := ∂Cn |A.

It is not difficult to show that
(
C(KA), ∂

C
A

)
is, in fact, a chain complex:

Cd,A

∂d,A−−→ Cd−1,A

∂d−1,A−−−−→ · · · ∂2,A−−→ C1,A
∂1,A−−→ C0,A, (5.1)

since ∂Cn,A ◦ ∂Cn+1,A = 0. Following the construction of [3] and Chapter 4, we also consider
the higher gauge group as the usual abstract chain complex of Abelian groups of Eq.(4.3),
namely

0 →֒ Gd

∂G
d−→ Gd−1

∂G
d−1−−→ · · · ∂G

2−→ G1
∂G
1−→ G0 → 0, (5.2)

where all groups Gn are finite Abelian groups and ∂Gn : Gn → Gn−1 are group homomor-
phisms, such that ∂Gn ◦ ∂Gn+1 = 0. Note that the ∂ in Eq.(5.1) and the one in Eq.(5.2)
represent different group morphisms.

With the two chain complexes of Eqns. (5.1) and (5.2) in hand, it is natural to define
homomorphisms between them. In general, we can consider the group

hom(CA, G)
p :=

d⊕

n=0

Hom(Cn,A, Gn−p),

that consists on the collection of all group morphisms fn,A : Cn,A → Gn−p whose support
lies exclusively on KA. Chapter 4 was devoted to discuss how the three essential notions of
a generalized higher gauge theory are naturally parametrized by the groups corresponding
to p = −1, 0, 1 and their representations. Of particular interest is the group:

hom(CA, G)
0 =

⊕

n

Hom(Cn,A, Gn),
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which is made up of collections of maps fA = {fn,A} for n = 0, 1, . . . , d that we understand
as the higher gauge configurations restricted to region A:

fn,A : Cn,A → Gn,

x 7→ fn,A(x),

where x ∈ Kn,A and fn,A(x) ∈ Gn. The group elements f ∈ hom(CA, G)
0 are then

used to label a basis {|f〉A} of the Hilbert space HA ⊂ H, such that any arbitrary state
|Ψ〉A ∈ HA is written as:

|Ψ〉A =
∑

f∈hom(CA,G)0

Ψ(f) |f〉A .

Similarly, consider the groups hom(CA, G)
−1 and hom(CA, G)

1, corresponding to param-
eters of the generalized gauge transformations and the holonomy values, respectively. We
know from Chapter 4 that a higher gauge theory can be constructed by means of the
following co-chain complex:

hom(CA, G)
−1 δ−1

A−−→ hom(CA, G)
0 δ0A−→ hom(CA, G)

1, (5.3)

where the co-boundary map δpA : hom(CA, G)
p → hom(CA, G)

p−1 is defined by,

(δpAf)n := fn−1,A ◦ ∂Cn,A − (−1)p∂Gn−p ◦ fn,A,

for any f ∈ hom(CA, G)
p. This higher gauge theory is restricted to region A and the cor-

responding Hamiltonian operator can be written straightforwardly from Definition 4.1.14.
However, for reasons that will be clear in §5.3, we want to further restrict this theory by
allowing gauge transformations that act on the interior of KA only; Thus discarding gauge
transformations that act at the boundary ∂(A). This can be easily done by considering
a special subgroup of hom(CA, G)

−1. To that intent, let us give a precise notion of the
interior of A.

Definition 5.1.1 (Interior of A). Let Kn,Ã = {x ∈ Kn,A | x ∩ ∂(A) = ∅}, this is, the set
of n-simplices whose intresection with the boundary of A is null. Then, we define the
interior of A as

int(A) = Ã :=

d⋃

n=0

Kn,Ã.

The notion of interior allows us to define a subgroup of hom(CA, G)
p whose support

is contained on Ã only. More precisely, let us consider homomorphisms whose support lie
on the interior of A (denoted Ã), namely Hom(Cn,Ã, Gn−p). They define the group:

hom(CÃ, G)
p :=

d⊕

n=0

Hom(Cn,Ã, Gn−p),

with elements f ∈ hom(CÃ, G)
p, consisting of collection of maps f = {fn}:

fn : Cn,Ã → Gn+p,

x 7→ fn(x),
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where x ∈ Kn,Ã and fn(x) ∈ Gn+p. It is straightforward to show that hom(CÃ, G)
p is a

subgroup of hom(CA, G)
p. Moreover, we can consider the restriction of the co-coundary

operator δp into the interior of A, this is, δp
Ã
:= δp|Ã, such that the following particular

sequence:

hom(CÃ, G)
−1

δ−1

Ã−−→ hom(CA, G)
0 δ0

A−→ hom(CA, G)
1, (5.4)

is a co-chain complex, namely δ0A ◦ δ−1

Ã
= 0. This co-chain complex encodes an Abelian

Higher Gauge Theory over KA where the gauge transformations are restricted to act on
the interior of A only (which we denote as Ã). The Hamiltonian operator, HÃ : HA → HA,
of such theory follows neatly from Definition 4.1.14:

HÃ =

d∑

n=0

∑

x∈K
n,Ã

An,x −
d∑

n=0

∑

y∈Kn,A

Bn,y. (5.5)

More importantly, theorem 4.2.6 provides the dimension of the ground state subspace
(GSD) of this model, which reads:

GSDÃ =
|kerδ0A|∣∣∣Im δ−1

Ã

∣∣∣
. (5.6)

In this case GSDÃ is essentially counting the number of flat configurations in A, |kerδ0A|,
modulo internal gauge transformations |Im δ−1

Ã
|. In the next section we show how this

restricted gauge theory, and in particular its ground state degeneracy (GSDÃ) makes the
obtention of the reduced density matrix of a higher gauge theory an easy task.

5.2 Reduced Density Matrix

Recall from Section 2.3.2 that the next step in the entanglement entropy calculation
regards the density matrix of the model. In general, we are considering Abelian higher
gauge theories whose dynamics are determined by the Hamiltonian operator of Definition
4.1.14, this is:

H := −
d∑

n=0

∑

x∈Kn

An,x −
d∑

n=0

∑

y∈Kn

Bn,y,

where An,x and Bn,y are the local implementation of gauge transformations and flat gener-
alized holonomy constraints (see Definition 4.1.12). We are interested in the entanglement
properties of the ground state subspace H0 of the above Hamiltonian, for this reason:

Definition 5.2.1 (Density Matrix). Consider the above Hamiltonian operator, the ground
state projector of Definition 4.2.1, Π0 : H → H0. Let also GSD be the ground state
degeneracy of Theorem 4.2.6. We define the density matrix of the model as:

ρ :=
Π0

tr (Π0)
=

Π0

GSD
. (5.7)
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The density matrix can be written in a more convenient way by making use of the
generalized projectors. Recall, from §4.2 that the ground state projector is written:

Π0 = A0B0.

From definition 4.2.1 we know that the ground state projector Π0 can be written in
terms of the projectors in (4.24) and (4.25) as

Π0 =


 1

|hom(C,G)−1|
∑

t∈hom(C,G)−1

At




 1

|hom(C,G)1|
∑

m∈hom(C,G)1

Bm


 . (5.8)

However, we want to re-parametrize the two sums in the above equation such that they
run over independent elements only. In other words, we want to factor the redundancies
out of the sums. This can be achieved by looking at the group structure of hom(C,G)−1

and hom(C,G)1. Take for instance hom(C,G)−1 whose elements parametrize the higher
gauge transformations of the theory. The redundancies in the sum over t ∈ hom(C,G)−1

of (5.8) come from elements that act trivially over quantum states (examples of such
elements are shown in Section 5.4). Recall that gauge transformations act on actual states
by means of the δ−1 operator. Thus, we can identify the elements of hom(C,G)−1 that act
trivially on states: they form a subgroup of hom(C,G)−1 called the kernel and given by
ker(δ−1) := {t ∈ hom(C,G)−1 | δ−1(t) = 0}, where 0 ∈ hom(C,G)0 is the identity element
that labels the trivial gauge configuration. Morever, non-trivial gauge transformations
are parametrized by elements of hom(C,G)−1 that are not mapped to the identity by δ−1,
they define a subgroup of hom(C,G)0 known as image and denoted Im(δ−1). Both the
kernel and the image of the co-boundary map, δ−1, are related to each other by the first
isomorphism theorem [107] which in this case reads

hom(C,G)−1

ker(δ−1)
≃ Im(δ−1). (5.9)

Elements of the quotient group in the above expression are the cosets of ker(δ−1) in
hom(C,G)−1. This is:

hom(C,G)−1

ker(δ−1)
:= {[t] | t ∈ hom(C,G)−1},

where the coset [t] = {t+ hi, hi ∈ ker(δ−1)} consists on all elements of hom(C,G)−1 that
differ from t by an element in ker(δ−1). This is precisely what we need to factor the sums
in (5.8). The sum over t ∈ hom(C,G)−1 can be replaced by a sum over the cosets of
ker(δ−1) in hom(C,G)−1 as follows:

∑

t∈hom(C,G)−1

At =
∑

[s]∈hom(C,G)−1

ker(δ−1)

|ker(δ−1)|As,

where s ∈ [s] is an arbitrary representative of the coset. A similar argument holds for the
sum over m ∈ hom(C,G)1 which allows to factor out the redundancies from the second
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sum in (5.8). By doing this, we ensure that the sums run over independent group elements
only:

Π0 =




1

|Im(δ−1)|
∑

[t]∈hom(C,G)−1

ker(δ−1)

At







1

|Im(δ1)|
∑

[m]∈
hom(C,G)1

ker(δ1)

Bm


 , (5.10)

note that we have used |hom(C,G)−1| = |ker(δ−1)||Im(δ−1)| to simplify the normalization
factor of the first sum. A similar identity holds for the second sum. This leaves us with
the density matrix of (5.7) written as:

ρ =
1

GSD

1

|Im(δ−1)||Im(δ1)|




∑

[t]∈hom(C,G)−1

ker(δ−1)

At







∑

[m]∈
hom(C,G)1

ker(δ1)

Bm


 . (5.11)

Provided with the density matrix ρ we can now calculate the reduced density matrix by
considering the bipartition of the geometric chain complex

(
C•, ∂

C
•

)
described in §5.1,

which essentially splits the Hilbert space into two subspaces H = HA ⊗HB.

Definition 5.2.2 (Partial trace). The partial trace of a bipartite system H = HA ⊗HB

is the linear map TrB : H→ HA determined by:

TrB(OA ⊗ OB) = OATr(OB),

where OA : HA → HA and OB : HB → HB are operators acting on A and B respectively.

The partial trace is useful to obtain information about observables of a subsystem
since 〈OA〉 = Tr(OA ρA), where ρA is defined next.

Definition 5.2.3 (Reduced density matrix). The reduced density matrix is obtained by
taking a partial trace over the B region, interpreted as the region where we have no access
to, this is:

ρA := TrB(ρ). (5.12)

To obtain the reduced density matrix, we need to perform the partial trace of ρ over
region B. In this sense, let us consider a basis {|fn,B〉} for HB, where fn,B ∈ hom(CB, G)

0

is the restriction of hom(C,G)0 to B. For simplicity, let us denote this basis as {|bi〉},
with i = 1, 2 . . . , |HB|. Then, the reduced density matrix is given by:

ρA =
1

GSD

1

|Im(δ−1)||Im(δ1)|
∑

i

〈bi|


∑

[t]

∑

[m]

AtBm


 |bi〉 ,

where [t] ∈ hom(C,G)−1

ker(δ−1)
label the non-trivial higher gauge transformations and [m] ∈

hom(C,G)1
ker(δ1)

label the non-trivial representations of the holonomy values.
Both At and Bm are traceless operators unless they are equal to the identity operator,

as we show in Property C.4.12 of Appendix A.4. Because of this, the only terms that
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survive the partial trace are those for which At and Bm act trivially in HB, yielding for
the reduced density matrix:

ρA =
1

GSD

1

|Im(δ−1)||Im(δ1)|

(
∑

p,q

ApBq

)
TrB(1B), (5.13)

where the sums now run over: the independent internal gauge transformations, p ∈
hom(C

Ã
,G)−1

ker(δ−1
A

)
, and the non-trivial holonomy values in A, q ∈ hom(CA,G)1

ker(δ1|A)
. Finally, by noting

that TrB(1B) = dim(HB), we reach:

ρA =
1

GSD

dim(HB)

|Im(δ−1)||Im(δ1)|

(
∑

p,q

ApBq

)
.

We can further simplify this expression. Applying the first isomorphism theorem [107] on
the sequence of Eq. (4.13) it is easy to show that

dim(H) =
∣∣hom(C,G)0

∣∣ =
∣∣ker(δ0)

∣∣ ∣∣Im(δ0)
∣∣ ,

where |ker(δ0)| counts the classical configurations with trivial holonomy (flat basis states)
while |Im(δ0)| counts all possible non-trivial holonomy values. Moreover, in Appendix
A.4 we show that |Im(δ0)| = |Im(δ1)| which allows us to write the following identity:

GSD |Im(δ−1)||Im(δ1)| = dim(H) = dim(HA) dim(HB),

replacing the above into the expression for the reduced density matrix we get:

ρA =
1

dim(HA)

(
∑

p,q

ApBq

)
, (5.14)

where, again, the sums are carried over, p ∈ hom(C
Ã
,G)−1

ker(δ−1
A

)
, the internal (non-trivial) higher

gauge transformation and q ∈ hom(CA,G)1
ker(δ1|A)

, the non trivial holonomy values in A. As we will
see in the next section, the expression we got for the reduced density matrix will make
the calculation of the entanglement entropy a rather straightforward calculation.

5.3 Entanglement Entropy

Having found the reduced density matrix, Eq. (5.14), we are able to calculate its Von
Neumann entropy, also known as entanglement entropy :

SA = −Tr (ρA log(ρA)) ,

where the trace is taken over region A. To calculate this quantity we first need to evaluate
the logarithm of the reduced density matrix, log(ρA); Usually this is done using series
expansion so we first calculate the square of ρA, namely,

ρ2A =
1

dim(HA)2

(
∑

p,q

ApBq

)(
∑

p′,q′

Ap′Bq′

)
=
|Im(δ0A)||Im(δ−1

Ã
)|

dim(HA)2

(
∑

p,q

ApBq

)
,
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where in the last equality the factors in the numerator come from rearranging the sums

over p′ ∈ hom(C
Ã
,G)−1

ker(δ−1
A

)
and over q′ ∈ hom(CA,G)1

ker(δ1|A)
. This leaves for the square of the density

matrix:

ρ2A =
|Im(δ0A)||Im(δ−1

Ã
)|

dim(HA)
ρA = λ ρA. (5.15)

From the above expression we know that the reduced density matrix ρA is actually repre-
senting a mixed state which is a consequence of the initial state (the ground state of the
model) being indeed entangled; The reduced system is left in a mixed state since some
information was lost in the process of taking the partial trace.

Now we can calculate the logarithm of ρA by series expansion, which yields:

log(ρA) =
log(λ)

λ
ρA.

Thus leaving for the entanglement entropy :

SA = −Tr(ρA log(ρA)) = −Tr(ρA log(λ)) = log(1/λ)Tr(ρA) = log(1/λ), (5.16)

where we have used Tr(ρA) = 1. Let us look at the λ factor more carefully, since it encodes
the essential information about the entanglement entropy of the model. Essentially, we
have:

1

λ
=

dim(HA)

|Im(δ0A)|
∣∣∣Im(δ−1

Ã
)
∣∣∣
=
|ker(δ0A)|∣∣∣Im(δ−1

Ã
)
∣∣∣
, (5.17)

where we use dim(HA) = |hom(CA, G)
0| = |ker(δ0A)| |Im(δ0A)|. Equation (5.17) is already

very interesting since it relates 1/λ to the GSD of a model restricted to HA and for which
gauge transformations only act in the interior of A, which we denote Ã. By replacing
this expression into Eq.(5.16) we are able to state our main result, that the entanglement
entropy is given by:

SA = log


 |ker(δ

0
A)|∣∣∣Im(δ−1

Ã
)
∣∣∣


 = log (GSDÃ) . (5.18)

We want to highlight that the only requirement we asked for the bipartition is that the
simplicial complex K is divided into a subcomplex KA and its complement. Therefore,
this result is very general, since it is valid for any Higher Gauge Theory of the type
described in chapters 3, 4 and constructed in [3].

In the following section we exhibit the power of this result by calculating the entan-
glement entropy of several examples coming from Higher Gauge Theories, which include
the familiar Quantum Double Models in their Abelian version and in particular the Toric
Code.

5.4 Examples

In this section we showcase the generality of our result by calculating the entanglement
entropy of the models shown in chapter 3. In simple terms, the expression we obtained
for SA requires us to find the number of basis states in HA with trivial holonomy, |kerδ0A|,
that are not gauged away by transformations restricted to act on the interior of A given
by |Imδ−1

Ã
|. Such counting calls for a case by case study, as we shall see.
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Figure 5.1: Region A of a 2D squared lattice is shown in red

5.4.1 (2D) 1-Gauge: Z2 Toric Code

We start with the model we introduced in §2.2, and in §3.1.1; whose entanglement entropy
was already calculated in the literature [35, 108]. The model consists of plaquette oper-
ators, Bp, for the 1-holonomy, and vertex operators, Av, for the gauge transformations.
Considering the partition of the lattice shown in Fig. 5.1; Eq. 5.18 tells us that obtaining
the entanglement entropy reduces to counting the number of flat configurations in HA

modulo internal gauge transformations.
Following the graphical representation of states we introduced in §??, flat configura-

tions in region A are described by red curves that cross plaquettes an even number of
times. Thus, it is not difficult to realize that the different gauge equivalence classes are
given by all possible configurations of red curves at the plaquettes on the boundary of
A. So by counting the number of non equivalent configurations for all plaquettes in the
boundary of A, we recover the area law together with the topological correction for the
entanglement entropy of the Toric Code, this is:

SA = log2


 |ker(δ

0
A)|∣∣∣Im(δ−1

Ã
)
∣∣∣


 = log2 (GSDÃ) = log2

(
2∂A

2

)
= ∂A− 1 (5.19)

Figure 5.2: Region A: configurations for the corner plaquette, which are gauge equivalent in the calculation
of the entanglement entropy SA for the Toric Code.

The Toric Code with open boundary conditions was considered in [108] where they
calculate GSDÃ in detail and coincides with our result. Moreover, a calculation of en-
tanglement entropy is also performed in [108] giving the exact same result we obtain
here.

5.4.2 (2D) 0,1-Gauge: Z4 → Z2

We now consider an specific example from the models exhibited in §3.2 where the ex-
pression for the operators and the Hamiltonian can be found. In particular, we saw in
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Example 3.2.1 that when the gauge groups are set to be G1 = Z4 and G0 = Z2 the model
exhibits topological degeneracy, very similar in nature to that of the Toric Code. This
suggests the appearance of a corresponding topological term in the entanglement entropy,
SA, as we shall see.

Again, we take a region A of the two dimensional lattice, such as the one shown in Fig.
5.1. Calculating the entanglement entropy, as given by Eq. (5.18), requires us to count
the number of flat configurations |kerδ0A| divided by the number of non-trivial internal

gauge transformations
∣∣∣Imδ−1

Ã

∣∣∣. It is not difficult to realize that this counting is nothing

more that identifying all non-equivalent flat configurations at the boundary of the region
in question, ∂A. From the details of the model (see Example 3.2.1) note that for each
plaquette, p ∈ ∂A, there are four (0,1)-flat configurations. Making 4∂A the total number
of such configurations. Yet there are four configurations with internal loops which must
be gauged away by internal transformations, as shown in Figure 5.3.

This leaves for the entanglement entropy of the 0,1-gauge theory:

SA = log4


 |ker(δ

0
A)|∣∣∣Im(δ−1

Ã
)
∣∣∣


 = log4 (GSDÃ) = log4

(
4∂A

4

)
= ∂A− 1. (5.20)

Figure 5.3: Zoom of region A in the down-left corner: four types of configurations gauge equivalent for the
corner plaquette for the entanglement entropy calculation SA in the 0,1-gauge model with groups

G0 = Z2, G1 = Z4, discussed in 5.4.2.

5.4.3 (2D) 1,2-Gauge: Z4 → Z2

This time we consider the case of the 1,2-gauge theory (§3.3) shown in Example 3.3.1,
where the gauge groups are G2 = Z4 and G1 = Z2. As already shown in Ex. 3.3.1 and
[3], this model presents a 2-fold ground state degeneracy for any connected two dimen-
sional lattice, the ground states of Eqns. (3.29) and (3.30). Although this degeneracy
seems not to have any topological origin, it is related to the second cohomology group
H2(C,H2(G)) = Hom(H2(C), H2(G)) as shown in [3]. The topological nature of the
ground state degeneracy can be reassured by finding the entanglement entropy of the
model.

Once more, we consider a special region of the lattice, A, such as the one in Fig.
5.1. Note, from Eq. (3.22), that the flatness condition of the model is enforced by
the plaquette operators, Bp, of Eq. (3.24). Thus, the entanglement entropy calculation
reduces to finding the number of non-equivalent flat configurations at the boundary of A.
Observe that, for each p ∈ ∂A, there are 2∂A boundary flat configurations of the type of
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Fig.(sth), likewise there are 2∂A boundary flat configurations of the kind shown in Fig(sth),
giving 22∂A boundary flat configurations. Nevertheless, there is redundancy coming from
the internal 1-gauge transformations that relates pairs of boundary flat configurations.
This leaves for the entanglement entropy:

SA = log4


 |ker(δ

0
A)|∣∣∣Im(δ−1

Ã
)
∣∣∣


 = log2 (GSDÃ) = log4

( ∣∣∣2
2∂A

2

∣∣∣
)

= 2(∂A)− 1. (5.21)

We can see from the above expression the area law term ∼ ∂A and the topological term
−1.

5.4.4 (3D) 1,2,3-Gauge: Z4 → Z4 → Z4

In the three dimensional case we consider region A as being a cube of R links per side.
This model is analyzed in section 3.4 and 3.4.1. The holonomy operators involved are
Bp, Bc, and Figure 3.11 exhibits the allowed configurations in the ground state subspace.

In region A, the different configurations for the flatness condition are equal to the
number of boundary plaquettes in the cube. Every boundary plaquette can present four
different ground state configurations: empty, with a red line exiting the cube, with a
crossing blue curve oriented, as shown in figure 5.4.

On the other hand the gauge transformations in the interior of A can add a red loop
or blue loops with two different orientations. So the configurations are the number of
boundary plaquettes minus 1.

SA = log4


 |ker(δ

0
A)|∣∣∣Im(δ−1

Ã
)
∣∣∣


 = log4 (GSDÃ) = log4

( ∣∣∣4
∂A

4

∣∣∣
)
= |∂A− 1| (5.22)

Figure 5.4: A plaquette in the boundary of region A: four types of configurations counted in the entanglement
entropy calculation SA in the 1,2,3-gauge model, with groups G1 = G2 = G3 = Z4, presented

in 5.4.4.
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Chapter 6

Concluding Remarks and Outlook

In this final chapter we present a summary of the main topics of this work and we highlight
the important aspects of what was discussed as well as some potential directions for further
research that go beyond the scope of this work. This thesis was divided in three parts. We
start by describing our object of interest namely, quantum states that exhibit long range
entanglement or topological order ; The Quantum Double Models and, in particular, the
Toric Code[1] are the canonical examples of solvable Hamiltonian models with topological
features. Specifically, the presence of topological order in the QDMs is probed by studying
their ground state subspace since the dimension of this subspace is a topological invariant.
In [85] this is precisely stated by relating the ground state degeneracy of the QDM to the
Kuperberg’s Invariant [109]. In 2D the QDMs and their generalizations known as string-
net models [2] essentially account for all kinds of topological order in (2+1)D. This is
no longer true for higher dimensions, since the 3D versions of the QDMs are not rich
enough such as to include all kinds of three dimensional topological phases. This lack of
understanding of higher dimensional topological phases has increased the motivation for
the study of higher dimensional quantum models that go beyond usual gauge theories.
The symmetry contents in such theories are given by n-groups [110, 111]. In [53], the first
example of a Higher Gauge Theory in 3+ 1 dimensions is constructed using the notion of
a 2-group as the gauge symmetry. A very similar approach to the one done independently
by our group, see [67, 68]. See also, [100, 112] for a recent account on 3 + 1-dimensional
models with topological ordered ground states.

In [3] we give a first step towards a systematic characterization of higher dimensional
topological phases in their Abelian versions. These models are defined in arbitrary di-
mensions and thus can serve to exhibit the role of dimensionality in topologically ordered
phases. Chapter 3 was intended as an introduction to these models. We constructed sev-
eral 2 and 3 dimensional models that showcase the essential features of quantum models
coming from Abelian higher gauge theories. In particular, we gave a description of their
ground sate subspace and calculated its degeneracy for specific examples. Whether these
ground states have intrinsic topological order may be not so easy to answer by just looking
at the GSD. In Chapter 5, we showed that entanglement entropy effectively measures
the presence of long range entanglement by the appearance of a constant term called
topological entanglement entropy.

Chapter 4 was dedicated to present the most general case of an Abelian higher gauge
theory, this chapter is a synthetic version of [3]. We show how the language of Homological
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Algebra turns out to be very natural to write the models in their most general form.
Moreover, it allows for a straightforward analysis of the ground state subspace H0 ⊂ H;
specifically, we showcase the main result of [3] where we showed that the dimension of
the ground state subspace H0 is a topological invariant whose value depends on both the
model details and the topology of the manifold where it is defined.

In general, entanglement entropy of a quantum state is not easy to find analytically.
However, in chapter 5 we calculated the bipartition entanglement entropy of the models
constructed in [3] and presented in chapter 4. The language we use to describe the models
and that allowed us to calculate their GSD shows itself suitable for the calculation of SA.
We show a general result in the form of Equation (5.18), namely

SA = log (GSDÃ) ,

where GSDÃ counts the number of edge states, which live on the boundary of A. Fur-
thermore, when calculating this number for specific examples, we show that SA follows
an area law and more importantly for our purposes, the universal contribution known as
topological entanglement entropy appears whenever topological order is detected in the
ground states of Abelian higher gauge theories. This fact confirms the topological nature
of the models in a very clear way. Also showing that entanglement entropy can be used
to probe topological order in all dimensions greater than 2.

Beyond Topological Order

The contents of this work represent a small part of the research activities in our group.
Recently, there is an increasing interest in the so called fracton phases [55, 57, 60, 62],
they are not topological in the sense of this work, this is, having a topologically dependent
GSD and topological entanglement entropy contribution. These phases show extensive
degeneracy of ground states, thus associated to the underlying geometry rather than
topology itself. Entanglement entropy can sometimes be explicitely calculated [66] and
these phases appear to break area law by non-universal terms. In this sense, we can list
some potential lines of further research.

In [113] we show that considering Abelian higher gauge theories where some of the
gauge fields (related to a particular dimension) are restricted to have classical configura-
tions only, the otherwise purely topological models now become sensitive to geometrical
quantities of the underlying manifold. This is showcased, as in the topological cases,
in the ground state subspace of the Hamiltonian models. This fact suggests they may
be, somehow, related to fracton phases that also have extensive ground state degenera-
cies. Whether entanglement entropy can be explicitly obtained for such models and if so,
whether it carries information about the geometric nature of the ground state degeneracy
remains an open question which can be tackled using a similar approach to that in chapter
5.

In [114] we found another way to systematically obtain Hamiltonian models that re-
semble the most famous fracton models, namely, the Haah code and the X-cube model.
Our advantage with respect to other approaches for the study of such phases is that we
provide a systematic procedure for obtaining such models in any dimension and for ar-
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bitrary higher gauge fields. We show that the models have an extensive ground state
degeneracy and a preliminary study of the excited states shows the geometrical nature
of these models, similar to what is known in the literature [55, 56, 57, 58]. In this set-
tings, entanglement entropy may give further information about the nature of long-range
entanglement in these (non-) topological phases.

Finally, in [112] they construct, in detail, a twisted pure 2-gauge theory by extending
the usual construction of the Dijkgraaf-Witten invariant [86] where the classifying space
BG of the discrete group G is replaced by the n-th classifying space BnG, which is an
example of a Eilenberg-MacLane space. They propose further generalizations by consid-
ering Postnikov Towers. We believe this procedure can be systematically applied to our
Abelian higher gauge theories to obtain their twisted versions, which remains an open
problem.
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Appendix A:

Review of Homology and Homological

Algebra

In this appendix we intend to cover some basic notions regarding simplicial homology and
cohomology. As we mentioned in the main text, the use of simplicial complexes arises
only as a matter of simplicity. It is in this appendix that we review the basic concepts
and notions that will ultimately help us understand the, slightly more asbtract, topic of
Homological Algebra discussed in Appendix C We tried to leave this Appendix as self
contained as possible. Nevertheless, for further details on these topics with focus on
simplicial complexes we refer the reader to [106, 115, 116] and the references therein.

A.1 Simplices and Simplicial Complexes

The main ingredients of Simplicial Homology are the k-simplices. They correspond to the
building blocks of a polyhedron. An oriented k-simplex, σk, is the smallest convex set of
in R

m containing n+ 1 points {x0, x1, x2, . . . , xk}, with k ≤ m. For instance, a 0-simplex
is just a point, a 1-simplex is an oriented line segment, a 2-simplex is a triangle (including
its interior), a 3-simplex is a tetrahedron as shown in Fig.(1). To denote a k simplex we
use its k + 1 vertices to write σk = [x0, x1, x2, . . . , xk]. More importantly, the order in
which the vertices appear defines the orientation of the k-simplex in question. Any even
permutation of the order in which the vertices appear in a simplex gives another simplex
with the same orientation, whereas an odd permutation of vertices will give a simplex
with the opposite orientation.

At this point we can define what a simplicial complex is. In general terms, given a
set V an abstract simplicial complex, K, is a collection of finite subsets of V such that if
σk = [x0, . . . , xk] ∈ K then every subset of σk (its faces) is also in K. More precisely,

Definition A.1.1 (Simplicial Complex). Let K be a set of finite number of simplices.

A finite simplicial complex K is a finite collection of simplices in Rm for some m such
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(a) (b) (c) (d)

Figure 1: 0, 1, 2 and 3-simplices are respectively shown.

that:

(i) if σ ∈ K and σ′ ≤ σ then σ′ ∈ K.

(ii) if σ, σ′ ∈ K, then either σ ∩ σ′ = ∅ or is a common face of σ and of σ′.

Consider now, K, a finite simplicial complex. We denote by Kn ⊂ K the set formed
by n-simplices only. A finite simplicial complex can always ref needed!! be embedded in
Rm for some m. Such an embedding is called a geometrical realization of K. The subset
occupied by K is denoted by |K| and it is called a polytope. Generally speaking, when a
topological space X is homeomorphic to a polytope |K|, it is called a triangulable space
and the simplicial complex K is called a triangulation of X.

A.2 Simplicial Homology

In the previous section we defined all the basic ingredients that are needed for the study
of Homology groups of a triangulable space X. Given a topological space X there might
be several triangulations of X since a triangulation is not unique. However, the homology
groups for any triangulation of the same space are isomorphic. In order to define the
homology groups we will begin introducing the chain groups.

Definition A.2.1. (k-chain group) Let K be a simplicial complex. A simplicial k-chain,

c, is a formal sum of k-simplexes with coefficients in Z:

c =
∑

x∈Kk

cxx, (A.1)

where cx ∈ Z. The orientation is taken into account by saying that [xp(0), . . . , xp(n)] =

±[x0, . . . , xn] where we have a plus sign if p has even parity and a negative sign otherwise.
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Moreover, the set formed by simplicial k-chains, denoted Ck(K), is the free abelian group

with basis Kk and it is called the n-chain group.

The group operation in the above definition is an additive one, notice that −σk is just
σk with reversed orientation, which ensures the existence of inverse elements. Also, the
group Z is called the coefficient group and in general can be any Abelian group. Before
we define the cycle and boundary groups we need to introduce the boundary operator.
As its name might suggest it is an operator that acts on a n-simplex, σn, to produce its
boundary. More precisely:

Definition A.2.2 (Boundary Operator). Define ∂n : Cn(K)→ Cn−1(K) by:

∂n([v0, . . . , vn]) =
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn], (A.2)

where [v0, . . . , v̂i, . . . , vn] denotes the (n− 1)-simplex obtained by removing the vertex vi

from [v0, . . . , vn].

The above defines the boundary operator on the generators σk ∈ K. Its action on
general n-chains is straightforwardly extended by linearity. More importantly, the funda-
mental property of the boundary operator is:

∂k∂k+1 = 0. (A.3)

Definition A.2.3. Let C = (Cn, ∂) be:

· · · −→ Cn
∂C
n−→ Cn−1 −→ · · · (A.4)

with the maps ∂n defined by:

∂n([x0, . . . , xn]) =
n∑

i=0

(−1)i[x0, . . . , x̂i, . . . , xn]

where [x0, . . . , x̂i, . . . , xn] denotes the (n− 1)-simplex obtained by removing the vertex xi

from [x0, . . . , xn].

To gain some intuition on the above definition, in Fig.(2) we calculate the boundary
of a 3-simplex.

The algebraic situation we have at this point is a sequence of homomorphisms between
Abelian groups. If we let K be an n-dimensional simplicial complex, the sequence looks
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Figure 2: The boundary of 3-simplex is explicitly calculated.

like:

0
i−→ Cn(K)

∂n−→ Cn−1(K)
∂n−1−−−→ . . .

∂2−→ C1(K)
∂1−→ C0(K)

∂0−→ 0, (A.5)

where the 0’s at the endpoints of the sequence stand for the trivial group and i : 0 →֒
Cn(K) is an inclusion map. Such a sequence is called a chain complex and we will denote
it as C = (Cn, ∂n). Now we will study the image and kernel of the ∂n homomorphisms.
This motivates the following definitions:

Definition A.2.4 (k-Cycles). If c ∈ Ck(K) satisfies:

∂k(c) = 0, (A.6)

c is called an n-cycle. The set of n-cycles, denoted Zk(K) is a subgroup of Ck(K) and is

called the k-cycle group. In other words, Zk(K) = ker ∂k.

Definition A.2.5 (k-Boundaries). Let c ∈ Ck(K). If there exists an element d ∈ Ck+1(K)

such that:

∂k+1(d) = c, (A.7)

then c is called an k-boundary. The set of k-boundaries, denoted Bk(K) is a subgroup

of Ck(K) and is called the k-boundary group. In other words, Bk(K) = Im ∂k+1.

To gain a bit of geometrical intuition from the above definitions, consider the boundary
operator ∂k that takes the boundary of an n-chain, if c is an n-cycle it means that it has
no boundary. Whereas, if c = ∂k+1d it means that it is the boundary of d. Intuitively
we can infer that the boundary of a boundary is null. Hence ∂k∂k+1 = 0, from which it
follows that Im∂k+1 ⊂ ker∂k. The elements of Zk(K) that are not boundaries play the
central role in the theory of Homology groups. At this point we have all the ingredients
we need to define the Homology groups of K.
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Definition A.2.6 (k-th Homology group). Let K be an n dimensional finite simplicial

complex. The k-th Homology group, Hk(K), 0 ≤ k ≤ n, associated to K is:

Hk(K) :=
Zk(K)

Bk(K)
.

The k-th Homology group Hk(K) is the set of equivalence classes of k-cycles that do
not bound any (k+1)-chain, this is,

Hk(K) = {[z], z ∈ Zk(K)},

where each equivalence class is called Homology class. Two k-cycles z and z′ are said
to be equivalent if and only if z − z′ ∈ Bk(K), this is, if they differ by a boundary. In
this case they are said to be homologous to each other and denoted z ∼ z′ or [z] = [z′].
Finally, it can be proven that Homology groups are topological invariants (cf Theorem
4.10 in [117] or Chapter 2 of [118]). This can be, roughly stated by saying that if K
and L are two simplicial complexes such that |K| = |L| = X (we actually mean they are
homeomorphic), then Hk(K) and Hk(L) are isomorphic.

A.3 Simplicial Cohomology

Let us now discuss the cohomology groups associated to a simplicial complex K. The
cohomology groups are constructed by turning the chaian groups Ck(K) into groups of
homomorphisms and the boundary operators ∂k into their dual homomorphisms. We can
choose an abelian group H in order to define a certain cochain complex, to do that let us
begin by defining what a k-cochain actually is.

Definition A.3.1 (k-cochain group). A k-cochain with coefficients in the Abelian group

H is a homomorphism c∗ : Ck(K) → H . Given a k-chain c ∈ Ck(K) the k-cochain

evaluates c by mapping it into H . We denote this evaluation by:

c∗(c) ≡ 〈c∗, c〉 ∈ H.

Moreover, the set Ck(K,H) ≡ Hom(Ck, H) has a natural group structure, namely, if

c∗, d∗ ∈ Ck(K,H), their sum c∗ + d∗ also belongs to Ck(K,H). This group is called the

k-cochain group.

Likewise, the boundary operator is dualized as follows.
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Definition A.3.2 (Coboundary Operator). Let us consider the boundary operator ∂k :

Ck(K) → Ck−1(K). Canonically associated to it, there is a dual homomorphism that

defines the coboundary operator,

dk−1 : Hom(Ck−1, H)→ Hom(Ck, H),

or simply dk−1 : Ck−1 → Ck. Let ∂k c ∈ Ck−1(K) and c∗ ∈ Ck−1, the coboundary operator

is defined by:

〈c∗, ∂k c〉 = 〈dk−1c∗, c〉.

From Eq.(A.3) it is easy to show that dkdk−1 = 0. Notice that in this case the
coboundary operator raises the index instead of lowering it, as the boundary operator
does. Therefore, the algebraic situation consists on the following cochain complex:

. . .
dk+1

←−− Ck+1 dk←− Ck dk−1

←−− Ck−1 dk−2

←−− . . . ,

the cochain complex runs in the opposite direction. Once the coboundary operator is
defined the analogs of Bk(K) and Zk(K), this is, the k-oboundaries and k-cocycles.

Definition A.3.3 (k-cocycles). If c∗ ∈ Ck satisfies:

dk c∗ = 0,

c∗ is called a k-cocycle. The set of k-cocycles, denoted Zk = ker dk is a subgroup of Ck

and is called the k-cocycle group.

Definition A.3.4 (k-coboundaries). Let c∗ ∈ Ck, if there exists a b∗ ∈ Ck−1 such that:

dk−1b∗ = c∗,

then c∗ is called a k-coboundary. The set of of k-coboundaries, Bk = Im dk−1, is a

subgroup of Ck and it is called the k-coboundary group.

The cochain complex gives rise to the cohomology of C with coefficients in H :
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Definition A.3.5 (kth-Cohomology group). Let K be a finite dimensional simplicial

complex, and consider C the chain complex of Eq.(A.5). The k-th Cohomology group

of C with coefficients in H

Hk(C,H) :=
Zk

Bk
=

ker dk

Im dk−1
.

A.4 Homological Algebra

In what follows we intend to cover some basic notions regarding the topic of Homological
Algebra. In particular, we are interested in defining the cochain complex that is obtained
from considering maps between two chain complexes. This maps are very important
in Chapter 4 and 5 since they are used to generalize the notions of gauge configurations,
gauge transformations and holonomy measurements. This is why we dedicate an appendix
to these topics. On our intention to write this appendix as self contained as possible we
begin by reviewing some concepts already introduced in Appendix ?? for the simplical
case. Then we pass on to define what a Cohomology with coefficients on a chain complex
is [73, 119]. We end the Appendix citing a Theorem by [73] that is of much help when
interpreting the main result of [3], result that is presented in Chapter 4. For further details
on these topics with focus on simplicial complexes we refer the reader to [106, 115, 116]
and the references therein.

Definition A.4.1. An abstract chain complex (C•, ∂•) is a sequence of abelian groups

{Ck}k∈Z and group morphisms ∂k : Ck → Ck−1 such that the composition of two such

morphism is trivial i.e. ∂k−1∂k = 0.

Similarly, an abstract cochain complex (C•, d•) is a sequence of abelian groups {Ck}k∈Z

and group morphisms dk : Ck → Ck+1 such that the composition of two consecutive

morphism is trivial i.e. dk+1dk = 0.

The development of homological algebra was largely motivated by its applications to
algebraic topology. Of particular importance are the homology and cohomology groups
defined below.

Definition A.4.2 (Homology and Cohomology groups). Given a chain complex (C•, ∂•),

the homology groups Hk(C) associated to it are defined by

Hk(C) = ker(∂k)/im(∂k+1)
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In a similar fashion, if (C•, d•) is a cochain complex then the cohomology groups Hk(C)

assigned to it are defined by

Hk(C) = ker(dk)/im(dk−1)

The importance of such groups arises due to the fact that they are a source of topolog-
ical invariants. Roughly speaking, given a topological space X with suitable properties, it
is possible to associate a chain complex C(X) to X by some discretization procedure and
define the homology Hk(X) as Hk(C(X)). For instance, any manifold M can be realized
as a simplicial complex and there is a standard procedure for building a chain complex
from such simplicial complex. As discussed in Appendix ??, in general, there are different
simplicial complexes that correspond to the same manifold, but all of them have the same
homology groups, Hk(M); As such, these groups are well-defined topological invariants.

There are also ways to assign a cochain complex to a manifold in order to obtain a
topological invariant from the cohomology groups. One example of a topological invari-
ant obtained this way is the De Rham Cohomology. Another procedure relies on the fact
that, given a chain complex (C•, ∂•) and an abelian group G, there is a corresponding
cochain complex (C• = Hom(Ck, G), d

•) with dk(f) = f∂k+1, where f ∈ Ck. The coho-
mology groups obtained this way, denoted Hk(C, S) and are called cohomology groups
with coefficients in G.

As usual, when introducing an algebraic structure, it is important to define what the
correct notion of a morphism is. The usual definition for chain complexes is given by
means of chain maps but we choose to start with a more flexible definition and later on
specify to chain maps.

Definition A.4.3 (p-Maps). Given two chain complexes of Abelian groups (C•, ∂•) , (C
′
•, ∂

′
•)

a p-map f : (C•, ∂•)→ (C ′
•, ∂

′
•) is a sequence of morphisms fn : Cn → C ′

n−p.

The set of all p-maps, denoted hom(C,C ′)p, is actually an abelian group under the
binary operation defined by (f +g)n = fn+gn. The unit of the group is the trivial p-map,
denoted 0, defined by the trivial morphisms 0n : Cn → C ′

n−p. It is then straightforward
to verify that

hom(C,C ′)p =
∏

n

Hom(Cn, C
′
n−p) (A.8)

The abelian groups hom(C,C ′)p give rise to a cochain complex (hom(C,C ′)•, δ•) which
we define below:

Definition A.4.4 (Coboundary). Let δp : hom(C,C ′)p → hom(C,C ′)p+1 be the group
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morphism defined by

(δpf)n = fn−1∂n − (−1)p∂′n−pfn

where f ∈ hom(C,C ′)p. It is straightforward to check that δp+1δp = 0 so (hom(C,C ′)•, δ•)

is a cochain complex. The situation is shown in the following diagram:

· · · −→ hom(C,C ′)p
δp−→ hom(C,C ′)p+1 −→ · · · .

The cohomology groups obtained from (hom(C;C ′)•, δ•) will be denoted by H p(C,C ′)
and referred to as the cohomology groups of C with coefficients in the chain complex C ′.
These groups are related to the usual cohomology groups of C with coefficients inHn−p(C

′)
by the following theorem due to Ronald Brown [73]:

Theorem A.4.5. Given chain complexes C, C ′ there is an isomorphism

∏

n

Hn(C,Hn−p(C
′))→H

p(C;C ′)

Note that an element of ker(δ0) corresponds to a sequence of group morphisms fn :
Cn → C ′

n such that (δ0f)n = fn−1∂n − ∂′n−pfn = 0. This condition is precisely what
defines chain maps:

Definition A.4.6 (Chain Map). Given two chain complexes (C•, ∂•) , (C
′
•, ∂

′
•) a chain

map f : (C•, ∂•)→ (C ′
•, ∂

′
•) is a sequence of morphisms fn : Cn → C ′

n such that fn∂
′
n−1 =

∂n fn+1.

Chain maps can be represented diagrammatically as in Fig. (3) where the commuting
squares correspond to the conditions each component must satisfy. Chain maps have
the important property that they induce group morphism on the corresponding homology
groups. It might happen that different chain maps induce the same morphism on homology
groups. When that is the case, such maps are called chain homotopic More precisely,
two chain maps f, f ′ are homotopic whenever there is some t ∈ hom(C;C ′)−1 such that
f ′ = f + δ−1, when that is the case t is called a chain homotopy between f and f ′. Since
H 0(C,C ′) = ker(δ0)/im(δ−1) by definition, we see that H 0(C;C ′) is simply the group
formed by homotopy classes of chain maps.

Additionally, we can construct a chain complex from the dual groups to those defined
in Definition A.4.4. Before actually defining them, let us make a quick review on the dual
groups of Abelian groups and how they are directly related to the characters of the group
itself.
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Figure 3: Diagrammatic description of a chain map.

All irreducible representations of an abelian group S are one-dimensional and form
an abelian group Ŝ when S is finite. It is easier to understand Ŝ by observing that
any irreducible representation r of S is completely specified by a group morphism χr :
S → U(1) defined by χr(g) = Tr(r(g)), the character of r. The binary operation of Ŝ
corresponds to the point wise multiplication of the corresponding characters i.e.

χr+r′(g) = χr(g)χr′(g)

Therefore, one can think of Ŝ as being the group Ŝ = Hom(S, U(1)) due to the
correspondence r ↔ χr. This perspective makes it straightforward to check that, given
a morphism f between finite abelian groups, there is a dual morphism f̂ defined by
ρ 7→ f̂(ρ) = ρ ◦ f , such that:

Proposition A.4.7. The morphism f̂ is a group morphism and χf̂(ρ) = χρ ◦ f .

Proof. The following holds,

χf̂(ρ)(h) = Tr(f̂(ρ)(h)) = Tr(ρ(f(h))) = χρ(f(h))

or χf̂(ρ) = χρ ◦ f as claimed. It follows also that,

χf̂(ρ+ρ′) = χρ+ρ′ ◦ f =

= χρχρ′ ◦ f = (χρ ◦ f)(χρ′ ◦ f) =

= χf̂(ρ)χf̂(ρ′) = χf̂(ρ)+f̂(ρ′)

and χf̂(0) = χ0 ◦ f = 1 = χ0 which implies f̂(ρ+ ρ′) = f̂(ρ) + f̂(ρ′) and f̂(0) = 0.

This technique will be used extensively in order to move freely between groups and
representations throughout this paper. For general references we derive the reader to
[104, 105]

This is, consider the dual of hom(C,G)p as a group, it consists on maps from hom(C,G)p

into U(1). Namely,
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Definition A.4.8 (Dual groups). Given the Abelian group hom(C,G)p and an arbitrary

element f . Denote its dual group by hom(C,G)p which consists on maps:

s : hom(C,G)p → U(1),

f 7→ s(f) ≡ χs(f),

where in the last step we used the fact that we can think of the dual group hom(C,G)p =

Hom(hom(C,G)p, U(1)).

Furthermore, the pair (hom(C,G)p, δp) defines a chain complex with the natural
boundary operator δp. More precisely,

Definition A.4.9 (Boundary). The boundary operator

δp : hom(C,G)p → hom(C,G)p−1,

is defined via the natural pairing between dual elements, this is, given m ∈ hom(C,G)p

and f ∈ hom(C,G)p−1:

〈δpm, f〉 = 〈m, δp−1f〉,

or equivalently,

χδpm(f) = χm(δ
p−1f).

To see that (hom(C,G)p, δp) is a chain complex it is enough to note that δpδp−1 = 0,
which in turn comes from the fact that (hom(C,G)p, δp) is a cochain complex.
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Auxiliary Isomorphism

In this appendix, we prove the equality |Im(δ0)| = |Im(δ1)| that allowed us to relate the
dimension of the Hilbert space H and the ground state degeneracy GSD through:

GSD |Im(δ−1)||Im(δ1)| = dim(H) = dim(HA) dim(HB).

However, in order to do so, we will show that there is a well defined bijection between
ker(δ1) and hom(C,G)1/Im(δ0) from which the result follows.

So, in general, consider A,B two finite Abelian groups and φ : A → B a homomor-
phism between them. Consider also Â = Hom(A,U(1)) and B̂ = Hom(B,U(1)) their
corresponding irreducible representations, let φ̂ : B̂ → Â be the homomorphism between
representations induced by φ via:

φ̂(β) := β ◦ φ,

where β ∈ B̂ is an irreducible representation of B, and φ̂(β) ∈ Â as it is expected.

Proposition B.4.10. The subgroups ker φ̂ and B
Im(φ)

are isomorphic.

Proof. We will split the proof in two parts, in the first half of the proof we show that

there is a well defined map between ker φ̂ and B
Im(φ)

and then we show that its inverse is

also well defined, which turns the maps into a bijection.

1. Note that an irreducible representation β ∈ kerφ̂, if and only if, φ̂(β) = β ◦ φ =

1 ∈ U(1) which in turn is equivalent to say that Imφ ⊂ kerβ. This allows us to
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construct the following commuting diagram:

B

π

��

β
// U(1)

B
Imφ

β′

==
④

④

④

④

(B.9)

where π : B → B
Imφ

is the canonical projection sending b ∈ B into its corresponding

equivalence class [b] ∈ B
Imφ

Furthermore, β ′ ∈ Hom( B
Imφ

, U(1)) is unique and defined

as:

β ′([b]) := β(b)

notice that β ′ is well defined within equivalence classes since Imφ ⊂ kerβ. To see

this, consider b′ 6= b ∈ [b], this means that b− b′ ∈ Imφ ⊂ kerβ, therefore:

β(b− b′) = 1, ⇒ β(b)β(b′)−1 = 1,

⇒ β(b) = β(b′) = β ′([b]).

This is, we have shown that given an irrep β ∈ kerφ̂ then there is a unique morphism

β ′ ∈ Hom( B
Imφ

, U(1)).

We now need to show that the converse also holds, to this intent, consider β ′ : B
Imφ
→

U(1). Recall that Imφ ⊂ kerβ. Observe also that β is the only map for which the

diagram in B.9 commutes

Thus, we have shown that given a β ′ ∈ Hom( B
Imφ

, U(1)) there is a unique β = β ′◦π ∈

kerφ̂.

2. Now we carry on showing that the map above is in fact a bijection and it defines an

98



Appendix B

isomorphism. Let ι be the map:

ι : kerφ̂ −→ Hom

(
B

Imφ
, U(1)

)
,

β 7→ β ′,

where β ′([b]) := β(b). Let now, κ, be the map:

κ : Hom

(
B

Imφ
, U(1)

)
−→ kerφ̂,

β ′ 7→ β := β ′ ◦ π,

where π : B → B
Imφ

is the canonical projection that sends b ∈ B into its correspond-

ing equivalence class [b] ∈ B
Imφ

. Notice that κ = ι−1, since:

(κ ◦ ι) (β)(b) = κ(β ′)(b) = (β ′ ◦ π)(b) = β ′([b]) = β(b).

Therefore, the map ι is a bijection. To prove that it defines an isomorphism we only

need to check for its compatibility with the group operation in kerφ̂; This is, given

β1, β2 ∈ kerφ̂, we want to show that ι(β1 · β2) = ι(β1) · ι(β2).

So, consider b ∈ B and , [b] ∈ B
Imφ

:

ι(β1 · β2)([b]) = (β1 · β2)′([b]) = (β1 · β2)(b) = β1(b) · β2(b) = ι(β1) · ι(β2).

Hence, kerφ̂ ≃ Hom
(

B
Imφ

, U(1)
)
.

In particular, as a result of the above proposition, it is true that, for A,B finite groups:

∣∣∣kerφ̂
∣∣∣ =

∣∣∣∣Hom

(
B

Imφ
, U(1)

)∣∣∣∣ =
|B|
|Imφ| , (B.10)

where in the last step we used the fact that all groups are Abelian. We are one step
away from our goal which can be stated as:
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Proposition B.4.11. Let φ : A→ B be a homomorphism between finite Abelian groups.

Moreover, let φ̂ : B̂ → Â its dual morphism. Then,

|Imφ| =
∣∣∣Im φ̂

∣∣∣ .

Proof. From Prop. B.4.10, we know that:
∣∣∣kerφ̂

∣∣∣ =
|B|
|Imφ| . Now, applying the First

Isomorphism Theorem [107] on φ̂ : B̂ → Â, we know that: B̂/kerφ̂ ≃ Imφ̂, from which we

can write:

|B̂|
|kerφ̂|

=
∣∣∣Im φ̂

∣∣∣ ,

recall that |B̂| = |B| since we are dealing with Abelian groups. Replacing Eq. (B.10) into

the above one, we get:

|Imφ| =
∣∣∣Im φ̂

∣∣∣ ,

as it was to be shown.
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Appendix C:

Trace of Local Operators

In this appendix we show how taking the partial trace of the ground state projector, or
any product of projection operators of the theory, implies in Eq.(5.13). This is, we show
that the local projectors An,x and Bn,x are traceless unless they are trivial (equal to the
identity operator).

We begin by writing the density matrix, ρ, using the local decomposition of A0 and
B0 (see [3] for a detailed account on this). The local decomposition yields:

A0 =

d∏

n=0

∏

x∈Kn

An,x, and B0 =

d∏

n=0

∏

x∈Kn

Bn,x,

such that the density matrix of Eq.(5.7) can be written as:

ρ =
1

GSD

(
d∏

n=0

∏

x∈Kn

An,x

)(
d∏

n=0

∏

x∈Kn

Bn,x

)
,

this form is convenient for taking the partial trace as the operators are now localized at
simplices x ∈ Kn for 0 ≤ n ≤ d, this allows for the identification of the operators that
act exclusively on region A from the operators that act on both ∂(A) and B, in order to
get the terms that survive the partial trace. In this sense, the reduced density matrix is
written as:

ρA = TrB(ρ) = TrB

(
∏

n

∏

x∈Kn

An,x

∏

y∈Kn

Bn,y

)
. (C.11)

Before going onto the calculation of the above partial trace, we will prove a property that
will let us evaluate the partial trace rather straightforwardly.

Proposition C.4.12. Let x, y ∈ Kn, be n-simplices for 0 ≤ n ≤ d. The local operators,
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An,x, Bn,y : H→ H, are traceless unless they act trivially (as the identity operator 1H).

Proof. Let {|f〉} be a basis of H, with f ∈ hom(C,G)0. We start by taking the trace of

the local gauge transformations:

Tr (An,x) =
∑

f

〈f |An,x |f〉 =
1

|Gn+1|
∑

f

∑

g∈Gn+1

〈f |Ae[g,n,x] |f〉 .

From Definition 4.1.2, the action of An,x on a basis state consists in general on a shift of

basis elements, which yields:

Tr (An,x) =
1

|Gn+1|
∑

f

∑

g∈Gn+1

〈f | |f + δ−1(e[g, n, x])〉 .

From the last expression it is clear that the only non-null term in the sum occurs only

when g = e ∈ Gn+1, the identity element. Thus, we have:

Tr (An,x) =
Tr (1)

|Gn+1|
=

dim(H)

|Gn+1|
.

Similarly, for the trace of local holonomy measurement operators,Bn,y, we have:

Tr (Bn,y) =
∑

f

〈f |Bn,x |f〉 =
1

|Gn−1|
∑

f

∑

r∈Ĝn−1

〈f |Bê[r,n,y] |f〉 .

Using Definition 4.1.4 the above expression can be written as:

Tr (Bn,y) =
1

|Gn−1|
∑

f

∑

r∈Ĝn−1

χr (fn(y)) 〈f |f〉 =
1

|Gn−1|
∑

f

∑

r∈Ĝn−1

χr (fn(y))χê (fn(y)) 〈f |f〉 ,

where in the last line we used the fact that χê(g) = 1, ∀g ∈ Gn−1 and ê ∈ Ĝn−1, the

trivial representation. From the orthogonality relations of characters [104, 120, 121, 122],
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we note that:

∑

f

χr (fn(y))χe (fn(y)) = δ(e, fn(y)),

which implies that the trivial representation term is the only one that has non-zero trace,

since it acts as the identity operator.

Tr (Bn,y) =
|H|
|Gn−1|

This result can naturally be extended to products of such operators to show that the
only term that survives the trace is the one that acts trivially. This allows us to express
the reduced density matrix, ρA of Eq.(C.11) in terms of operators that act only in region
A.

In this case, Proposition C.4.12 implies that any operator (or product of several) that
is different from 1B, the identity operator in HB, will have vanishing trace. This, in turn,
tells us about the nature of the operators that survive the trace; In particular, local gauge
transformations An,x will survive the trace if and only if x ∈ Kn,Ã, where Ã is the interior
of A 1 as in Def. 5.1.1. On the other hand, local holonomy measurement operators Bn,y

will survive the trace if and only if y ∈ Kn,A which corresponds to the entire region A.
Consequently, the reduced density matrix is:

ρA = TrB(1B)
∏

n

∏

x∈K
n,Ã

An,x

∏

y∈Kn,A

Bn,y.

From which we write Eq. (5.13).

1Local gauge transformations are labeled by simplices x ∈ Kn and they act on the gauge fields at
the co-boundary, ∂∗(x). In particular, gauge transformations located at x ∈ Kn,∂(A), the boundary of A,
also act on B. Thus, they do not contribute to the trace.
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