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Esta é a última seção que escrevo para minha dissertação: as correções indicadas
pela banca já foram feitas, os esclarecimentos necessários estão, no momento em que
escrevo este texto, quase prontos. Contudo, sob outro olhar posso dizer que essa foi a
primeira seção que comecei a escrever, ainda quando sáı da sala do meu orientador após
nossa primeira reunião oficial de orientação. Naquele momento, ele me entregou o livro
que seria a principal referência para meu mestrado, e eu, tão contente quanto ingênuo,
fui para minha sala fazer a coisa mais natural para mim àquela altura: ler o livro.

Me lembro de duas coisas daquele dia: minha alegria quase infantil, digna de criança
pequena voltando às aulas, e de pensar o seguinte: “vou lendo o livro; as coisas que não
entender direito eu vou grifando e depois vejo o que são”. No primeiro parágrafo, ainda
com os riscos a lápis, praticamente não há substantivo que não esteja sublinhado, e no
meu segundo dia de mestrado, lá estava eu estudando Teoria de Conjuntos. Mas quanto
à alegria que eu sentia andando pelo corredor do Departamento de F́ısica Matemática
carregando aquele bloco de papéis, ela era acompanhada de uma profunda gratidão
por um número não tão pequeno de pessoas que me ajudaram de diversas maneiras a
estar ali, e um dos grandes méritos desses dois anos de pós-graduação sem dúvida foi o
substancial acréscimo de elementos a esse conjunto. A todas essas pessoas, gostaria de
tentar aqui expressar o quanto sou grato.

No dicionário Aurélio, encontra-se, como uma das posśıveis definições para o verbo
orientar, “guiar, dirigir, nortear”. É uma definição que me faz pouco sentido no con-
texto de uma pós-graduação, pela experiência que tive até agora. Eu vim parar na F́ısica
Matemática um tanto perdido: durante parte da minha graduação, e, sobretudo, nas
iniciações cient́ıficas que fiz, muito do que via me parecia apresentado de maneira estra-
nha, como se para houvesse algo mais que não estava sendo dito. É claro que isso não
acontecia em todos os cursos nem em todos os livros, e tampouco quero dar a impressão
mentirosa de ter sido um aluno brilhante capaz de ver a todo instante além do que me
era apresentado. Em todo caso, mais do que apontar questões espećıficas e pontos que
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não compreendia, havia um certo desconforto meu com partes do curso, principalmente
quando cursei as disciplinas de Mecânica Quântica da graduação e quando fiz uma ini-
ciação cient́ıfica em fundamentos da Teoria Quântica de Campos. Se meus professores e
orientadores fossem ruins, ainda poderia culpá-los, mas esse estava longe de ser o caso.
Em meio a tudo isso, nutria certa simpatia pelo meu professor de Grupos e Tensores,
incrivelmente formal e rigoroso no tratamento dos conceitos apresentados. Por minha
convivência com ele, e também com o Professor Domingos Marchetti, com quem cursei
as disciplinas de F́ısica Matemática II e III, passei a formar a opinião de que a base
conceitual que eu procurava, principalmente na mecânica quântica, estava intima e fun-
damentalmente relacionada a uma análise profunda da matemática empregada na teoria.
Esses dois anos de mestrado só serviram para reforçar essa opinião: aos poucos, graças
ao meu orientador, fui abandonando a visão de que a matemática serve para a f́ısica
como uma mera ferramenta.

Assim, se eu escolhi a área de Teoria Quântica de Campos em Espaços Curvos por
ser uma combinação do que mais me despertava curiosidade, a Mecânica Quântica e a
Relatividade Geral, a escolha de meu orientador, antigo professor de Grupos e Tensores,
foi baseada na intuição de que da nossa relação eu poderia começar a construir uma
profunda compreensão da Mecânica Quântica, da Relatividade, da Teoria Quântica de
Campos e da F́ısica em geral. Pelo que falei do meu primeiro dia de mestrado, é desne-
cessário dizer que não tinha tanta noção do que meu orientador quis dizer quando me
disse que proporia um projeto “um tanto exigente do ponto de vista matemático”, e por
isso é que digo que cheguei aqui um pouco perdido.

Contudo, ainda que tenha subestimado a tarefa de desenvolver uma “profunda com-
preensão da TQC”, minha escolha de mestrado não poderia ter sido mais acertada –
ainda que o processo não tenha se assemelhado tanto ao que diz meu Aurélio. Sem
dúvida, essa orientação me rendeu uma relação completamente nova e muito mais in-
teressante com a F́ısica e a Matemática. Ao ler as palavras “guiar, dirigir, nortear”,
tenho a impressão de que o papel de um orientador se baseia em apontar as direções
para o aluno, e, por mais que em diversos momentos de ansiedade eu tenha desejado
intensamente que meu orientador me dissesse exatamente o que, como e para quando
fazer, da nossa relação orientador-aluno, na qual eu sempre tive bastante liberdade, ele
fez surgir algo muito mais rico, uma relação pessoal minha com meu trabalho. Orientar
um mestrado não deve ser tarefa simples. Porém, o que o Prof. João Barata fez foi algo
muito além de uma realização institucional e burocrática: foi me acompanhar e, através
da liberdade que me deu e da sua confiança, permitir que eu começasse a desenvolver
uma relação pessoal com a F́ısica, a Matemática, a Ciência e, a partir disso tudo e de
maneira não restrita, com o mundo. Sempre tive dúvidas de o que teria levado ele a
aceitar me orientar, dado meu estado de ignorância no ińıcio do mestrado, mas em todo
caso as reuniões, as conversas, as mesmas dúvidas respondidas diversas vezes (sempre
com muita paciência), as broncas contidas mas muito claras durante as apresentações
de seminários, a confiança que pude depositar nele e, principalmente, a confiança que o
Prof. João Barata depositou em mim, quase sempre maior do que a que eu tinha em
mim mesmo, moldaram uma relação que, a meu ver, está longe de caber em “guiar,
dirigir, nortear”. Não tenho dúvida alguma de que minha relação com o conhecimento e
com a vida carregará sempre os incŕıveis frutos da orientação que tive a honra de receber

8
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pelas várias vezes que me tiraram dúvidas, me indicaram referências e me mostraram
meus erros, quanto pelos momentos de descontração que tivemos, fundamentais para
o equiĺıbrio no meu ambiente de trabalho. Assim, quero aqui agradecer aos colegas
Cedrick Mello, Guilherme Germano, Lissa Campos, Marcela Gontijo, Marcos Brum,
Ricardo da Silva, Thiago Raszeja e Lucas Müssnich. Agradeço especialmente ao Cedrick
e ao Marcos, que me dedicaram especial atenção ao longo de meu mestrado.

Quero também agradecer à banca examinadora que avaliou meu trabalho, formada
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para a conclusão deste mestrado.

Ademais, não posso deixar de mencionar alguns professores que foram de grande
importância para mim. A professora Frederique Grassi, com que tive a oportunidade de
dar monitoria nos cursos de Mecânica Quântica I e II, me permitiu revisitar parte do
que motivou meu mestrado e me iniciar numa atividade didática. O respeito e a atenção
que ela me dedicou enquanto trabalhamos juntos eu não poderia esperar, e essas duas
monitorias seguem para mim como referência de uma boa relação profissional. Além
do mais, participar de um curso de graduação com outro papel foi bastante importante
para meu aproveitamento da pós-graduação.

A meus orientadores de iniciação cient́ıfica, professora Renata Funchal e professores
Gustavo Burdman e Adilson da Silva, que me apresentaram a teoria quântica de campos
e boa parte da F́ısica, também sou muito grato. Em particular, o professor Gustavo
Burdman dedicou considerável atenção à formação de seus orientandos. A professora
Renata Funchal, por sua vez, teve contribuição fundamental no que hoje entendo pela
Academia, pela carreira acadêmica e pela atividade de pesquisa; ela é, sem dúvida, uma
das pessoas que mais respeito e admiro intelectualmente, como pesquisadora e como
professora. Seus cursos foram dos melhores que assisti na graduação e no mestrado.

O professor Walter Pedra, que ministrou a disciplina “Álgebra C∗ e Fundamentos Ma-
temáticos da Mecânica Quântica e Mecânica estat́ıstica”, e o professor Christian Jaekel,
com quem cursei “Álgebras de Operadores e Teoria Quântica Local Relativ́ıstica”também
tiveram importante contribuição nesse trabalho e no meu curso de mestrado.

Meus colegas de pós-graduação, não apenas meus colegas de grupo de pesquisa, mere-
cem também muito desses agradecimentos. Meus companheiros de sala, Fábio Chibana
de Castro e Fabŕızio Bernardi, especialmente merecem não apenas meu obrigado, mas
meus parabéns pela paciência comigo e minhas desculpas – pela bagunça, por não parar
de falar, por esquecer o café na cafeteira logo antes do feriado. O esforço e a disciplina
tranquila do Chibana foram e ainda são um grande exemplo para mim, e a organização
de sua mesa, sempre impecável ao final de cada dia de trabalho, me fez criar vergonha na
cara e me dedicar um pouco mais ao cuidado com meu ambiente de trabalho, embora eu
ainda esteja muito aquém desse meu caro colega. Se isso já não bastasse, o Chibana veio
para essa sala trazendo consigo uma cafeteira, e frequentemente chego para trabalhar
pela manhã e já encontro café quente, ou depois do almoço sou contemplado com a frase
“eu fiz café”. É emocionante. O Fabŕızio, por sua vez, em vários momentos foi quem
mais me ajudou a suportar o mestrado, o departamento, uma prova, uma disciplina, o
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da minha pós-graduação, e por toda a fé e o amor que sempre teve por mim. Caracterizar
a contribuição de meu pai para minha formação também é dif́ıcil: ele é, sem dúvida,
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cunhadas, sobrinhas e sobrinhos – a curiosidade dos pequenos me é muito cara, e a
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Resumo

Nesta dissertação apresentamos um método de quantização matemática e conceitual-
mente rigoroso para o campo escalar livre de interações. Trazemos de ińıcio alguns
aspéctos importantes da Teoria de Distribuições e colocamos alguns pontos de geometria
Lorentziana. O restante do trabalho é dividido em duas partes: na primeira, estudamos
equações de onda em variedades Lorentzianas globalmente hiperbólicas e apresentamos
o conceito de soluções fundamentais no contexto de equações locais. Em seguida, pro-
gressivamente constrúımos soluções fundamentais para o operador de onda a partir da
distribuição de Riesz. Uma vez estabelecida uma solução para a equação de onda em
uma vizinhança de um ponto da variedade, tratamos de construir uma solução global a
partir da extensão do problema de Cauchy a toda a variedade, donde as soluções fun-
damentais dão lugar aos operadores de Green a partir da introdução de uma condição
de contorno. Na última parte do trabalho, apresentamos um mı́nimo da Teoria de Ca-
tegorias e Funtores para utilizar esse formalismo na contrução de um funtor de segunda
quantização entre a categoria de variedades Lorentzianas globalmente hiperbólicas e a
categoria de redes de álgebras C∗ satisfazendo os axiomas de Haag-Kastler. Ao fim,
retomamos o caso particular do campo escalar quântico livre.

Palavras-chave: Equações de Onda em Variedades Lorentzianas, Campo Escalar
Livre, Equação de Klein-Gordon, Segunda Quantização, Funtor de Quantização,
Axiomas de Haag-Kastler.
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Abstract

In this thesis we present a both mathematical and conceptually rigorous quantization
method for the neutral scalar field free of interactions. Initially, we introduce some
aspects of the Theory of Distributions and we establish some points of Lorentzian ge-
ometry. The rest of the work is divided in two parts: in the first one, we study wave
equations on globally hyperbolic Lorentzian manifolds, hence presenting the concept of
fundamental solutions within the context of locally defined wave equations. Next, we
progressively construct fundamental solutions for the wave operator from the Riesz dis-
tribution. Once established a solution to the wave equation in a neighbourhood of a
point of the manifold, we move forward to produce a global solution from the extension
of the Cauchy problem to the whole manifold. At this stage, fundamental solutions are
replaced by Green’s operators by the imposition of appropriate boundary conditions. In
the last part, we present a minimum on the Theory of Categories and Functors. This is
followed by the use of this formalism in the development of a second-quantization functor
between the category of Lorentzian globally hyperbolic manifolds and the category of
nets of C∗-algebras obeying Haag-Kastler axioms. Finally, we turn our attention to the
particular case of the quantum free scalar field.

Key-words: Wave equations on Lorentzian Manifolds, Free Scalar Fields,
Klein-Gordon Equation, Second Quantization, Quantization Functor, Haag-Kastler
Axioms.
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Introduction

Quantum Field Theory (QFT) dates back from the decade of 1920, when Paul A. M.
Dirac published his paper “The Quantum theory of the emission and absorption of radia-
tion”, [1]. Since then, a lot has changed in a framework that attempts to unify Quantum
Mechanics and Relativity, in the sense of containing, coherently, the fundamental prin-
ciples of the two theories. Not only complete new understandings arose throughout the
almost 90 years of QFT, but many achievements and developments in Physics were pos-
sible due to QFT. As examples, we may cite the construction and current success of the
Large Hadron Collider, the confirmations of the Standard Model of Particle Physics, the
development of theories with spontaneously broken symmetry, and the union of electro-
magnetic and weak interactions. In general, we may say that QFT has provided us with
new ways to unleash the intimal nature of this Universe, both through experiments and
theories investigating its Nature.

The cornerstone of Quantum Physics is the canonical commutation relation

[P,Q] = −i. (1)

Within the context of Quantum Mechanics, with its finitely-many degrees of freedom,
Stone-von Neumann theorem affirms the existence of a unique representation of this
commutation relation into the operator algebra – up to an unitary equivalence. How-
ever, when we move to Quantum Field Theory, this theorem no longer applies, and
we are left with different representations of the canonical commutation relation. An
axiomatic approach to QFT consists then on choosing a specific representation, and set-
ting its properties as axioms. For instance, in Minkowski space, we usually deal with
vacuum representation, i.e., the one which posses a cyclic vector state describing the
vacuum. Through the description of Weyl representations, which makes explicit use of
the symmetry group of Minkowski space, the Poincaré group, we are then able to define
particles. This is just an example of what is lost when we move to general spaces.

The necessity of considering what are the fundamental aspects to be imposed to
a quantum field theory on curved spacetimes culminates in the Haag-Kastler axioms,
to be presented in the last chapter: an axiomatic structure for local quantum theories
concerning the observation process on which an experiment consists. The categorical
language, used in the mentioned “functorial quantization”, was firmly established in this
context after the work of Brunetti, Fredenhagen and Verch, [2], as a “natural language”
to describe transformations, particularly covariance condition.
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Exemplifying this abstract and general formalism, we present, by the end of this
work, an analysis of free neutral bosonic fields, the simplest non-trivial example known.
It is based on the Klein-Gordon equation

(� +m2)φ = 0, (2)

first formulated by Erwin Schrödinger, and later by Oskar Klein, Walter Gordon and
Vladimir Fock. The propagation of relativistic free bosonic particles, such as the pion, is
modelled by the Klein-Gordon equation, as well as the components of any other bosonic
field, as it is the case of the electromagnetic field.

Historically, the attempt to a relativistic eigenvalue equation for quantum states, a
Lorentz invariant equation equivalent to Schrödinger equation of Quantum Mechanics
such as (2), resulted in several problems. In particular, as discussed in [3], this inter-
pretation of (2) would result in negative energy eigenvalues, and even more, these with
negative probability.

The alternative interpretation following Dirac’s mentioned article was a solution in
terms of operators of creation and annihilation, equivalent to the ladder operators for the
quantum harmonic oscillator, giving a substantial new meaning for (2). This necessity
of field viewpoint, reinforced by the incongruence in Quantum Mechanics between time
and position, while both are so intimately related in Relativity – see [4], resulted in a
solution

φ(x) =
1

(2π)3

∫
d3p√
2ωp

(
aeip·x + a†e−ip·x

)
(3)

where

ω =
√
p2 +m2.

In this work, we shall develop a formal way to obtain an equivalent result within the
context of curved spacetimes, after a precise description of a local quantum theory in
this background. It should be noticed that our focus will remain on observables, and,
thus, no discussion about states will be presented.
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Chapter 1

Preliminaries

1.1 Introduction and Notation

We here intend to present some basic material invoked throughout chapters 3 and 4. In
considering what was discussed in the foreword of this work, we have not the intention
of providing a deep exposition of these topics, nor of making this chapter a report of
every basic study the author had to undergo during his master’s course. Therefore, we
wish here to establish the notation to be used from now on, and to present the crucial
basic ideas involved in this work. We should emphasize that some concepts shall be
presented without the proper rigorous care, and maybe important parts in between shall
be held implicit, while some points may be treated probably with unnecessary rigour
and attention. The main references to this part are [5] for tensors, although for a more
detailed and vaster presentation of this topic we should refer to [6] and [7], and [8] for
smooth manifolds. The basics on Differential Geometry and Lorentzian manifolds were
extracted from [5], [9] and [10], the last one the main reference for differential operators.

First of all, we should clarify part of the notation we shall use. As usual, we shall
denote by K the field under consideration whenever there is no reason or no interest
in specifying whether we are working with R or C. We also may deal with the subsets
R+ := (0, +∞) and R0

+ := [0, +∞); as for the natural numbers, N will be used to
denote the non-negative integers, N ≡ {0, 1, 2, . . . }, and we shall use the Bourbaki
notation N∗ := N\{0}. If z ∈ C, its conjugate will be represented by z. The dot
notation “ · ” for product is absolutely not precise in this work and may be used for some
different things: the product by an scalar in a vector space, an algebra product or the
natural pairing between sections of a bundle E and its dual E∗ – the definition of those
objects is presented further in this chapter; we believe the context will make clear the
meaning of such a notation. Almost every vector space presented is regarded as finite
dimensional and, particularly, we shall only deal with finite dimensional manifolds. The
metric of the (1+n)-dimensional Minkowski spaceMn is here considered with signature
(−1, 1, · · · , 1). For inner and pseudo-inner products, we use the notation 〈·, ·〉 or also
the dot “ · ”, the latter mostly for the product in Kn; (·, ·) will be used for ordered pairs
and sometimes, when explicitly indicated, for the natural pairing, meaning then the
same of “ · ” in this context. Definitions will be indicated by the symbol “ := ”, while the
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CHAPTER 1. PRELIMINARIES

symbol “≡ ” is reserved to indicated strictly coincidence – i.e., equality in every point,
or an alternative notation for some already defined object.

At the end of this work, there is an index with symbols, which we hope may help solv-
ing any doubt about definitions. Further clarifications about notation may be presented
throughout the text, if needed.

1.2 Tensors

Let V be a vector space over K. A k,l-tensor on V is a k+l linear map

T : V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

−→ K,

where V ∗ denotes the dual space of V . Suppose V has dimension n, and let T, S be k,l-
and i,j-tensors on V , respectively. We define the tensor product between them as the
map

T ⊗ S : V ∗ × · · · × V ∗︸ ︷︷ ︸
k+i

×V × · · · × V︸ ︷︷ ︸
l+j

−→ K

T ⊗ S(v∗1, . . . , v
∗
k+i, v1, . . . , vl+j) :=

T (v∗1, . . . , v
∗
k, v1, . . . , vl)S(v∗k+1, . . . , v

∗
k+i, vl+1, . . . , vl+j)

Considering now a basis {e1, . . . , en} for V and the dual basis {b1, . . . , bn} in V ∗, we
have for a general tensor T

T (v∗1, . . . , v
∗
k,v1, . . . , vl) =

= T (
∑
j

v∗1jbj , . . . ,
∑
j

v∗kjbj ,
∑
j

v1jej , . . . ,
∑
j

vljej)

=

n∑
j1,...,jk+l=1

v∗1j1 . . . v
∗
kjk
v1jk+1

. . . vljk+l
T (bj1 , . . . , bjk , ejk+1

, . . . , ejk+l
)︸ ︷︷ ︸

:=Tj1···jk+l
∈K

=

n∑
j1,...,jk+l=1

v∗1j1 . . . v
∗
kjk
v1jk+1

. . . vljk+l
Tj1···jk+l

,

and for fixed basis, the association T 7−→ Tj1···jk+l
is an isomorphism. Now, we know

that for each vij in the summation above we have vij = bj(vi) and the analogous relation
for the dual vectors, so we may state
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1.3. MANIFOLDS

T (v∗1, . . . , v
∗
k, v1, . . . , vl) =∑

Tj1···jk+l
ej1 ⊗ · · · ⊗ ejk ⊗ bjk+1

⊗ · · · ⊗ bjk+l︸ ︷︷ ︸
≡T

(v∗1, . . . , v
∗
k, v1, . . . , vl).

Hence, we conclude the existence of an isomorphism between the set of k,l-tensors and
the space of (k + l − 1) multilinear maps into V ,

V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l−1

−→ V.

We regard a k-tensor as a 0,k-tensor.

1.3 Manifolds

Intuitively, a manifold is a space which locally looks like Rn or Cn. Precisely, we define
a topological manifold as a Hausdorff second-countable topological space M, together
with a collection {(φ,U)i}i such that each Ui ⊂ M is an open subset of M,

⋃
i Ui = M

and φi : Ui −→ φi(Ui) ⊂ Kn is an homeomorphism into its image. The number n in Kn

is called the dimension of the topological manifold, and it can be proved to be unique
– see, for example, [8]: if the functions φ ◦ ψ−1 and its inverse are both well defined (i.
e., if their domains are non-empty), they form a bijection between vector spaces, which
then should have the same dimension.

The conditions of a topological space being Hausdorff and second-countable are not
indispensable; however, by imposing those hypothesis we exclude from the definition
cases in which we shall not be interested throughout this work.

Let M be a topological manifold, and let (φ,U) ≡ φ be the intrinsic pair formed by
an open subset U ⊂M and a map φ : U −→ φ(U) ⊂ Kn homeomorphic to its image; we
shall call such a pair a chart on M, and throughout this work we shall suppose n <∞.
Consider the set {(φ,U), (ψ, V )} of two charts in M such that both U ∩ V 6= ∅ and the
function

ψ ◦ φ−1
φ(U∩V ) : φ(U ∩ V ) ⊂ Kn −→ ψ(U ∩ V ) ⊂ Kn

is differentiable, i. e., C∞; every C∞-homeomorphism whose inverse is also C∞ is called
a diffeomorphism. In those circumstances, the charts are said to overlap smoothly.
Whenever necessary, we may refer to a chart as a function φ, considering its domain
sub-understood.

Let now A be a set of smooth overlapping charts on M covering the space – i.e.,
A = {(φi, Ui)}i with

⋃
i Ui = M . We call such a set an atlas on M, and denote A the set

of all charts in M overlapping smoothly with elements of A . Whe call A a differential
structure on M. The pair (M,A ) ≡ M is called a smooth manifold; since we shall
work only with smooth manifolds, we shall often call them simply manifolds. It should
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be noted that, in the above construction, all the relations are defined to hold in the
trivial case when the domains of the charts are disjoint.

The continuity of a function f : M1 −→ M2 between two manifolds is established
considering the topology of each manifold. Such a function is said to be differentiable
at a point p ∈ M1 if there are charts (φ,U) in M1 and (ψ, V ) in M2 such that p ∈ U and
the function ψ ◦ f ◦ φ−1

φ(U∩V ) : φ(U ∩ V ) ⊂ Rn −→ ψ(f(U ∩ V )) ⊂ Rm is differentiable
at φ(p); f is then called differentiable or smooth if it is differentiable at every point of
its domain. Once again we emphasize that by differentiable we mean C∞.

A map vp : F (M) −→ K, where F (M) denotes the set of K-valued differentiable
functions in M is called a derivation at a point p ∈ M if it satisfies

vp(fg) = f(p)vp(g) + g(p)vp(f). (1.1)

For a given open U ⊂ M with p ∈ U , we define Fp(U) as the the quotient F (U)/∼
where we identify functions which agree on a smaller neighborhood of p; this should
be regarded as a technical detail and one may think of Fp(M) as the set of functions
defined in an arbitrarily small neighbourhood of p. Equation (1.1) defines a property we
shall name Leibniz rule after it resemblance with the Leibniz rule of Calculus. For each
p ∈ M , we denote TpM, the tangent space at p, the set of all tangent vectors at M,
i.e., the set of all linear maps Fp(M) −→ K obeying (1.1). For each p ∈ M, TpM is a
vector space over K with the usual addition and scalar multiplication of functions. It is
not hard to show that if (φ,U) is a chart in p ∈ M and if xi := ui ◦ φ where ui are the
canonical Kn −→ K projections, then

{
∂
∂xi p

}
i

form a basis for TpM
Let f : M −→ N be given. The differential of f at p is the function

dfp ≡ f∗p : TpM −→ Tf(p)N

v 7−→ f∗p ∈ F ∗(N)

f∗p(v)(g) = vp(g ◦ f) ∀g ∈ F (N).

As shown for example in [9], the hypothesis considered ensure the topological mani-
fold is paracompact and has a smooth partition of unity subordinate to any open covering
of the manifold.

1.4 Vector Bundles

Let E and M be two smooth manifolds, and let π : E −→M be a surjective given map.
The triplet (E,M, π) is called a K-vector bundle if, for all p ∈ M,

• the set π−1(p) ≡ Ep ∈ E, which we call a fiber at p, has the structure of a vector
space over the field K;

• there exists an open neighbourhood U ⊂ M of p and a diffeomorphism

φ : π−1(U) −→ U × Rk
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1.4. VECTOR BUNDLES

such that its restriction to a fiber, Eq −→ {q}×Rk, is a vector space isomorphism.
Such open set U is named trivializing open set, the collection {(U, φ)} is called
a local trivialization and k ∈ N∗ is called the rank of the vector bundle.

If (E,M, π) is a vector bundle, we call E the total space and M the base space,
since π projects E onto M1. We shall often denote the bundle by E −→ M whenever the
map is implicit, or simply by E, whenever both the map and the base space are implicit.
Since we shall work only with vector bundles, the word “bundle” shall denote vector
bundle, although we should emphasize there are other kinds of bundles.

Figure 1.1: Dandelion. Image adapted from a poster by Micheline Kanzy, extracted
from http : //www.zazzle.com.br/dente de leao preto poster− 228943950401736416

.

Examples: The tangent space of the manifold M, TM, constructed as the disjoint
union

⊔
p∈M TpM is a vector bundle, whose fibres at each p ∈ M are the vector spaces

TpM. If E −→ M and F −→ M are two vector bundles over the same space M, we may
construct the product bundle by taking each fibre to be Ep ⊗ Fp; similarly, we may
consider the bundles E −→ M and F −→ N and construct the product bundle fibre by
fibre as Ep ⊗ Fq, p ∈ M and q ∈ N. Given E −→ M, we may define the dual bundle
by identifying (Ep)

∗ =: E∗p – in particular, the bundle TM∗ ≡ T∗M is called cotangent
bundle. For an intuitive idea of a vector bundle, consider the dandelion, a common
name for some flowers of the gender Taraxacum (see fig. 1.1): we may conceive its base
space M as the two-dimensional sphere S2 to be the part of the plant the seeds are
connected to, the total space as the three-dimensional Euclidean space R3 where the
flower is, and the vector spaces as the one-dimensional spaces formed by the seeds. Of
course, this is just to be seen as a intuitive representation of a vector bundle, which the
dandelion is not since it has only a finite number of seeds, all of them with finite length
joint together in a surface that is not perfectly circular, not to mention the fact the
Universe is not a three-dimensional Euclidean space but locally; anyway, plants seem to
be almost understanding the concept.

1Calling π a projection is absolutelly not rigorous – or at least it does not necessarily agree with the
common notion of a projection. Nevertheless, we shall call the intrinsic map in a vector bundle as a
projection from E −→ M.
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Let S : M −→ E be locally an inverse of the projection π, i.e., such that at each fibre
π ◦ S|p = idM. Such a map is called a section on the bundle. Since sections are defined
at each fibre, the support of a section makes sense when considering the null vector of a
certain fibre: supp S := {x ∈ M |S(x) 6= 0 ∈ Ex}, with the closure being given in terms
of the topology of M. We shall denote the set of C∞-sections on a bundle by C∞(M,E),
and the set of those which have compact support by D(M,E).

1.5 Connections on Vector Bundles

The definition of connection on a vector bundle provides a way to differentiate a section.
We shall define it as follows: a (affine) connection is a K-bilinear map

∇ : C∞(M,TM)× C∞(M,E) −→ C∞(M,E) (1.2)

(X,S) 7−→ ∇XS

obeying

(i) F (M)-linearity w.r.t. C∞(M,TM): for all X ∈ C∞(M,TM) and S ∈ C∞(M,E),

∇fXS = f∇XS ∀f ∈ F (M);

(ii) ∇ is a derivation w.r.t. C∞(M,E): for all S ∈ C∞(M,E) and for each fixed
X ∈ C∞(M,TM),

∇X(fS) = f∇XS +X(f)S ∀f ∈ F (M).

A connection ∇ on a vector bundle E induces a map

∇′ : C∞(M,E) −→ C∞(M,T∗M⊗ E)

S 7−→ ∇′S

such that for each section S ∈ C∞(M,E) and for each f ∈ F (M),

∇′(fS) = df ⊗ S + f∇′S. (1.3)

and therefore the product rules w.r.t. sections are equivalent for ∇ and ∇′, in the sense
that ∇ ⇔ ∇′. Given a map ∇′, which we shall also call a connection on the bundle E,
for each vector field X ∈ TM we may write

∇XS ≡ (X,∇′S) := (p r ⊗ idE)(∇′S)

26



1.6. SPACETIMES

where p r : T∗M× TM −→ R is the natural pairing pr(X∗, Y ) := X∗ · Y ≡ (X∗, Y ) and
X 7−→ X∗ is the natural pair from TM −→ T∗M. It is then possible to see that ∇′,
regarded as a map from C∞(M,TM) × C∞(M,E) −→ C∞(M,E) is a connection, and
giving the same name for both ∇ and ∇′ is no abuse. We call del the symbol ∇ for any
connection.

If E and E′ are two vector bundles over the same M, connections ∇ in E and ∇′ in
E’ induce a connection D in E⊗ E′ given by

D : C∞(M,E⊗ E′) −→ C∞(M,T∗M⊗ E⊗ E′) (1.4)

D(S ⊗ S′) := (∇S)⊗ S′ + S ⊗ (∇′S′). (1.5)

Consider M a smooth manifold with a given connection ∇ on TM, and let c : I ⊂
R −→ M be a smooth curve. If X ∈ C∞(M,TM) is a vector field defined over c(I),
there is a (unique) correspondence D/dt which associates another vector field DX/dt,
and which satisfies:

(i) D
dt is K-linear map in C∞(M,TM);

(ii) it is a derivative w.r.t. smooth functions I −→ R: D
dtfX = df

dtX + f DdtX for all X
and for all f as presented;

(iii) if, on the other hand, X is a field over a curve c, induced by a field Y ∈ C∞(M,TM)
in such a way that X(t) = Y (c(t)), then D

dt = ∇ċY .

The association D
dt is called covariant derivative, and its existence and uniqueness as

presented may be found proved in [11] and [7]. If for all t ∈ I we have D
dtX = 0, we say

the field is parallel.

Lemma 1. Let c : I −→ M. If X0 ∈ Tc(t0)M for some t0 ∈ I, there is a unique
parallel vector field X such that X(t0) = X0; we call X(t) the parallel transport of X(t0)
throughout c.

1.6 Spacetimes

Let V be a n-dimensional real vector space. If B1 and B2 are two basis for V , then
the determinant detT (B1, B2) of the basis transformation matrix T is either positive or
negative, but not null. We define an equivalence relation on the collection B of basis of
V by B1 ∼ B2 ⇔ detT (B1, B2) > 0. The collection B/∼ =: O(V ) will be called the set
of orientations on V , for reasons that will be presented soon.

Let π : E −→ M be a vector bundle; since for each p ∈ M Ep defines a vector space,
we may consider the collection O(Ep) for each p. An orientation for E is then a function
p ∈ M 7−→ O(Ep) such that for all p ∈ M there are a U ⊂ M and a basis {ξ1, . . . , ξn} for
the section of π−1(U) (which means a basis {ξ1(q), . . . , ξn(q)} for all q ∈ U) such that

O(Eq) = [{ξ1(q), . . . , ξn(q)}] ∀q ∈ U.
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We say the bundle E is orientable if it possesses an orientation. The manifold M is sad
to be orientable if TM is orientable.

Consider now a positive definite symmetric non-degenerated 2-tensor field g defined
on M, which means that, at each point x ∈ M, g defines a inner-product in TpM.
The pair (M, g) ≡ M is then called a Riemannian Manifold, in which case g is
called a Riemannian metric. We define the index of a symmetric bilinear form
ω : V × V −→ K as the dimension of the largest subspace W ⊂ V such that ω|W×W
is negative definite. Therefore, a symmetric non-degenerated 2-tensor field g of index 1
defines, in an equivalent way, a Lorentzian metric, and thus we call the pair (M, g) ≡ M
a Lorentzian manifold in this case.

LetM denote the 1 + n dimensional Minkowski space, the vector space R×Rn with
metric 〈x, y〉 := −x0y0 +

∑n
i=1 xiyi. We characterize a vector x in this space according

to this metric as

spacelike, if 〈x, x〉 > 0;

timelike, if 〈x, x〉 < 0;

null, or lightlike if 〈x, x〉 = 0;

causal, if 〈x, x〉 ≤ 0.

Consider a (1 + n)-dimensional vector space V over R with a non-degenerate pseudo-
inner product V × V −→ R of index one; for a pseudo-inner product we mean an
inner-product, except for the condition of positive definiteness – i.e., an alternative name
or euphemism for a symmetric non-degenerate 2-tensor field. It is straightforward that V
is then isometric toMn, and we shall use the notation 〈·, ·〉 for the pseudo-inner product
in whatever vector space we consider as long as no misunderstanding is possible. Define
the function

γ : V −→ R (1.6)

γ(v) := −〈v, v〉

which enables us to extend the usual classes of vectors in Minkowski space to V , defining
spacelike, timelike and light or nulllike vectors as in Minkowski case.

Let M be an oriented Lorentzian manifold. We say M is timeoriented if its ori-
entation is given by a timelike vector field n: if M in connected and if the bundle E
is orientable, then it is possible to show that E has exactly two orientations; therefore,
consider TM with a basis with n within, or some equivalent basis, and we have a time-
oriented Lorentzian manifold. We shall often refer to such manifolds as spacetimes.
In addition, let α : [0, 1] −→ M have a continuous curve as image, and we may say
the curve is spacelike, timelike, lightlike and/or causal according to the respective
characterization of its tangent vector. Then, for each x ∈ M, the set of points of M which
may be connected to x through a timelike curve, denoted by I(x), has two connected
components: the set I+(x) of points y ∈ I(x) such that the timelike curve from x to y
is future directed, called the chronological future of x, and the set I−(x) of points
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y ∈ I(x) such that the timelike curve connecting x to y is past directed, the chrono-
logical past of x. In an equivalent way, if we replace the condition “timelike curve”
by “causal curve”, for each x ∈ M we have the set J(x) := J+(x) ∪ J−(x) formed by
the causal future and by the causal past, which is the closure of I(x) in Minkowski
space. Whenever necessary, the manifold of which J is a subset will be indicated: for
example, we may write JM(x) instead of just J(x). If O is a non-empty subset of M, we
define its chronological future and past I±(O) respectively as I±(O) :=

⋃
x∈O I±(x),

and similarly we define its causal future and causal past as J±(O), respectively.

A given non-empty O ⊂ M is respectively called future or past compact in M if
J±(x) ∩ O is compact for all x ∈ M. We say O is causally compatible if each causal
curve in M connecting two points of O lays within O, i. e., if JO± (x) = O ∩ JM

± (x) for all
x ∈ O.

A given connection ∇ on the bundle TM −→ M is said to be compatible with
the metric g if for each smooth curve c : I −→ M and if for each pair of parallel
vector fields X,Y throughout c, g(X,Y ) = 0. On the other hand, the connection is
called symmetric if for all vector fields X,Y , ∇XY − ∇YX = [X,Y ]. In the present
circumstances, it is possible to prove that in a given Riemannian manifold M, there is
a unique connection ∇ both symmetric and compatible with the metric; we call such
connection the Riemannian connection. The proof of this statement, named Levi-
Civita theorem, may be found in [11].

Let ν : I −→ M be a smooth curve in M, a manifold with a given affine connection
∇. Let t ∈ I 7−→ ν̇(t) ∈ Tν(t)M be the association of the tangent vector X of ν at t. We

call ν a geodesics if D
dt ν̇(t) = 0 for all t ∈ I. If v ∈ TM is the parallel tangent vector of

ν, we may represent ν ≡ νX . The Riemannian exponential map at a certain p ∈ M
is the map

expp : TpM −→ M (1.7)

such that expp(v) = νv(1). The importance of this map is that it maps lines through
the origin in TpM to geodesics through p: for fixed v ∈ TpM and t ∈ R, the geodesics
x ∈ I 7−→ νv(tx) has initial velocity tv and hence expp(tv) = νtv(1) = νv(t). In a
neighbourhood U ⊂ M of p where the exponential is invertible, we may define the
function

Γx : M −→ R (1.8)

Γx(y) := −〈 exp−1
x (y), exp−1

x (y) 〉 = γ
(
exp−1

x (y)
)

We say the subset O is causal if it is “causally closed”, that is, if its closure O is in
a certain geodesically convex2 O′ and if for each x, y ∈ O, JO

′
+ (x) ∩ JO′− (y) is in O and

it is compact; O is called achronal or acausal if it has no influence over itself, i.e., if
each lightlike curve or causal curve, respectively, meets O at most once. Let I ⊂ R be an

2Henceforth, we shall say just convex meaning geodesically convex, the property of a set to have
any two of its points connected by a geodesics within the set.
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interval and let α : I −→ M be a curve in M; an extension to α is a curve β : I ′ −→ M
such that α(I) ⊂ β(I ′). The curve α is called inextensible if for all extension β,
β(I ′) = α(I). A subset S ⊂ M is called a Cauchy surface if each inextensible timelike
curve in M meets S exactly once.

The Cauchy development of O ∈ M is the set D(O) of points of M through
which each inextensible causal curve in M meets O. The manifold M is sad to obey
the causality condition if it contains no closed causal curve; as a counter-example,
the torus endowed with the relative topology of Rn + 1 does not satisfy the causality
condition (see [12]). On the other hand, the manifold is sad to obey the strong causality
condition if, for each x ∈ M, there is a neighbourhood N such that each curve with
initial and final points within an open U ⊂ N , x ∈ U , lays entirely in N , a condition
that may be described by the requirement of non-existence of “almost closed” causal
curves.

The manifold M is called globally hyperbolic if it obeys the strong causality con-
dition and if for each pair of points x, y ∈ M, J+(x) ∩ J−(y) is compact. The reason for
the name “globally hyperbolic” comes from the equivalence between the three conditions

(i) M is globally hyperbolic;

(ii) there is a Cauchy surface S ⊂ M;

(iii) M has a differentiable foliation by Cauchy surfaces; i.e., M is isometric to R×S with
metric −β dt⊗dt+g, where β is a smooth positive function and g is a Riemannian
metric on S depending also smoothly on t ∈ R, and each St ≡ {t} × S is then a
smooth spacelike Cauchy surface of M.

One example is conveniently presented: let S be a Riemannian manifold, and let I ⊂ R
be an interval. Then, M := I × S is globally hyperbolic iff S is complete, which, in
particular, happens if it is compact.

1.7 Differential Operators

We re-stablish the notion of a d’Alembert operator in the following way. For a given
pair of vector bundles E, F defined over a common base space M, a K-linear operator
P : C∞(M,E) −→ C∞(M,F), K = R, C depending whether the bundle is real or complex,
acting on sections is called a differential operator if it may be expressed locally as

P =
∑
|α|≤k

Aα
∂ |α|

∂xα
. (1.9)

where α ∈ Nn is a multi-index, |α| = αj1 + · · ·+αjn and Aα is a homomorphism between
the bundles E and F for each α. I.e., if for every p ∈ M there is a trivialized open
neighbourhood U ⊂ M of p with respect to both E and F, such that for every section
S ∈ C∞(M,E), when restricted to U , the equality above is true. Consider then the
differential operator P described by (1.9) around some p ∈ M with trivializations in E
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and F. Then, for each v∗ ∈ TpM∗ we may write v∗ =
∑
v∗jdxj , so that the principal

symbol of a differential operator is the map given by

ρ : T∗M −→ Hom(E,F)

ρ(v∗) :=
∑
|α|=k

Aα(p)(v∗1)α1 · · · (v∗n)αn .

Now, a normally hyperbolic operator is a second order differential operator whose
principal symbol is given by the metric g,

P = −
n−1∑
i,j=0

gij(x)
∂2

∂xi∂xj
+
n−1∑
j=0

aj(x)
∂

∂xj
+ b(x). (1.10)

On the other hand, a generalized d’Alembert operator is minus the composition of the
following maps:

C∞(M,E)
∇−→ C∞(M,T∗M⊗ E)

∇−→ C∞(M,T∗M⊗ T∗M⊗ E)
tr⊗idE−−−−→ C∞(M,E).

Lemma. If S ∈ C∞(M,E) and f ∈ F (M), then

�(fS) = f �S + (�f)S − 2∇grad fS

Proof.

∇(fS) = df ⊗ S + f∇S

∇ [∇(fS)] = ∇ [df ⊗ S + f∇S]

= (∇df)⊗ S + f∇2S + 2df ⊗∇S

(tr⊗idE) ⇒ (�f)S + f �S + 2(df,∇S)

= −(�f)S − f �S + 2∇grad fS

The notion of a generalized d’Alembert operator connects with differential operators
from what follows

Theorem 1. Let M be a Lorentzian manifold and let P : C∞(M,E) −→ C∞(M,E) be
normally hyperbolic. Then there is a connection ∇ on E and a unique B ∈ C∞(M, Hom(E,E))
such that

P = � +B

where the d’Alembert is induced by the connection ∇.
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Proof. Existence follows from uniqueness. Assume ∇ satisfies the hypothesis of the
theorem, and consider B = P −�∇, denoting the d’Alembertian is induced by ∇. Then
we have – omitting the summation symbol for simplicity

P (fS) = −gij ∂
2fS

∂xi∂xj
+Aj

∂fS

∂xj
+BfS

=

{
− gij

(
∂2f

∂xi∂xj
S

)
+Aj

(
∂f

∂xj
S

)}
+

{
− gij

(
f

∂2S

∂xi∂xj

)
+Aj

(
f
∂S

∂xj

)
+BfS

}
+

+ 2
∂f

∂xi
∂S

∂xj

= (�f)S + fPS − 2∇gradfS,

which, together with the result of the previous lemma, implies

f
(
PS −�∇S

)
= P (fS)−�∇(fS).

Invoking again the previous lemma, the last equality is equivalent to

∇gradfS =
1

2
[fPS − P (fS) + (�f)S] (1.11)

and so ∇ depends only on P and �, which in its turn depends only on the metric, since
any vector field may be written as X = gradpf for some f at a certain point p. To prove
existence, define ∇ by the expression (1.11) and B as before. A richer, though more
complex proof on the existence of such a connection may be found in [10], lemma 1.5.5.

Hence, a generalized d’Alembert operator is extended to a normally hyperbolic op-
erator, and we shall from now on omit the term generalized when refering to this class
of operators; the Klein-Gordon operator (� +m2) is then a particular example.
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Chapter 2

Topics on the Theory of
Distributions

2.1 Introduction

In a particular sense, a distribution might be understood as a generalization of a function,
and even some author prefer to call them “generalized function”. On the behalf of this
idea is what we call a regular distribution: let D be a certain set of functions, which
we shall later call test functions; a distribution is then a continuous linear functional
from D to C, with the notion of continuity to be properly defined. A regular distribution,
in its turn, is any distribution T that may be written in terms of a function f as

T (g) =

∫
f(x)g(x)dx (2.1)

for all g ∈ D, with the integral obeying some conditions in order to make sense.
There are many situations in Physics where distributions arise naturally. For exam-

ple, consider the classical case of a collection of electrical charges distributed throughout
the space with a given density function ρ = ρ(x). The electric field produced by this
system is then given by

E(r) ∝
∫

R3

ρ(r′)

‖ r − r′ ‖2
dr′.

That is, we associate the idea of a charge distribution, in the sense of how the physical
system is configured, to a linear functional given in terms of the function ρ, which carries
in it the information of this configuration; this functional is, in agreement with the stated
above, named a distribution in the mathematical way. In the context of Quantum Field
Theory, distributions play a prominent role: for example, we may consider the Feynman
propagator as defined from a distribution (x+iε)−1 in the limit ε −→ 0+. Another exam-
ple would be the Klein-Gordon equation, which possesses distributional solutions, as shall
be further explored later. In general, as proposed by G̊arding and Wightman, Wightman
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functions and the very fields are constructed in terms of distributions: we regard the
components of a field ϕ as operator-valued maps f ∈ S (Rn) 7−→ ϕ1(f), . . . , ϕn(f), and
then Wightman function, or vacuum expectation values – or even propagators, defined
as 〈Ψ0, ϕ1(f) · · ·ϕn(f)Ψ0〉, follow to be distributions on S (Rn) as separately continu-
ous linear functionals. However, we should mention that an axiomatic Quantum Field
Theory as proposed by those two authors is beyond the scope of this work, having at
most some parts presented as motivation and contextualization. The very idea of fields
will not appear explicitly before the last section.

Throughout this chapter, we intend to introduce some concepts of the theory of
distributions and tempered distribution, and to discuss in which situations we are able
to define a product of distributions. In order to perform this discussion, it proves to
be necessary to work with the Fourier Transform of a distribution, an extended notion
of the Fourier Transform of a function. Besides, the concept of the Fourier Transform
of a distribution proves also to be an important tool if one is concerned about some
facts that follow from the G̊arding-Whigtman axioms of Quantum Field Theory, as may
be seen in [13]. It might be appropriate to clarify that we opted for denoting regular
distributions and the functions that generate them by the same symbol; therefore, we
may explicitly say whether we are dealing with f ∈ S or f ∈ S ∗, for example, where
S ∗ shall denote the space of tempered distributions, to be defined ahead. Writing this
chapter in any other way proved to be not only an useless effort, but, in the personal
opinion of the author, also a search for hiding the very nature of distributions in the way
we have presented them. A different system of notations is adopted in [7], but there the
hole system of presentation is different.

2.2 Distributions

Consider the vector space C∞(Rn,C). Adopting the notation

α ∈ Nn, ∂α ≡ ∂|α|

∂α1 · · · ∂αn
, |α| :=

n∑
j=1

αj

where α is called a multi-index, and furthermore adding the notation xα ≡ xα1
1 · · ·xαnn

to denote the polynomials in the components of x ∈ Rn, we define the family of seminorms

‖f‖α,β := sup
x∈Rn

|xα∂βf(x)| (2.2)

for all multi-indices α, β – we recall that a seminorm is a functional p defined on a vector
space, obeying all the conditions a norm does, except for p(x) = 0⇒ x = 0. The subset
of functions f ∈ C∞(Rn,C) for which the family of seminorms is well defined (i.e., for
which the supreme is finite) is a subspace of C∞(Rn,C), which we call Schwartz space
and represent by S (Rn). Similarly, the subset of the f ∈ C∞(Rn,C) with compact
support is a subspace of S , which we shall represent by D(Rn) – though the notation
C∞0 is far more common. Whenever no misunderstanding is likely to happen, we shall
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omit the domains and write simply S and D , and refer to the function over which the
linear functional are evaluated as test functions.

We equip the space S of functions which, together with their derivatives, decay
faster than any polynomial with a topology in which it is sequentially continuous w.r.t.
the family of seminorms of above. Let (fn)n ∈ S , we say fn −→ f ∈ S if, for all
α, β multi-indices, limn→∞ ‖fn − f‖α,β = 0. We affirm S is a Fréchet space with the
seminorms presented, one may see [14] for this statement. Consider now the topological
dual of the space S , the space S ∗ of continuous linear functional T : S −→ C. We
call S ∗ the space of tempered distributions, whose notion of continuity may also be
written down like follows.

Lemma 2. A linear functional T on S is an element of S ∗ if, and only if there are
constants C,N > 0 such that

|T (f)| ≤ C
∑

|α|+|β|≤N

‖f‖α,β (2.3)

for all multi-indices α, β and for f ∈ S .

Proof. The inequality implies continuity. To prove the converse relation, suppose T
continuous such that the inequality is false; this means that for every constants C,N > 0
there is a fC,N ≡ f ∈ S such that the inequality does not hold. We construct the
functions g := 1

|T (f)|f , and, since the equality (2.3) is false, we have

‖g‖α,β =
1

|T (f)|
‖f‖α,β <

1

C
.

Pick now C = N = i to define a sequence (gi)i; by definition, we have, for i > j,

‖gj‖α,β ≤ ‖gi‖α,β <
1

i
,

so this sequence converges to 0 ∈ S . If T is supposed to be continuous, we must have
T (gj) −→ 0 ∈ C; however, |T (gj)| = 1

|T (fj)| |T (fj)| = 1.

In a similar way, we define on D the following notion of continuity – and therefore a
topology. A sequence (fn)n ∈ D is sad to converge to an f ∈ S if there exist a compact
subset K such that supp fn, supp f ⊂ K and if the notion of convergence in S holds
for (fn)n and all its term-by-term derivatives. For a more complete construction of the
topology in S , see [15], but the one presented shall be enough within the scope of this
work. In the same way as before, we define the topological dual space of D , D∗, which
is called space of distributions. This nomenclature is coherent, as shows the next
statement.

Lemma 3. Tempered distributions are distributions on its own right. I. e., S ∗ ⊂ D∗.
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Proof. It is evident that D ⊂ S , then a linear functional on S is also a linear functional
on D , we just have to check its continuity. Let T ∈ S ∗, and let (fn)n ∈ D −→ f ∈ D ,
which implies the convergence in S . Then, limn→∞ |T (fn) − T (f)| = 0 in S , which
means T is continuous as an element of D also.

We affirm that (2.3) has an equivalent in D∗, the proof being quite similar. Some
examples are presented.

Examples:

1. The gaussian function x ∈ Rn 7−→ e−λ‖x‖
2

∈ R is in S (Rn), but the exponential
x 7−→ e−‖x‖ is not: although it decays faster than any polynomial, it is not differentiable
at the origin. Construct now a bump function σ : Rn −→ C such that σ ≡ 1 for x in a
connected subset K of Rn and null outside a compact subset K ′ ⊃ K. It is then possible
to adjust the behave of σ in between K ′ and K – i.e., in the complemet on K w.r.t. K ′

in a way that σ ∈ D .

2. There is a special and motivating kind of distribution called regular distribu-
tion. Let g : Rn −→ C such that for all f ∈ S the integral

∫
Rn
g(x)f(x) dx

converges. Similarly, we may suppose f ∈ D and pick g such that the integral above
makes sense. In any case, we may think of g as a linear functional on S or on D given
by

g(f) :=

∫
Rn
g(x)f(x) dx.

It is easy to show the continuity of g. Therefore, regular distributions are then distribu-
tions. As said earlier in the introduction, those are the most natural kind of distribu-
tions, and every construction presented in this chapter will be an attempt to generalize
its properties.

3. The Dirac delta function δx is a distribution for each x ∈ Rn, defined as f 7−→
δx(f) := f(x). At the origin, it may be conceived as the limit of a net of functions
χε : R −→ C given by

χε(x) :=

{
1
ε ‖x‖ ≤ ε/2
0 otherwise.

Consider now each χε as a regular distribution, as presented in the previous example;
let F be the primitive of f , and then
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lim
ε→0

χε(f) = lim
ε→0

∫
f(x)χε(x) dx

= lim
ε→0

∫
‖x‖≤ε

f(x)χε(x) dx

= lim
ε→0

F (ε)− F (−ε)
ε

= f(0).

It is possible to consider other limit sequences to δx – see [7].
4. Consider the function θ : Rn −→ C

θ(x) :=

{
1 xj ≥ 0

0 otherwise

for some 1 ≤ j ≤ n and the regular distribution induced by it, represented by H. We
call it the Heaviside distribution.

5. Not all linear functional on D are linear functionals on S , although the opposite
is true. For instance, consider

e(f) :=

∫
R
f(x)ex

4
dx

which does not makes sense for all f ∈ S . This example was extracted from [7], section
Distribuições e Distribuições Temperadas.

A fundamental concept concerning distributions is the support. For a function, its
support is simply the closure of the set of points where the function is not null. For a
distribution, the support is not a subset of the space of functions over which it is defined,
but a subset of the domain of those functions: a point x ∈ Rn is sad to be in the support
of a given distribution T if for each neighbourhood N of x there exists a function f ∈ D
with supp f ⊂ N such that T (f) 6= 0.

Lemma 4. The support of a distribution is closed.

Proof. Consider x /∈ supp T : it means that x has an open neighbourhood U0 such that
∀f ∈ D with supp f ⊂ U0, T (f) = 0. If U0 ∩ supp T 6= ∅, since we are dealing with Rn

with its usual topology, we may shrink U0 to an open subset U ′ ⊂ U0, x ∈ U ′ disjoint
of supp T . Therefore the complement of supp T is a neighbourhood of each one of its
points, and so is open.

Equivalently, the support of T is then held as the smaller closed set K ∈ Rn such
that T |KC = 0.

If f is a test function in D whose support is disjoint of the support of a distribution
T given, then T (f) = 0. Let x ∈ supp f ; as x /∈ supp T , it has a neighbourhood N
such that for all ψ with supp ψ ⊂ N , T (ψ) = 0. Since supp f is compact, consider a
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finite open covering O1, . . . , On and a partition of unity subordinated to this covering
in a way that we may write f = ψ1 + · · · + ψn, again with T (ψj) = 0. Then T (f) =
T (ψ1)+ · · ·+T (ψn) = 0. However, it is not enough for f to be null in the support of T to
ensure that T (f) = 0: namely, suppose D(R) and consider T ∈ D∗(R) as T (f) := δ0(f ′),
so we have supp T = {0}, but T (f) may be different of 0 while f(0) = 0.

Another important concept for distributions is the singular support: defining it by
complementarity, a point x ∈ Rn is sad to be not in the singular support of T , denoted
by sing supp T , if it has a neighbourhood N such that there is f ∈ D (or in S ) with
supp f ⊂ N such that T = f in D(N) (or in S (N)). What that means is that the
singular support of a distribution is a subset of Rn where this distribution is not regular.
It may also be proved to be closed.

Example: The support of δx and its singular support are both {x}, since around
at any other point it may be described in terms of the null distribution. The Heaviside
distribution has support R+ and singular support {0}. Another example, of great interest
in the context of Quantum Field Theory, is the distribution

u(x) =
1

x+ i0+
,

i.e., the limit value of the sequence of regular distributions u(x) := (x+ iε)−1 as ε −→
0+,

u(f) = lim
ε−→0+

∫
R

f(x)

x+ iε
dx = lim

ε−→0+

∫ ∞
ε

f(x)− f(−x)

x
dx− iπδ0(f)

whose singular support is {0} – see [16] for the details.

Extending the definition concerning functions, we may define the derivative of a
distribution as

∂αT (f) := (−1)|α|T (∂αf) . (2.4)

The reason for this definition (and for the term (−1)|α|) lays on regular distributions.
Suppose T is induced by some g and consider f ∈ D(R). Thus, integrating by parts,

dg

dx
(f) =

∫ (
dg

dx
(x)

)
f(x)dx

= f(x)g(x)|R −
∫
f(x)

(
df

dx
(x)

)
dx

As supp f is in a compact subset of R, the term fg(x) is null. By induction and extension
to Rn, one obtains the result for regular distributions in Rn.
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It is possible, however, to make the same definition from a more analytical way. The
derivative of a distribution may be conceived as the limit

lim
a→0

Taj − T
a

where Taj means the distribution T translated in its jth component by a. Hence,

∂|α|T (f) = lim
a→0

Taj (f)− T (f)

a
= lim

a→0

T (faj )− T (f)

a

= T

(
lim
a→0

faj − f
a

)
= −T

(
∂f

∂xj

)
where faj (x) = f (x− (0, . . . , 0, a, 0, . . . , 0)).

Examples:

1. The nth derivative of the delta distribution in S (R) is simply (−1)nf (n)(0).

2. For the Heaviside distribution,

H ′(f) = −H(f ′) = −
∫

R
θ(x)f ′(x)dx = −

∫ ∞
0

f ′(x)dx = f(0)−��
��*0

f(∞)

so that we identify H ′ ≡ δ0.

There are some statements which are quite important and will be used in this chapter.
We shall present, but not prove them; we refer to [14], section V.3 and its appendix.

Theorem 2 (Regularity theorem). If T ∈ S , then there is a polynomially bounded
function g and a multi-index α such that

T (f) = (−1)|α|
∫
g(x)∂αf(x) dx.

This theorem is proved in the reference as a corollary of another proposition, which
also implies that S is weakly dense in S ∗. It is very interesting that such a demonstra-
tion involves the study of the quantum harmonic oscillator. Namely, it derives from the
proof that the eigenstates of the Hamiltonian for the quantum harmonic oscillator form
an orthonormal basis for L2(R).

2.3 Fourier Transform of Distributions

The Fourier transform of distributions plays an important role in the problem of defin-
ing the product of distributions. We shall recall its definition and some properties for
functions before moving to D or S . Hence, the Fourier Transform of a function
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f ∈ S and the Adjoint Fourier Transform are respectively defined as the functions
F : S → S and F ∗ : S → S given by

F (f)(k) ≡ f̂(k) :=
1

(2π)n/2

∫
Rn
f(x)e−ik·xdx (2.5a)

F ∗(f)(k) ≡ f̌(k) :=
1

(2π)n/2

∫
Rn
f(x)eik·xdx. (2.5b)

We affirm F ∗ is the inverse of F and that both maps take values in S – see the
appendix of this chapter. We define the Fourier transform of a distribution as the
distribution applied to the transformed function, or, properly, as a function F : S ∗ −→
S ∗, T 7→ F (T ) determined by

F (T )(f) ≡ T̂ (f) := T (f̂) (2.6)

for all f ∈ S . Such a definition is inspired by the particular case of regular distributions,
again. Consider g ∈ D as a regular distribution; then, by using the Parseval Identity (see
the appendix) and the fact that the operations of conjugation and the Fourier transform
commute in D – appendix, or [7], we have

(Fg)(f) =

∫
ĝ(x)f(x)dx = 〈F (g), f〉 = 〈g, f̂〉 =

∫
g(x)f̂(x)dx = g(Ff).

The Fourier transform on S ∗ has, then, been defined in a natural way to extend the situ-
ation presented above. Such extension is, thereafter, the only weak continuous extension
of the transform of regular distributions in S :

Theorem 3. The Fourier transform in the space of tempered distributions is a bijec-
tive map, and it is the only weakly continuous extension of the transform of regular
distributions.

The proof of this theorem may be found in the appendix of this chapter.

2.4 Further Operations with Distributions

By further operations with distributions, extended from functions, we mean the product
and the convolution. For the first, suppose g a locally integrable function and T a
distribution. Generalizing the straightforward case of regular distributions, we define
(gT )(f) := T (fg) for all f ∈ D . The natural question arising now is whether and how
we would define the product of two distributions in general. This is not trivial to do,
and we shall return to this problem later. For the convolution, we define the operation
∗ : S ×S −→ S (equivalently for D), as

(f, g) 7−→ (f ∗ g)(x) :=
1

(2π)n/2

∫
f(x− y)g(y)dy (2.7)
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Therefore, this convolution ∗ between functions is associative and commutative. This
will be an unproven statement in this work, but may be easily checked. The intrinsic
relation between convolution of functions and the Fourier transform is shown in the next
lemma, whose proof is in the appendix.

Lemma 5. Let f, g ∈ S . Then,

(i) F [fg] = f̂ ∗ ĝ;

(ii) (f, g) 7→ f ∗ g ∈ S ;

(iii) F [f ∗ g] = f̂ ĝ;

(iv) ∗ is separately continuous. I.e., the map g 7→ f ∗ g for each g ∈ S and for each
f ∈ S held fixed is continuous.

This construction is now extended to the case when one of the elements is a distri-
bution by

(g ∗ T )(f) := T (g̃ ∗ f), (2.8)

where g̃(x) := g(−x). The motivation behind this extension S −→ S ∗ is regular
distributions: consider the regular distributions f, g, and so

(g ∗ f)(h) =

∫
(g ∗ f)(x)h(x)dx =

∫
1

(2π)n/2

(∫
g(x− y)f(y)dy

)
h(x)dx

∝
∫
g(x− y)h(x)dxf(y)dy ∝

∫
(g̃ ∗ h)(y)f(y)dy = f(g̃ ∗ h).

It is possible to notice that g 7−→ f̃ ∗ g, being a continuous transformation in S ,
guarantees that T ∗ f ∈ S ∗. The properties of ∗ now extend to the following.

Lemma 6. For each f ∈ S , the map S ∗ −→ S ∗ given by T 7−→ T ∗ f is weakly
continuous, and it extends the convolution on S in the sense that it extends the notion
of convolution of regular distributions. Besides that,

(i) T ∗ f is a polynomially bounded function of C∞(Rn,C). Furthermore,

∂β(T ∗ f) = (∂βT ) ∗ f = T ∗ (∂βf);

(ii) (T ∗ f) ∗ g = T ∗ (f ∗ g);

(iii) F [T ∗ f ] = f̂ T̂ .

Proof. We follow the proof presented in [13]. A more explicit, but less analytic proof of
part of this lemma may be found in [15], theorem 3 of chapter Microlocal Analysis, by
Alexander Strohmaier.
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As T 7−→ T ∗ f is defined in terms of a bounded map ∗ : S −→ S , it is weakly
continuous:

‖T ∗ f‖S ∗ = sup
‖g‖α,β≤1

|(T ∗ f)(g)| = sup
‖g‖α,β≤1

|T (f̃ ∗ g)| ≤ sup
‖g‖α,β≤1

‖T‖S ∗
∥∥∥f̃ ∗ g∥∥∥

γ,δ

= ‖T‖S ∗ sup
‖g‖α,β≤1

∥∥∥f̃ ∗ g∥∥∥
γ,δ
≤ C‖T‖S ∗‖f‖α,β

The extension from regular distributions is proven above. The associativity in item (ii),
item (iii) and the second part of item (i) all follow from the equivalent statements for
S , since S is weakly dense in S ∗ and since both ∂,F , ∗ and the multiplication by a
function are all weakly continuous in S ∗. For example, item (ii) is verified since the
extension g ∈ S −→ g ∈ S ∗ is well defined, and since so is g ∗ f ∈ S −→ g ∗ f ∈ S ∗.
It remains to prove that T ∗ f is polynomially bounded.

Let T ∈ S (Rn). By the regularity theorem presented previously, there is a continuous
bounded function g, some r > 0 and a multi-index β such that

T (fy) =

∫
g(x)(1 + x2)r(∂βxf)(y − x) dx,

where fy means the function f with a translation by y in its argument, fy(x) = f(x−y);
the combination f̃y will then denote (fy)

∼, i.e. f̃y(x) = f(y − x). Thus, setting the
change of variables t := y − x,

|T (fy)| ≤
∫
|g(y − t)||(1 + (y − t)2)|r|∂βf(t)|dt

≤ ‖g‖∞
∫
|[1 + (y − t)2]|r|∂βf(t)|dt

≤ |1 + y2|r‖g‖∞
∫
|(1 + t2)|r|∂βf |(t)dt,

but since ∂βf ∈ S , the above integral converges for each y, from what follows that the
function y 7→ Tf̃y is polynomially limited. Using the expression above for Tf̃y in terms
of the regularity theorem, the same may be stated for the derivatives of Tf̃y with respect
to y, thus the function

y 7−→ T (fy)

is polynomially bounded. Suppose now S ∈ S ∗ is a regular distribution; then, for each
g ∈ S ,
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(S ∗ f)(g) = S(f̃ ∗ g) =

∫
s(x)(g ∗ f̃)(x)dx

=

∫
s(x)

(∫
g(y)f̃(x− y)dy

)
dx

=

∫ (∫
s(x)f̃y(x)dx

)
︸ ︷︷ ︸

(∗)

g(y)dy

= S(f̃y)(g), S(f̃y) ∈ C for each y.

We thereafter see y 7−→ S(f̃y) may be regarded as a function of Rn −→ C if both S and
f are held fixed, and S ∗ f ≡ S(f̃). It follows from the regularity theorem that for each
tempered distribution T, T = ∂βS for some S and for some index β, so

(T ∗ f)(g) = T (f̃ ∗ g) = ∂αS(f̃ ∗ g) = (−1)|α|S(∂αf̃ ∗ g)

= (−1)|α|
∫
S(x)(∂αf̃ ∗ g)(x) dx

= (−1)|α|
∫
S(x)

∫
∂αf(t− x)g(t) dt dx

=

∫
∂αS(x)g(t)f(t− x) dt dx

=

∫
T (f̃t)g(t) dt

May no misunderstanding remain: for each f ∈ S , T 7−→ T ∗ f defines a map in
S ∗. What this lemma shows is that this map is determined by a bounded function
Rn −→ C, x 7−→ T (f̃x), which allows us to understand the convolution defining also a
map T ∗ f : Rn −→ C as

(T ∗ f)(x) := T (f̃x).

In fact, we could have started with the latter definition and constructed the former
one.

Lemma 7. Let T be a tempered distribution, and let f be a function in the Schwartz
space. Then, the Fourier transform of their product, f̂T , is a polynomially bounded
function of Rn −→ C given by

f̂T (y) := T (fζy). (2.9)
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where

ζy : Rn −→ C, ζy(x) := e−i y·x

Proof. Let P be the parity operator Pf(x) −→ f(−x) and Uy be the translation operator
for each y, so that we have f̃y = PUyf – this is just to bring an easier notation for this
proof. According to last theorem and to the appropriate commutation relations – see
[7],

f̂T (y) = F [fT ](y) = [f̂ ∗ T̂ ](y)

= T̂ (PUyFf) = T (FPUyFf)

= T (F−1UyFf)

= T (F−1F ζyf) = T (ζyf)

Corollary. If f ∈ S is identically one on a neighbourhood of the support of the dis-
tribution T, then T̂ (k) = T (fζk). A function f like this will be eventually called a
localization.

This dubious character of the convolution and the notions of both Fourier transform
and convolution for distributions are fundamental for the development of product of
two distributions, say T and S, by what we mean another distribution W ≡ TS
such that the previous developments are extended. In better words, we saw that in
the particular case where S is a regular distribution, the product is well defined as
ST (f) = T (Sf).

The first idealization of a product of distributions is given as follow:

Theorem 4. Let T, S ∈ D∗ be such that sing supp T ∩ sing supp S = ∅. Then there is
a unique W ≡ ST ∈ D such that

(i) if x /∈ sing supp (S), S ≡ F a C∞ function in a neighbourhood of x, W = FT in a
neighbourhood on x. That is, if S(f) =

∫
F (t)f(t)dt for all f with support in open

set about x, then W (f) = T (Ff);

(ii) if x /∈ sing supp (T ), W = GS in the same way.

Proof. 1 It should be noticed that there is no redundancy in the theorem above: it does
not state the existence of two different distributions W1 and W2, one satisfying item (i)
while the other satisfies item (ii); on the contrary, it is one unique distribution which
satisfy both statements if the hypothesis is true.

1This proof contains probably too much details about partitions of unity. The reason is that the
author did not know what they were and how to work with them until he had to study this theorem.
Later the author decided to maintain all this details, at least in respect regarding his colleague Ricardo
Costa de Almeida, who lost some time explaining them to him.
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There are two points to be proved: the first is that such a W exists, while the second
is that it is unique. We first assume the existence of such a distribution and prove its
uniqueness in the following way: we suppose the existence of two distinct products for
one given pair of distributions, then we show that in a neighbourhood of a point in the
ball B(0; 2R) ≡ B(2R) the products must be equal, in the sense they must have the
same value whenever applied to a function whose support is in this neighbourhood of
such a point. Then, we take a set of points in the ball B(2R) such that a collection of
neighbourhoods of these points define a covering of the ball B(R). Taking after that
an appropriate set of functions, it is possible to show that for whichever given function
in D with support in B(R) there is a way to localize this function in order to conclude
that the products of the distributions are equal when applied to this function. The
next step, having proved that the products coincide for any R > 0 and for any f ∈ D
with supp f ∈ B(R), is to extend the ball in a manner to produce a unique product of
distributions which is also a distribution — a construction that requires an important
property of the space D . The last part shall be to prove that a certain candidate to
product indeed satisfies the theorem.

Therefore, let W1 and W2, both satisfying the theorem, be defined as products of
S and T . Let also R > 0 and B(0; 2R) ≡ B(2R) ⊆ Rn. Since the singular supports of
the distributions S and T are disjoint, for each x ∈ B(2R) there is r = r(x) such that,
for each g ∈ D with supp g ⊆ B (x; r(x)), W1(g) = W2(g) — once x is not in (at least)
one of the singular supports, both W1 and W2 satisfy (at least) one of the items of the
theorem, so being equal in the neighbourhood B (x, r(x)) of x.

Let now A := {Aj}j∈Λ be a pre-compact open covering of Rn made of open balls,
and let ρ := {ρj}j∈Λ be the partition of unity associated to A — which exists, since Rn

is both Hausdorff and paracompact. For R > 0, consider f ∈ D so that supp f ⊆ B(R);
then, for each x ∈ Rn,

f(x) = f(x)
∑
j∈Λ

ρj(x) =
∑
j∈Λ

(fρj)(x)⇒

f =
∑
j∈Λ

fρj ≡
∑
j∈Λ

fj ,

fj := fρj for all j ∈ Λ. The second sum above may be rewritten as follows: let
C ⊂ Λ, C ′ := {j : supp f ∩ Aj 6= ∅}, and suppose A is not redundant (i. e., for each
j ∈ Λ, @ j′ ∈ Λ, j′ 6= j such that Aj′ ⊂ Aj). Then, if C ′ is infinite, by the compactness
of supp f we may take C ⊆ C ′ finite. Thereafter, since for any x ∈ supp f , ρj(x) = 0 if
j /∈ C (because in these circumstances the definition of C implies that x /∈ supp ρj),

f =
∑
j∈C

fj .

Now, in order to obtain a covering of B(R), we may extend C to a J ⊂ Λ such that
C ⊆ J and {Aj}j∈J is a finite open covering of B(R). By the last argument,
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f =
∑
j∈C

fj =
∑
j∈J

fj .

For each j ∈ J, fj is a C∞ function, since both f and ρj are. We may conclude, according
to the previous discussion, that W1(fj) = W2(fj)⇒W1(f) = W2(f), and we obtain the
existence of, at most, one product W for given T, S for some R > 0.

To prove the existence of the product, for each x ∈ B(R), x belongs to at most one
of the singular supports of the distributions T and S, so we may construct

WR(f) =
∑

j∈J1⊆J
T (Fjfj) +

∑
j∈J2⊆J

S(Gjfj)

That is, in each open set Aj ∈ {Aj}j∈J at least one of the distributions T and S is
regular; we take J1, J2 ⊆ J , J = J1 ∪ J2, J1 := {j : T is regular in Aj}, T being given in
terms of the function Gj in Aj if j ∈ J1, and J2 := {j : S is regular in Aj} with S being
given in terms of the function Fj in Aj if j ∈ J2. For f ∈ D , we may verify that such an
WR satisfies the conditions of the theorem: T, S ∈ D∗ implies WR ∈ D∗; furthermore, if
x ∈ B(R), and if x /∈ sing supp S for example, in a neighbourhood N ⊆ B(R) of x S is
regular, fj = 0 in the outside of a sub-covering of N and thus

WR(f) | N = WR(f) =
∑

j∈J1⊆J
T (Fjfj)

By symmetry, we may have the same for S. Finally, if x is not in the singular support
of both distributions,

WR(f) | N = WR(f) =
∑

j∈J1⊆J
GjFjfj +

∑
j∈J2⊆J

FjGjfj .

At last, we note that for each R > 0 fixed we may construct a product of distributions.
Since this product is unique, if we define WR and W ′R with R < R′, both must agree
on D(B(R)); as for a functional on D(Rn) to be continuous it is a sufficient condition
that it is continuous in each D(B(R)), we may put all the WR together to construct a
product of distributions over the entire D .

The first natural generalization to be made from the established notion of product of
distributions is the construction of a product of distributions which may have a common
non-empty singular support. That said, given T, S ∈ D , we say there is a product
TS ≡W ∈ D if for each localization f of W and for each k ∈ Rn, the integral

F [f2TS](k) =

∫
Rn

F [fT ](l)F [fS](k − l)dl (2.10)

is absolutely convergent, for reasons to be justified in the next theorem, which also states
the agreement with the previous definition.
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Theorem 5.

(i) The product of distributions with a (possibly) common singular support is well
defined. I. e., there is at most one distribution W , given T and S, such that the
integral (2.10) above exists and converges absolutely;

(ii) If T = f is a regular distribution, then TS exists and (TS)(g) = S(fg) ∀g;

(iii) If TS, SV , T (SV ) and (TS)V all exist, then the product is associative;

(iv) If the singular support of the distributions are indeed disjoint, then the
definition (2.10) is in agreement with theorem (4);

(v) If both T and S have compact support, then the product exists if and only if
T̂ ∗ Ŝ converges absolutely and is a polynomially bounded function;

(vi) If for all x ∈ Rn there is f ∈ D with f(x) 6= 0 such that the right side of
(2.10) is absolutely convergent and defines a polynomially bounded function, then
the product exists;

(vii) If the product exists, then its support is in the support of each of the
distributions.

Proof. The expression (2.10) means the same as

F
[
f2TS

]
(k) = (f̂T ∗ f̂S)(k)

and it is defined therefore in terms of the convolution f̂T ∗ f̂S of polynomially limited
functions, with polynomially-boundedness not enough to guarantee the convergence of
this convolution. Notice that this is quite similar to F (fg) = f̂ ∗ ĝ.

For item (i), suppose W1 and W2 are two distributions satisfying (2.10) for a common
pair T, S. Let x ∈ Rn and suppose f and g localizations around x, such that F

[
f2W1

]
=

f̂T ∗ f̂S and F
[
g2W1

]
=
(
ĝT ∗ ĝS

)
. We may then write F

[
f2g2W1

]
= F

[
f2g2W2

]
around x since, in general,

F
[
gf2W

]
=
(
ĝfT ∗ f̂S

)
=
(
f̂T ∗ ĝfS

)
,

which is a direct consequence of ĝ ∗
(
f̂T ∗ f̂S

)
=
(
ĝ ∗ f̂T

)
∗ f̂S together with the

hypothesis of convergence for the integrals. By repeating the procedure of the last
theorem, we then obtain W1 = W2.

We prove item (ii): let f ∈ D and T ∈ D∗, and consider f as an element of D∗ then,
for a localization g around some x ∈ Rn we have

(
ĝf ∗ ĝT

)
(k) =

∫
ĝf(k − l) ĝT (l)dl,
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but this integral on the right side of the equality converges absolutely because gf ∈
D 7−→ F (gf) ∈ S , so that while ĝT has its growth polynomially limited, ĝf fall down
faster than any polynomial. Making this statement precise, we write

∫
|ĝf(k − l)| · |ĝT (l)| dl ≤ C

∫
|ĝf(k − l)| · (1 + l2)N dl <∞

which is valid for some C,N > 0.

Suppose TS, SV , (TS)V and T (SV ) all exist. Then

F
[
f2(TS)V

]
(k) =

(
f̂(TS) ∗ f̂V

)
(k) f =: g2

=
[(
ĝT ∗ ĝS

)
∗ f̂V

]
(k)

=

∫ (
ĝT ∗ ĝS

)
(k − l) f̂V (l) dl

=

∫
ĝT (k − l − t) ĝS(t) f̂V (l) dt dl

r := t+ y ⇒
∫
ĝT (k − r) ĝS(r − l) f̂V (l) dr dl

=

∫
ĝT (k − r)

(
ĝS ∗ f̂V

)
(r) dr

=
[
ĝT ∗

(
ĝS ∗ f̂V

)]
(k).

To prove item (iv), suppose x /∈ sing supp T . If x ∈ sing supp S, then item (ii) completes
the proof. Due to the localization process, if x lays in neither the singular supports,
then the product of the distributions is a product of functions and the convolution is
well defined.

For item (vii), suppose x /∈ supp T , and let also a neighbourhood N of x and a
localization f ; from x /∈ supp T , we may choose N such that T (f) = 0 and supp f ⊂ N .
Now, for any g ∈ D , fT (g) = T (fg) = 0 ⇒ f(TS) = (fT )S = 0. For any localization
h on N , TS(f) = TS(fh) = (fTS)(h), so we have proved TS(f) = 0 for all f with
support in N . According to the last theorem, we may expand this result to the whole
space.

Examples: The Dirac delta distribution, for instance, is such that f̂ δ(x) = δ(fζx) =

f(0)ζx(0) = f(0). If the product exists, then f̂2δ2(x) =
∫
f̂ δ(x−y)f̂ δ(y) dy =

∫
f2(0) dy =

f2(0)
∫
dy =∞. We conclude the absence of δ2.

The second possible generalization of product of distributions is related to certain
directions we may take to achieve the points of Rn. Consider, for instance, that to each
point in Rn there is a cone associate, in such a way that whenever we take the limit
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to the vertex of the cone we get the starting point of Rn, and suppose the direction
in which the limit to Rn is taken is held fixed at each point. Furthermore, suppose
also there are distributions defined in each one of those cones, and we require them
to be asymptotically regular, in the sense that they are regular and tend to a (not
necessarily regular) distribution in Rn when the limit is taken. In those circumstances,
whenever the product of (regular) distributions is defined in the cone, it is possible to
define a product of the limit distributions in Rn. We shall make this idea precise.

Let T ∈ S ∗(Rn), let C be a cone in Rn and let F : Rn + iC −→ C be an analytic
function. Consider a η0 ∈ C fixed, and let F (x− iη0) define a regular distribution such
that

∫
Rn
F (x+ iη0t)f(x)dx

t→0−−→ T (f)

for all function f ∈ S (Rn + iC). under these conditions, the distribution T is called
the boundary value of the distribution F and may be denoted by BV (F ). Now,
consider that F and also a G are not only analytic, but polynomially bounded at infinity
and as their imaginary parts tend to zero. If the boundary values of both F and G
exist, then it can be shown that BV (F )BV (G) = BV (FG), i. e., that the product
of distributions in Rn exists and equal the boundary value of the product of regular
distributions. Suppose BV (F )BV (G) exists, and let TF (t) and TG(t) represent the
regular distributions associated to F and G respectively, that is

F (t) ≡ F (η0, t)(f) =

∫
F (x+ iη0t)f(x)dx

and similar to G. Finally, let also (tk)k ∈ R converge to zero, and

[TF (η0, t
′
k′)TG(η0, tk)](f) = G(tk)

(
F (t′k′)f

)
=

∫
G(x+ η0tk)F (x+ iηot

′
k′)f(x)dx

⇒ lim
k′→∞

∫
G(x+ η0tk)F (x+ iηot

′
k′)f(x)dx = BV (F )(G(tk)f) = [TGBV (F )](f)

⇒ lim
k→∞

[TGBV (F )](f) = lim
k→∞

BV (F )(G(tk)f)

= BV (F )( lim
k→∞

G(tk)f)

=

[(
lim
k→∞

TG(tk)

)
BV (F )

]
(f)

= BV (FG)

which proves that BV (F )BV (G), if existing, equals to BV (FG). To show that the
product exists in the sense established in (2.10), we consider a localization f of BV (FG)
and write
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∫
f̂F (k − l)f̂G(l) dl =

∫
F (fζk−l)G(fζl) dl

=

∫
F (x+ iη0t)f(x)ζk−l(x)G(y + iη0t)f(y)ζl(y) dx dy dl

=

∫
F (x+ iη0t)G(y + iη0t)f(x)f(y)e−ikxe−i l(y−x) dx dy dl

=

∫
F (x+ iηt)G(x+ iηt)f2(x)e−ikxdx

=

∫
(FG)(x+ iηt)f2(x)ζk(x)dx

t→∞−−−→BV (FG)(f2ζk) = F [f2BV (FG)]

Thereafter, we conclude the product exists and agrees with (2.10).
With the previous idea of a direction in which a distribution is regular, or asymp-

totically regular at least, we may think of a point (x, k) ∈ Rn × (Rn\{0}) where a given
distribution T ∈ D(Rn) has a locally polynomially bounded Fourier Transform in the
cone around k, thus extending (2.10). Precisely, a point (x, k) ∈ Rn× (Rn\{0}) is called
a directed regular point of a distribution if there exist a neighbourhood M of k and
a neighbourhood N of x, besides a localization function g ∈ D , g | N ≡ 1 such that for
all p ∈ M and all λ ∈ R+

0 and for each given m > 0, there is a constant C = C(m) > 0
which satisfies

| ĝT (λp) | ≤ C(1 + λ)−m.

Therefore, a point (x, k) ∈ Rn× (Rn\0) is a regular directed point of a given distribution

T ∈ D∗(Rn) if and only if the localization gT around x defines a function ĝT which falls
faster than any power in a cone around k. When we introduced this idea of a cone for
each point in Rn with a distribution defined within, it may seemed we were considering
two different spaces: Rn, in which the vertices of the cones would lay, and the family of
spaces C. However, what has to be understood from this formalism is that there is a
unique space, Rn, and there might be directions in which a given distribution is regular,
while it may not be regular in others. Notice that defining a family of directions for a
point in Rn is the same of defining a cone around it.

In the next theorem, we may conceive a directed regular point as an extension of a
regular point – in such a way that in the limit when the cone reduces to Rn, that is, in
the limit to the vertices of the cones, the directed regular points become regular points.

The complement in Rn×(Rn\{0}) of the set of directed regular points of a distribution
is called the wave front set of the distribution. If T is the given distribution, we
denote its wave front set by WF (T ).

Lemma 8. Let T be a distribution. Then
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(i) WF(T) is closed;

(ii) For each x ∈ Rn, the set WFx(T ) := {k ∈ Rn : (x, k) ∈WF (T )} is a cone;

(iii) WF (T + S) ⊆WF (T ) ∪WF (S);

(iv) {x : WFX(T ) 6= ∅} = sing supp (T );

(v) If T is a tempered distribution whose Fourier Transform has support in a closed
cone, then, for each x, WFx(T ) is a subset of the cone;

(vi) Let D be a diffeomorphism from Rn −→ Rn and let T ◦D be the distribution defined
as (T ◦D)(f) = T (J−1(f ◦D−1)) where J is the Jacobian matrix. Defining D∗ :
Rn×(Rn\{0}) −→ Rn×(Rn\{0}) as the function that maps (x, y) 7−→ (D(x), J∗k).
Then WF (T ◦D) = D∗ (WF (T )).

Proof. Items (i) to (iii) follow from definition. See [13] for the others.

Examples: Once again, consider the Dirac delta function. We know sing supp δ =
{0}, so that its wave front set, if not empty, has to be like {(0, k)} for some set of ks
in Rn\{0}. In fact, for any k ∈ Rn, the value of ĝδ(λp) for λp in a neighbourhood of
k depends on the localization and does not fall at all, it is constant. We conclude that
WF (δ) = {(0, k) : k ∈ Rn\{0}}.

The following theorem concludes our discussion about the produc of distributions.

Theorem 6. Hörmander’s condition for the product of distributions. Let T
and S be two distributions, and suppose that the set WF (T )

⊕
WF (S) := {(x, k1 +k2) ∈

Rn × Rn : (x, k1) ∈ WF (T ), (x, k2) ∈ WF (S)} is a subset of Rn × (Rn\{0}) — that
is, k1 + k2 6= 0. Under these conditions, the product of the distributions exists and
WF (TS) ⊆WF (T ) ∪WF (S) ∪ [WF (T )

⊕
WF (S)].

Proof. See [13] or [17].

2.5 Distributions on Manifolds

Let E −→ M be a K-vector bundle over a smooth manifold M with a smooth volume
density dV , and suppose it is equipped with a connection ∇. For each section ϕ ∈
C∞(M,E) and for each k ∈ N we define its k-norm over a subset A ⊆ M as

‖ϕ‖k,A := max
j=0,...,k

sup
x∈A

∥∥(∇jϕ)(x)
∥∥ (2.11)

where ∇j must be understood as the composition

C∞(M,E)
∇−→ C∞(M,T∗M⊗ E)

∇−→ · · · ∇−→ C∞(M,T∗M⊗ · · · ⊗ T∗M︸ ︷︷ ︸
j

⊗E),
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and where
∥∥(∇jϕ)(x)

∥∥ means the norm in the fibre (T∗M⊗· · ·⊗T∗M⊗E)|x. Then, if the
set A is compact, the norm is necessarily well defined. The family of seminorms defined
on D(Rn) and the notion of convergence for test-functions can be transferred to section
through these k norms – which is itself actually a seminorm, but we may call k-norm even
though. Let (ϕn)n, ϕ ∈ D(M,E), we say ϕn −→ ϕ if there is a compact subset K ⊂ M
such that supp ϕn, supp ϕ ⊂ K for all n and if ‖ϕn − ϕ‖k,K −→ 0. The set of sections
in C∞(M,E) with compact support will be represented by D(M,E), and its elements
will be called test-sections. In the context of more general manifolds, the concept
of distributions can be extended as a continuous K-linear map T : D(M,E∗) −→ V in
the sense that for all sequence (ϕn)n −→ ϕ ∈ D(M,E), T (ϕn) −→ T (ϕ), and where
V is a finite-dimensional normed vector space over K = R,C, depending on whether E
is complex or real. We shall represent the space of V -valued distributions on E∗ by
D∗(M,E, V ), even though it is defined over sections of the dual bundle E∗. In what
follows, we shall represent the k-norm omitting the explicit notation for the set K.
The Dirac delta distribution may then be naturally extended to the present context
exactly as expected: for x ∈ M, δx ∈ D∗(M,E,E∗x) is given by δx(ϕ) := ϕ(x); as for
regular distributions on manifolds, if f : M −→ E is locally integrable, then it defines a
distribution through

f(ϕ) :=

∫
M
f(x)ϕ(x) dV

for all ϕ ∈ D(M,E∗).

Lemma 9. Let T be a distribution on D(M,E∗) with values in a normed space V , and
let K be a compact subset of M. Then, there are k ∈ N∗ and C > 0 such that, for all
ϕ ∈ D(M,E∗) with support in K,

‖T (ϕ)‖ ≤ C · ‖ϕ‖k.

Proof. The prove is quite equivalent to (2.3). Assume the inequality above is false for
each pair k,C, so that we may find a non-trivial section ϕk ∈ D(M,E∗) such that

‖T (ϕk)‖ ≥ k‖ϕk‖k.

Since k ∈ N∗, we may define the distribution ψk := ϕk/‖T (ϕk)‖, which satisfy supp ψk ⊂
K and

‖ψk‖j ≤ ‖ψk‖k =
1

‖T (ϕk)‖
‖ϕk‖k ≤

1

k

for all j ≤ k. Hence, (ψj)j converges to 0 in D(M,E∗), and thus T (ψj) −→ T (0).
However, due to the very definition of ψj , we have ‖T (ψj)‖ = ‖T (ϕj)‖/‖T (ϕj)‖ = 1.

52



2.5. DISTRIBUTIONS ON MANIFOLDS

The space D∗(M,E, V ) will be always endowed with a weak topology, i. e., let
(Tn)n, T ∈ D∗(M,E, V ), and we say Tn −→ T if for each ϕ ∈ D(M,E∗) we have
Tn(ϕ) −→ T (ϕ). Notice that this is not at all in conflict with the idea of convergence pre-
sented in the definition of a distribution: suppose D∗(M,E, V ) has a topology such that
T (ϕn) −→ T (ϕ) whenever ϕn −→ ϕ in D(M,E∗). Then, given (Tn)n, T ∈ D∗(M,E, V )
and ϕ ∈ D(M,E∗), we may construct a sequence (ϕn)n ∈ D(M,E∗) such that T (ϕn) =
Tn(ϕ). Then, the condition T (ϕn) −→ T (ϕ) is equivalent to Tn(ϕ) −→ T (ϕ).

Within this extension of distributions to manifolds, the support and the singular
support of a distribution are defined just like they are for D∗(Rn), except that they are
now subsets of M.

For the differential of a distribution T ∈ D(M,E, V ), let P : C∞(M,E) −→ C∞(M,F)
be a differential operator. This operator induces another one, which we call the formal
adjoint P ∗ : C∞(M,F∗) −→ C∞(M,E∗) such that

∫
M
ψ(Pϕ) dV =

∫
M

(P ∗ψ)ϕdV ∀ϕ ∈ D(M,E), ∀ψ ∈ D(M,F∗)

where the integration occurs over the natural pairing of the sections. By using the formal
adjoint of a differential operator, it is possible to extend P above to a linear differential
operator acting on distributions, by defining

P : D∗(M,E, V ) −→ D∗(M,F, V )

T 7−→ PT, (PT )(ϕ) := T (P ∗ϕ)

In the definition of the formal adjoint P ∗, one should notice there is an implicit minus
sign due to the integration by parts, so that in the case P = ∂α we obtain the previous
definition. The continuity of PT follows straightforwardly: let ϕn −→ ϕ in D(M,E);
since P ∗ is a differential operator acting on sections, it is continuous and

(PT )(ϕn) = T (P ∗ϕn) −→ T (P ∗ϕ) = (PT )(ϕ)

Finally, from the properties of both P ∗ and T , P , regarded as a map between distri-
butions, is linear, and if we regard a section as a distribution, then it is equivalent to
consider the action of P over ϕ as a distribution or as a section, i. e.,

(Pψ)(ϕ) = ψ(P ∗ ϕ) =

∫
ψ(P ∗ ϕ) dV =

∫
(Pψ)ϕdV = (Pψ)(ϕ).

Lemma 10. Let (Tn)n, T ∈ D(M,E∗) such that ‖Tn − T‖0 −→ 0. Considering the
sections as distributions, Tn −→ T in D∗(M,E, V ) and, for every linear differential
operator P acting on the sections, (PT )n −→ PT as distributions, with (PT )n ≡ PTn.

Proof. See [10], lemma 1.1.10, for the first part of the proof. The convergence of (PT )n
is then a consequence of the continuity of P on sections,
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PTn(ϕ) = Tn(P ∗ϕ) −→ T (P ∗ϕ) = PT (ϕ)

for each test-section ϕ.

A Appendix: Topics on Fourier Transform

In this appendix, we prove some statements about the Fourier transform of a function.
Recall that for f ∈ S ,

F (f)(k) ≡ f̂(k) :=
1

(2π)n/2

∫
Rn
f(x)e−ik·xdx

F ∗(f)(k) ≡ f̌(k) :=
1

(2π)n/2

∫
Rn
f(x)eik·xdx.

While it is simple to notice that both integrals above are well defined, in the sense
that both converge since f ∈ S , it is not immediately obvious that F and F ∗ do
map functions into S , as it is also not evident that those two functions F and F ∗ are
the inverse of each other. We try to clarify those points here. At first, however, it is
convenient to prove the following statement:

Lemma 11. For all k ∈ Rn and for all f ∈ S ,

((ik)α∂β f̂)(k) = F [∂α(−ik)βf(k)]

for every pair of indexes α, β

Proof.

(kαDβ f̂)(k) =
k|α|

(2π)n/2
∂β
∫
f(x)e−ik·xdx

=
k|α|

(2π)n/2

∫
∂βk f(x)e−ik·xdx

=
k|α|

(2π)n/2

∫
(−ix)|β|f(x)e−ik·xdx

=
1

(2π)n/2

∫
(−ix)|β|

(−i)|α|
f(x)∂αx e

−ik·xdx

= (−1)|α|
1

(2π)n/2

∫
∂αx

[
(−ix)|β|

(−i)|α|
f(x)

]
e−ik·xdx

= (−i)|α|F [∂α(−ik)|β|f(k)]

where in the forth to the fifth line what has been done was to integrate by parts α times:
because f ∈ S , the terms not involving new integrals are null.
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Theorem 7. The Fourier transform F : S −→ S is a linear and continuous bijection,
whose inverse is F ∗ ≡ F−1.

Proof. The linearity of the functions follows immediately from their definitions. Since

‖ f̂ ‖α,β = sup
k
{|k|α|(∂β f̂)(k)|}

= sup
k
{|F [∂α(−ik)|β|f(k)]|}

≤ sup
k

1

(2π)n/2

∫
|∂α(−ix)|β|f(x)|dx

<∞,

the evaluation of the seminorms of the Fourier transform of a f ∈ S leads us to conclude
that f̂ ∈ S for all f ∈ S . That f̌ ∈ S for all f is proved in an analogous way.

In order to prove the continuity of the Fourier transform, consider a λ > 0 such that

∫
Rn

1

(1 + x2)λ
dx <∞.

Then, it follows that

‖ f̂ ‖α,β ≤
∫

(1 + x2)−λ

(1 + x2)−λ
|∂α(−ix|β|)f(x)|dx

< sup
x

{
(1 + x2)λ∂α

[
x|β|f(x)

]
︸ ︷︷ ︸

∈S

}∫
dx

(1 + x2)λ

<∞

Therefore, for each pair α, β we have ‖ f̂ ‖α,β< ∞ ⇒ F is continuous — and, once
again, the proof for the adjoint transform is analogous.

It remains to prove that F and F ∗ are both bijections and that they are, indeed,
inverse operations. Therefore, it must be proved that, for all f ∈ S ,

FF ∗(f) = f

F ∗F (f) = f

One may notice that the first assertion, FF ∗(f) = f , implies that F is surjective, while
the second assertion implies that F is injective: suppose they are both true, and suppose
f ∈ S ; then, on the one hand, there exists a function f ′ ∈ S such that F [f ′] = f :
namely, f ′ = F ∗(f), so F is surjective. On the other hand, suppose f, g ∈ S such that
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F [f ] = F [g]; then, F ∗F [f ] = F ∗F [g]⇒ f = g, so F is injective. We shall prove the
second assertion, the proof of the first being similar.

Consider g ∈ D ⊂ S and let C(ε) ⊂ Rn be the cube of volume (2/ε)n centered at
the origin, with ε > 0 being small enough so that the support of g is in C(ε). Now, let
K(ε) := {k ∈ Rn : kj/(πε) is an integer for each component j}, which is countable since
it is the countable union of countable sets. So, we may write the function g as

g(x) =
∑

k∈K(ε)

(
(ε/2)n/2eik·x, g

)
(ε/2)n/2eik·x

=
∑

k∈K(ε)

ĝ(k)eik·x

(2π)n/2
(πε)n,

the Fourier expansion of g in C(ε), which converges since g is continuously differentiable.
Once Rn is the disjoint union of cubes of volume (πε)n centered at each point of K(ε), the
final expression for g is the Riemann sum for the integral of ĝ(k)eik·x/(2π)n/2. However,
because ĝ ∈ S and so g is continuously differentiable, this sum converges, as stated before,
and converges to the integral, what leads us to finally conclude that F ∗F (g) = g.

Suppose now f ∈ S , and let (fn)n ∈ D be a sequence converging to f — which
exists since D is dense in S . Then, by the linearity of F ∗F ,

F ∗F (f) = F ∗F (fn)−F ∗F (fn − f).

But F ∗F was proved to be continuous, so we conclude that in the limit n → ∞, the
right side of the above equation reduces to

lim
n→∞

F ∗F (fn) = lim
n→∞

fn = f.

Thus, F ∗F (f) = f .

Other important statements about the Fourier transform of a function in the Schwartz
space are the called Parseval’s Identity and Plancherel’s Identity

Theorem 8 (Parseval’s Identity). For each function f ∈ S , 〈f, f〉 = 〈f̂ , f̂〉.

Proof. The proof of this statement follows the same outline of the proof of the previous
theorem. Suppose f a function with compact support, and for some ε small enough

f(x) =
∑

k∈K(ε)

〈(ε/2)n/2 ζk, f〉(ε/2)n/2eik·x

Admitting {(ε/2)n/2eik·x}k∈K(ε) as a basis for L2(C(ε)), then

56
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∫
Rn
|f(x)|2dx =

∫
C(ε)
|f(x)|2dx

=
∑

k∈K(ε)

|〈(ε/2)n/2ζk, f〉|2

=
∑

k∈K(ε)

|f̂(k)|2(πε)2

→
∫

Rn
|f̂(k)|2dk

The theorem is now extended to the Schwartz space provided D is dense in S and both
the Fourier transform and the norm in L2(Rn) are continuous.

Corollary (Plancherel’s Identity). The Fourier transform maintains the product of
each pair of functions in the Schwartz space invariant, i. e., 〈f, g〉 = 〈f̂ , ĝ〉 ∀f, g ∈ S.

Proof. According to the Parseval’s Identity, this corollary is true if f = g. Consider then
the case f = g + h and take 〈f, f〉:

〈f, f〉 = 〈g + h, g + h〉 = 〈g, g〉+ 〈h, h〉+ 〈g, h〉+ 〈h, g〉

= 〈F [g + h],F [g + h]〉 = 〈ĝ + ĥ, ĝ + ĥ〉

= 〈ĝ, ĝ〉+ 〈ĥ, ĥ〉+ 〈ĝ, ĥ〉+ 〈ĥ, ĝ〉

from which we see that

〈g, h〉+ 〈h, g〉 = 〈ĝ, ĥ〉+ 〈ĥ, ĝ〉

h→ ih

−i〈g, h〉+ i〈h, g〉 = −i〈ĝ, ĥ〉+ i〈ĥ, ĝ〉

and so, summing the last equation with the one above multiplied by i,

−i〈g, h〉+ i〈h, g〉 = −i〈ĝ, ĥ〉+ i〈ĥ, ĝ〉

+

i〈g, h〉+ i〈h, g〉 = i〈ĝ, ĥ〉+ i〈ĥ, ĝ〉

⇒ i〈h, g〉 = i〈ĥ, ĝ〉
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therefore proving this corollary. One could also prove this statement by means of the
polarization identity

〈f, g〉 =
1

4

3∑
j=0

i−j〈f + ijg, f + ijg〉.

For the relation between the Fourier transform and the convolution of test functions,
we have the following:

Lemma. Let f, g ∈ S . Then,

(i) F [fg] = f̂ ∗ ĝ;

(ii) (f, g) 7→ f ∗ g ∈ S ;

(iii) F [f ∗ g] = f̂ ĝ;

(iv) ∗ is separately continuous. I.e., the map g 7→ f ∗ g for each g ∈ S and for each
f ∈ S held fixed is continuous.

Proof. (i) For each y ∈ Rn held fixed, we define ζy : Rn −→ C, ζy(x) := e−iy·x and
compute

〈F [ζ−yf ], g〉 =

∫ (
(2π)−n/2

∫
e−i(λ−y)·xf(x)dx

)
ĝ(λ)dλ

=

∫
F [f ](λ− y)ĝ(λ)dλ

=

∫
f̂(y − λ)ĝ(λ)dλ

= (f̂ ∗ ĝ)(y)

which, according to the Parseval’s Identity, is equal to

〈ζyf, g〉 =

∫
e−iy·xf(x)g(x)dx

= F [fg](y)

so proving (i).

(ii) That f ∗ g ∈ S now follows directly from the previous items: the convolution may
be regarded as a composition of Fourier transforms of functions in S , and since
the Fourier transform in S is a bijection as proved previously, this item has been
proved.
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(iii) The procedure is quite the same of item (i):

〈F−1[ζyFf ], g〉 =

∫
F−1[Ff ](λ− y)g(λ)dλ

=

∫
f(y − λ)g(λ)dλ

= (f ∗ g)(y) = 〈ζyFf, g〉 = F [f̂ ĝ](y)

so proving (iii).

(iv) Follows from the continuity of the Fourier transform in S and the argument right
above.
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Chapter 3

The classical theory of wave
equations on manifolds

3.1 Introduction

In Physics, wave equations provide a description of a wide range of phenomena, from the
motion of a string of a musical instrument to the ‘dynamics’ of fundamental particles. In
the context of Quantum Field Theory, we are frequently interested in solving the Klein-
Gordon equation, a particular wave equation which describes bosonic particles, and
which is also related to the Dirac equation for fermions. Before dealing with quantum
theories, we shall analyse the classical wave equation, in the beginning of this chapter
strictly in neighbourhoods of points in a spacetime – that is, we shall consider here M
a timeoriented Lorentzian manifold, and, as the domain of our constructions to come, a
neighbourhood of a point of M. Later, we shall move the results established to the whole
space through the study of the Cauchy problem yet to be defined.

Therefore, the aim of this part is to consider equations of the form

Pu = f, (3.1)

where u is a function or a distribution representing some physical object, as a bosonic
field for instance, and P corresponds to the wave-propagation operator. For example, if
the considered equation describes the dynamics of the states of a quantum system, the
dynamic information is then contained entirely in the operator P. For given P and f ,
where f may be a function or a distribution, we call u the solution of the equation. It
will intrinsically carry some information with respect to the space; however, it is natural
to conceive P being given, somehow, in terms of the metric, the main object describing
the form of the manifold, as may be seen in the next section.

The first step in the study of generalized wave equations will concern fundamental
solutions: and so we shall look for distributions F obeying PF = δx for some x ∈ M,
with the point in this passage being the possibility of obtaining distributional solutions u
to (3.2) from F . It is this distribution F we call a fundamental solution. Next, we shall
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define the Riesz distribution, and, given its properties, it shall be tempting to wonder
whether it may produce fundamental solutions. We shall see why it actually may not,
while a series of Riesz distributions might provide a way to the construction of solutions.
Therefore, we shall have to deal with cutoff methods for the convergence of such a series
and with the consequent error produced. We shall show that it is possible to construct
exact solutions to the wave equation in terms of the approximated ones. The problem
with the method presented here is that it is given in terms of the Riemannian exponential
map through the Riesz distribution, and so it makes sense only locally.

This part of the text was based mainly in [10], which explores the subject from a
quite general framework by using vector bundles structures. However, [15], specifically
the third chapter – which was written by Nicolas Ginoux, one of the authors of [10],
provides a basic, natural and intuitive introduction to the topic, and hence most the
physical motivations and arguments provided in the present text were based on it. As
for examples, [18] and [19] provide physical situations to which the general formalism to
be presented applies.

3.2 The Wave Equations and Fundamental Solutions

Initially, a a wave equation we understand an equation of the form

∂2u

∂t2
−
(
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)
= 0,

the regular wave equation in three dimensions, with u : R × R3 −→ R. Using the
d’Alembert operator, this equation may be restated as

�u = 0.

Therefore, the question of whether or not we may generalize a wave equations to be
defined in some manifold consists on working out a generalization of the d’Alembert
operator on R× R3.

Definition 1. Let E −→ M be a vector bundle over a time-oriented Lorentzian manifold
M. Let also P : C∞(M,E) −→ C∞(M,E) be a normally hyperbolic operator acting on
sections of E, as defined in (1.10). We call

Pu = f (3.2)

the wave equation associated to P for a given f ∈ D(M,E) and for u ∈ D(M,E), to
be understood either in terms of sections or in terms of distributions.

Let x ∈ M; a fundamental solution for P at x ∈ M is a distribution F ∈
D∗((M,E),E∗x) such that

PF = δx. (3.3)
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In other words, F is called a fundamental solution for P at x if for every ϕ ∈ D(M,E∗)

[PF (x)](ϕ) = F (x)(P ∗ϕ) = ϕ(x)

where P ∗ is the formal adjoint to P .

But what fundamental solutions of the generalized equation 3.2 do have to do with
solutions of the wave equation? The answer is that it is possible to obtain sections
solving the wave equation from fundamental solutions. Suppose there is a fundamental
solution F at x, for each x ∈ M, for a given normally hyperbolic operator P , and suppose
also this fundamental solutions depends continuously on the point x, in the sense that
the function x 7−→ F (x)(u) ∈ E∗x is continuous for each u ∈ D(M,E) fixed; fix now a
f ∈ D(M,E∗) and consider

u(ϕ) :=

∫
M
f(x)F (x)(ϕ)dV

for each ϕ ∈ D(M,E∗). Then,

Pu(ϕ) = u (P ∗ϕ) =

=

∫
M
f(x)F (x)(P ∗ϕ) dV

=

∫
M
f(x) [PF (x)] (ϕ) dV

=

∫
M
f(x)ϕ(x)dV

= f(ϕ)

and we have thus obtained back again the wave equation, but now in a distributional
sense. Therefore, if we find a fundamental solution for P for all x ∈ M, we will find
a solution for the wave equation associated to this operator. This intrinsic relation
between these two objects will be used throughout this chapter and, when dealing with
globalization, we shall use it in the opposite direction, i.e., we shall prove the existence
of global fundamental solutions by proving global existence of solutions for the wave
equation.

A useful object in the development of fundamental solutions is the Riesz distribution,
which by itself takes us pretty close to solving the problem in generic manifolds. However,
since it obeys a recursive relation other than what we wish, building fundamental solution
demands some extra work.

3.3 Riesz Distribution

Consider a n-dimensional vector space V over R with a non-degenerate pseudo-inner
product 〈·, ·〉 : V × V −→ R of index one; it is straightforward that V with 〈·, ·〉 is
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isometric to Rn with the Minkowski pseudo-inner product given by the interval of Special
Relativity; we shall use the notation 〈·, ·〉 for the (pseudo-)inner product in whatever
vector space we consider as long as no misunderstanding is possible. Define the function

γ : V −→ R (3.4)

γ(v) := −〈v, v〉

which enabled us to extend the usual classes of vectors in Minkowski space to V , defining
spacelike, timelike and light or nulllike vectors as in Minkowski case.

For each α ∈ C with Re(α) > n, the Riesz distribution is defined in V in terms of
the complex-valued function

R±(α) : V −→ C (3.5)

R±(α)(x) :=

{
C(α, n)γ(x)(α−n)/2 x ∈ J±(0);

0 otherwise
(3.6)

where C(α, n) is a constant w.r.t. x given by

C(α, n) :=
21−απ(2−n)/2

(α/2− 1)![(α− n)/2− 1]!

and with z 7−→ (z − 1)! being the Gamma function, which obeys z! = z(z − 1)!. The
condition on α Re(α) > n implies the functions R± are well-defined for each x ∈ V , and
it is of Ck class as long as Re(α) > n + 2k. Precisely, R±(α) stands for two different
distributions; the one with support in the future leaf of the causal cone around the origin,
R+, is called advanced Riesz distribution, while R−, whose support lays within the
past leaf of the causal cone is named retarded Riesz distribution.

Our main interest in this function is due to the following properties it obeys.

Lemma 12. For each α ∈ C with Reα > n, the functions R±(α) satisfy

�R±(α+ 2) = R±(α). (3.7)

Besides this, R±(α) may be analytically extended to all α ∈ C as a family of distributions.
I. e., for each test function ϕ : C −→ C the map α 7−→ R±(α)(ϕ) may be analytically
extended to the whole C. Finally, it also obeys

supp R±(α) ⊂ J±(0) ∀α ∈ C (3.8)

and

R±(0) = δ0 (3.9)

The combination of expressions 3.7 and ?? results in

�R±(2) = δ0,

a fundamental solution for the usual d’Alembertian operator around the origin.
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Proof. Equation (3.7) follows from two other expressions:

γ R±(α) = α(α− n+ 2)R±(α+ 2)

(gradγ)R±(α) = 2α gradR±(α+ 2)

Assuming them to be both true, we have

−�R±(α+ 2) =
n−1∑
j=0

εj
∂2R±(α+ 2)

∂x2
j

=
∑
j

εj
∂

∂xj

{
1

2α

(
∂

∂x j
γ

)
R±(α)

}

=
∑
j

εj
1

2α

{
∂2γ

∂x2
j

R±(α) +
∂γ

∂xj

∂R±(α)

∂xj

}

=
∑
j

εj
1

2α

{
∂2γ

∂x2
j

R±(α) +
∂γ

∂xj

1

2(α− 2)

(
∂γ

∂x

)
R±(α− 2)

}

=
∑
j

εj
1

2α

{
∂2γ

∂x2
j

R±(α) +
1

2(α− 2)

(
∂γ

∂xj

)2

R±(α− 2)

}

=
∑
j

εj
1

2α

{
2R±(α) +

1

2(α− 2)
(2xj)

2R±(α− 2)

}

=
1

2α

{
−2nR±(α)− 2

α− 2
γR±(α− 2)

}

=
1

α

{
−nR±(α)− 1

α− 2
(α− 2)(α− 2− n+ 2)R±(α)

}
=

1

α
{−nR±(α)− (α− n)R±(α)} = −R±(α).

where (ej)j in an orthonormal basis for V , and ε := 〈ej , ej〉. It remains to prove the
identities which were used. Starting from

γR±(α) = α(α− n+ 2)R±(α+ 2),

we see both sides are null when applied to a point outside J±(0), so, ignoring this
situation,
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(γR±(α)) (x) = C(α, n)γ(x)(α−n+2)/2

= C(α, n)
R±(α+ 2)

C(α+ 2, n)

and C(α, n)/C(α+ 2, n) = α(α+ 2− n) is then a straightforward calculation.
Using again another property of the constants C(α, n) (which may be found in [15]),

the second equality holds, for x outside the causal cone around 0, by considering R±(α)
as a distribution rather than as a function, from

∂iγ ·R±(α)(ϕ) = C(α, n)

∫
J±(0)

γ(x)(α−n)/2 ∂iγ ϕ(x) dx

=
2C(α, n)

(α− n+ 2)

∫
∂iγ(x)(α−n+2)/2ϕ(x) dx

= −2αC(α+ 2, n)

∫
γ(x)(α−n+2)/2∂iϕ(x) dx

= −2αR±(α+ 2)(∂iϕ)

= 2α∂iR±(α+ 2)(ϕ)

for some basis {ei}i describeing the gradient and a compact support test function ϕ. The
extension of R±(α) to the entire complex plane follows now from (3.7). For Reα > n−2,
we may define

R±(α) := �R±(α+ 2)

which is not a definition if we return to the previous case Reα > n, and therefore it is
coherent with the previous established development. Applying this relation recursively,
we define a single analytic function in all C, since R±(α) is analytic in Reα > n and
through the recursive extension of R±(α) the functions agree in open subsets of C. Lastly,
the analyticity of the distribution follows from the analyticity of the function. This
lemma thus enables us to define R± over the whole complex plane, but as a distribution
rather than as a function.

The assertion about the support of the distribution follows from its definition for
Reα > n: as � is a differential operator, the support of R±(α) is invariant under its
action, in the sense that supp (R±(α)|Re(α) > n− 2) ⊂ supp (R±(α)|Re(α) > n).

The last statement, R±(0) = δ0, is not proved completely here. Its proof may be
found in [10], proposition 1.2.4. Indeed, we shall assume part of the conditions for the
proof.

Let K ⊂ V be a compact subset, and let σ : V −→ R be an appropriate bump
function such that σ ≡ 1 in K. Let now ϕ ∈ D(V,C) with support in K. Then we write
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ϕ(x) = ϕ(0) +
n∑
j=1

xjϕj(x)

for some appropriate choice of functions ϕj . Then,

R±(0)(ϕ) = R±(0)(σϕ) = R±(0)

σϕ(0) +
∑
j

xjσϕj


= ϕ(0)R±(0)(σ)︸ ︷︷ ︸

=:cK

+
∑
j

(xjR±(0))︸ ︷︷ ︸
=0

(σϕj)

= cKϕ(0)

Notice xjR±(0) = 0 due to (grad γ)R±(α) = 2α gradR±(α+ 2). Besides that, although
σ depends on the choice of K, cK actually does not: let K ′ ⊃ K be compact; then

cK′ϕ(0) = R±(0)(ϕ) = cKϕ(0).

Now, we only have to show c = 1.
The following claim is presented in the reference [10] and will be assumed here: if

Reα > 1, then

R+(α)(ϕ) =
1

(α− 1)!

∫ ∞
0

rα−1f(r)dr.

where f verifies f(0) = ϕ(0), and with a similar equation regarding R−. The latter
being assumed, then

cϕ(0) = R+(0)(ϕ) = R+(2)(�ϕ)

=

∫ ∞
0

rf ′′(r)dr = −
∫ ∞

0
f ′(r)dr

= f(0) = ϕ(0).

The extension of R±(α) from a particular finite-dimensional vector space V to a
manifold is performed locally. I. e., consider a point p ∈ M, and suppose p admits a star-
shaped neighbourhood Ω ⊂ M of p1. The Riemannian exponential map then provides

1Given p ∈ M, we say a certain neighbourhood N of p is star-shaped if ∀x ∈ N there is a geodesics
connecting p to x entirely contained in N

67



CHAPTER 3. THE CLASSICAL THEORY OF WAVE EQUATIONS ON
MANIFOLDS

a diffeomorphism Ω ≈ exp−1
p Ω ⊂ TpΩ, so to enable us to extend the Riesz distribution

to Ω by pulling it back to TpΩ and applying what has just been developed. We recall
expp : M −→ TpM and define, by extending (µxϕ) ◦ expx by zero outside exp−1

x Ω since
its support is in exp−1

x Ω,

RΩ
±(α, x) : TpΩ −→ C (3.11)

RΩ
±(α, x) := µx exp∗xR±(α)

RΩ
±(α, x)(ϕ) := R±(α)[(µxϕ) ◦ expx] ∀ϕ ∈ D(Ω,C).

where µx : Ω −→ R is the volume-form function defined by dV = µx(exp−1
x )∗ dx′, dx′ the

volume density in TxΩ.With this construction, which we call the locally defined Riesz
distribution with sign + standing for advanced and - for retarded, RΩ

±(α, x) naturally
inherits the following properties from R±(α):

Lemma 13. Recall the function Γx : Ω −→ R as given in (1.8), Γx := γ ◦ exp−1
x . For

each α ∈ C and for each x ∈ Ω such that Ω is star-shaped w.r.t. x,

(i) if Reα > n where n is the dimension of the (finite-dimensional) manifold M,
RΩ
±(α, x) is a continuous function given by

RΩ
±(α, x)(y) =

{
C(α, n)Γ

(α−n)/2
x (y) y ∈ JΩ

±(x)

0 otherwise;

(ii) RΩ
±(0, x) = δx;

(iii) if α 6= 0, then �RΩ
±(α+ 2, x) =

(
�Γx−2n

2α + 1
)
RΩ
±(α, x).

Proof. Recall Γx : Ω −→ R is defined as Γx := γ ◦ exp−1
x . Equations (3.11) and the fact

that for Reα > n the Riesz distribution R±(α) corresponds to a continuous function
implies that

RΩ
±(α, x)(ϕ) = R±(α)[(µxϕ) ◦ expx]

=

∫
TxΩ

R±(α)(y)[(µxϕ) ◦ expx](y) dy

= C(α, n)

∫
γ(y)(α−n)/2[(µxϕ) ◦ expx](y) dy

= C(α, n)

∫
J±(0)

γ(y)(α−n)/2(µx ◦ expx)(y)(ϕ ◦ expx)(y) dy

= C(α, n)

∫
J±(0)

(
Γ(α−n)/2 ◦ expx

)
(ϕ ◦ expx)(µx ◦ expx)(y)dy

= C(α, n)

∫
JΩ
±(x)

Γ(α−n)/2
x ϕdV
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Now, item (ii) follows easily from:

RΩ
±(0, x) = R±(0) [(µxϕ) ◦ expx] = δ0 [(µxϕ) ◦ expx]

= [(µxϕ) ◦ expx] (0) = (µxϕ) (expx(0))

= µx(x)ϕ(x) = ϕ(x) = δx(ϕ)

To prove item (iii), suppose α with Reα > n + 2, and remember the relation
div fX = f divX + 〈gradf,X〉 where f is a function and X is a field, and notice that
〈gradΓx, gradΓx〉 = −4Γx (for the latter one, see [10] lemma 1.3.19 item 1). Considering
the equalities

2α gradRΩ
±(α+ 2, x) = grad(Γx)RΩ

±(α, x);

ΓxR
Ω
±(α, x) = α(α− n+ 2)RΩ

±(α+ 2, x)

which shall not be proved in this work (which are equivalent to the previous relations
for γ; a full proof may be found in [10], proposition 1.4.2), then

�RΩ
±(α+ 2, x) = −div

(
gradRΩ

±(α+ 2, x)
)

= −div

(
1

2α
grad (Γx)RΩ

±(α, x)

)
=

1

2α

(
�Γx ·RΩ

±(α, x)− 〈 grad(Γx), gradRΩ
±(α, x) 〉

)
=

1

2α

(
�Γx ·RΩ

±(α, x)+

− 1

2(α− 2)

〈
grad(Γx), grad(Γx)RΩ

±(α− 2, x)
〉)

=
1

2α

(
�Γx ·RΩ

±(α, x) +
4Γx

2(α− 2)
RΩ
±(α− 2, x)

)
=

1

2α
�Γx ·RΩ

±(α, x) +
���

�(α− 2)(a− n)

α���
�(α− 2)

RΩ
±(α, x)

=
(�Γx − 2n

2α
+ 1
)
RΩ
±(α, x)

Analyticity of the Riesz distribution R±(α) now yields the extension of item (iii) to the
complex plan – while α 6= 0.

If we are to consider the regular d’Alembertian operator on Minkowski space, the
property of the Riesz distribution that �R±(2) = δ0 provides a fundamental solution,
while in general Lorentzian Manifolds the extra term �Γx−2n

2α does not allow us to consider
the case α = 0.
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3.4 The Formal Solution

We shall start the construction of fundamental solutions to 3.2locally, considering a
x ∈ M and a geodesically star-shaped neighborhood Ω of x to be the subset where the
wave equation is to be considered. Suppose the distribution2

R̃±(x) :=

∞∑
k=0

V k
x R

Ω
±(2 + 2k, x), (3.12)

with smooth V k
x ∈ C∞(Ω, E⊗ E∗x), defined as

R̃±(x)(ϕ) =
∞∑
k=0

RΩ
±(2 + 2k, x)(V k

x · ϕ)

for ϕ ∈ D(Ω,E∗), where we regard RΩ
±(2 + 2k, x) as the defined distribution and V k

x · ϕ
means the natural pairing of V k

x and ϕ w.r.t. the E component in the tensor product
E ⊗ E∗x. Such a construction does not only is appropriate to the present context, since
we are looking for an operator F acting on sections ϕ ∈ D(M,E∗), as it makes sense
completely. According to (3.11), RΩ

±(2 + 2k, x) is defined over D(Ω,C), so we may
regard RΩ

±(2 + 2k, x) as a distribution in D (Ω,E,M) by applying RΩ
±(2 + 2k, x) to the

complex component of V k
x · ϕ and leaving the E∗x component untouched. Furthermore,

we shall suppose R̃±(x) provides a fundamental solution. The next step is to calculate
P acting on it; now, it is equivalent to consider the action of a differential operator over
a distribution and over the function defining the distribution, in case it exists. Following
the properties of Riesz distribution,

P R̃±(x) = δx = P
∞∑
k=0

V k
x R

Ω
±(2 + 2k, x) =

∞∑
k=0

P{V k
x R

Ω
±(2 + 2k, x)}

=

∞∑
k=0

{
V k
x �R

Ω
±(2 + 2k, x)+

+
(
PV k

x

)
RΩ
±(2 + 2k, x)− 2∇gradRΩ

±
V k
x

}
= V 0

x�R
Ω
±(2, x)− 2∇gradRΩ

±(2,x)V
0
x +

+

∞∑
k=1

{
V k
x �R

Ω
±(2 + 2k, x) +

(
PV k−1

x

)
RΩ
±(2k, x)− 2∇gradRΩ

±
V k
x

}
= V 0

x�R
Ω
±(2, x)− 2∇gradRΩ

±(2,x)V
0
x +

2There is no reason initially for the series to converge. Hence, 3.12 may not define a distribution. It
will not turn out to be a problem, since we shall introduce cut-off functions. For a while, we shall ignore
this problem.
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+
∞∑
k=1

{
V k
x

(
�Γx − 2n

4k
+ 1

)
RΩ
±(2k, x) +

(
PV k−1

x

)
RΩ
±(2k, x)+

− 2

4k
∇gradΓx·RΩ

±(2k,x)V
k
x

}
= V 0

x�R
Ω
±(2, x)− 2∇gradRΩ

±(2,x)V
0
x +

+

∞∑
k=1

1

2k

{
V k
x

[
�

1

2
Γx − n+ 2k

]
+ 2k

(
PV k−1

x

)
−∇gradΓxV

k
x

}
RΩ
±(2k, x)

= δx = RΩ
±(0, x)

which implies the differential equations

V 0
x�R

Ω
±(2, x)− 2∇gradRΩ

±(2,x)V
0
x −RΩ

±(0, x) = 0 (3.13a)

V k
x

[
�

1

2
Γx − n+ 2k

]
+ 2k

(
PV k−1

x

)
−∇gradΓxV

k
x = 0 k ≥ 1 (3.13b)

However, the first equation may be introduced in the second one: we admit 2kPV k−1
x = 0

for k = 0 and write

V 0
x

(
�

1

2
Γx − n

)
RΩ
±(α, x)−∇gradΓxRΩ

±(α,x)V
0
x = 0

⇒∇2αgradRΩ
±(α,x)V

0
x − α

(
�RΩ
±(α+ 2, x)−RΩ

±(α, x)
)
V 0
x = 0

⇒ 2∇gradRΩ
±(α,x)V

0
x −

(
�RΩ
±(α+ 2, x)−RΩ

±(α, x)
)
V 0
x = 0

⇒ 2∇gradRΩ
±(0,x)V

0
x −

(
�RΩ
±(2, x)−RΩ

±(0, x)
)
V 0
x = 0 (as α→ 0)

and hence yields the equation obtained above from (3.12) when treating k = 0 sepa-
rately in the special case V 0

x = idE. We have concluded that equation (3.12) provides
a fundamental solution to the wave equation iff the coefficients V k

x ∈ C∞(M,E ⊗ E∗x)
satisfy the differential equation

∇gradΓxV
k
x −

[
�

1

2
Γx − n+ 2k

]
V k
x = 2kPV k−1

x , k ≥ 0, (3.14)

with boundary condition V 0
x = idE. The smooth coefficients V k

x which satisfy the so
called transport equation (3.14) are called Hadamard coefficients for P . One
could ask whether it is a significant loss of generality to endow the first equation of
(3.13), regardind k = 0, in the second one, therefore restricting the possible solutions
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of (3.13a) to idE. However, the recursive character of (3.13b) w. r. t. k demands such
constraint, and no reasonable solution to (3.14) is left aside in this way. Of course, this
statement only makes sense if we are able to demonstrate not only the existence, but
also the uniqueness of Hadamard coefficients.

Theorem 9. (Existence and Uniqueness of Hadamard coefficients) Let Ω ⊂ M
be a geodesically convex open subset. Let P be a globally hyperbolic operator induced by
the connection ∇, and let Πy

x denote the parallel transport induced by ∇ from Ex −→ Ey.
Then, there are unique Hadamard coefficients V k ∈ C∞(Ω×M,E⊗E∗) for P , with k ≥ 0,
which are given by

V 0
x (y) ≡ V 0(x, y) = µ−1/2

x (y) Πx
y (3.15a)

V k(x, y) = −kµ−1/2
x (y)

∫ 1

0
µ−1/2
x (Φ(y, t)) tk−1 ΠΦ(y,t)

x (P2 V
k−1)(x,Φ(y, t))dt (3.15b)

for all (x, y) ∈ Ω ×M, where Φ : Ω × [0, 1] −→ Ω, Φ(x, y) := expx(t exp−1
x (y)) and P2

denotes the action of P over the second argument.

In particular, for x = y, for any normally hyperbolic P

V 0(x, x) = idEx

V k(x, x) = −PV k−1(x, x) k ≥ 1

Proof. First, we shall suppose P has well-defined Hadamard coefficients V k
x , and we

prove they are indeed given in terms of the expressions presented in the theorem, hence
we shall conclude the uniqueness of the coefficients. After this, we shall take these
expressions and show they define Hadamard coefficients, which will imply the existence.

Uniqueness: beginning by proving (3.15a), we shall rewrite the transport equation
in order to obtain a geodesics equation. Let x ∈ Ω, and let C(x) = expx (C(0)) be the
light-cone of x; for y ∈ Ω\C(x), we have Γx(y) 6= 0 and we use identities


1

2
�Γx − n = −∇grad Γx lnµ1/2

x

∇grad Γx ln ρk = −2k,

where ρ(x) :=
√
|Γx|, in order to write
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∇grad ΓxV
k
x −

[
�

1

2
Γx − n+ 2k

]
V k
x = 2kPV k−1

x ⇒

∇grad ΓxV
k
x +∇grad Γx

(
lnµ1/2

x

)
V k
x +∇grad Γx

(
ln ρk

)
V k
x = 2kPV k−1

x

⇒∇grad ΓxV
k
x +∇grad Γx

(
lnµ1/2

x + ln ρk
)
V k
x =

=∇grad ΓxV
k
x +∇grad Γx

[
ln
(
µ1/2
x ρk

)]
V k
x = 2kPV k−1

x × µ1/2
x ρk

⇒µ1/2
x ρk∇grad ΓxV

k
x +∇grad Γx

(
µ1/2
x ρk

)
V k
x =

=∇grad Γx

(
µ1/2
x ρk V k

x

)
= 2kµ1/2

x ρk PV k−1
x (3.16)

Hence, for k = 0, we have ∇grad Γx

(
µ

1/2
x ρk V 0

x

)
= 0, which means that µ

1/2
x V 0

x is

parallel trasported by ∇ throughout a geodesics starting at x, from what we conclude

µ
1/2
x (y)V 0

x (y) = Πx
y .

For k ≥ 1, consider once again a point y ∈ Ω\C(x), and let α(t) = expx(t · exp−1
x y)

be a geodesics from x to y, which we reparametrize as β(t) = expx
(
e2t · η

)
, with η :=

exp−1
x (y). This results yields, according to Gauss’ lemma – see [9],

〈β̇(t), β̇(t)〉 = 〈2e2tα̇(e2t), 2e2tα̇(e2t)〉

= 4e4t〈η, η〉 = −4γ(e2tη)

= −4 γ ◦ exp−1
x ◦ expx(e2tη)

= −4Γx(β(t)) = 〈gradc(t)Γx, gradc(t)Γx〉.

Thus, being c : [0, 1] −→ Ω an integral curve of the vector field grad Γx, we may solve
(3.16) exactly by using the variation of parameters method:

(
µ1/2
x ρk V k

x

)
(β(t)) = Πx

β(t)

{∫ ∞
t

dt′Πβ(t′)
x

[
µ1/2
x ρk 2k PV k−1

x

] (
β(t′)

)}

= 2kΠx
β(t)

{∫ ∞
t

dt′
(
µ1/2
x ◦ β

)
(t′)
(
ρk ◦ β

)
(t′)Πβ(t′)

x

(
PV k−1

x

)
(β(t′))

}
,

(
(ρk ◦ β)(t) = (ρk ◦ expx)(e2tη) = |γ(e2tη)|k/2 =

= e2kt|γ(η)|k/2 = e2kt|γ ◦ exp−1
x (y)|k/2 6= 0 since y /∈ C(x)

)
,

⇒ e2kt|γ(η)|k/2
(
µ1/2
x V k

x

)
(c(t))
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= 2k |γ(η)|k/2 Πx
c(t)

{∫ ∞
t

dt′
(
µ1/2
x ◦ β

)
(t′)e2kt′Πβ(t′)

x

(
PV k−1

x

)
(β(t′))

}
dividing by |γ(η)|k/2 ⇒ e2kt

(
µ1/2
x V k

x

)
(β(t)) =

= −2kΠx
β(t)

{∫ e2t

0

du

2u
µ1/2
x (expx(u · η))ukΠ

expx(u·η)
x

(
PV k−1

x

)
(expx(u · η))

}

= −kΠx
β(t)

{∫ e2t

0
duµ1/2

x (Φ(u, η))uk−1ΠΦ(u,η)
x

(
PV k−1

x

)
(Φ(u, η))

}

where u(t′) := e2t′ , u(0) = 1. Uniqueness of Hadamard coefficients then follow, since
if there were a sequence W k

x of Hadamard coefficients other than V k
x , we would have

W 0
x = V 0

x , and, by the recurrence relation in k, W k
x = V k

x henceforth.

Existence: it is now easier to prove the existence of Hadamard coefficients from
expressions (3.15a) and (3.15b). Since they indeed define smooth sections in C∞(Ω,E⊗
E∗x), it is only left to prove the transport equation of the form

∇grad Γx

(
µ1/2
x ρk V k

x

)
= 2kµ1/2

x ρk PV k−1
x (3.17)

for all k ≥ 0. For k = 0,

∇grad Γx

(
µ1/2
x ρ0 V 0

x

)
= ∇grad Γx (Πx) = 0.

On the other hand, for k ≥ 1, since

ρk(y)× tk =
√
|Γx(y)|

k
× tk

=
√
|Γx(y)|t2

k

=

√
|γ ◦ exp−1

x (y)|t2
k

=

√
|γ ◦ t exp−1

x (y)
k

=

√
|γ ◦ exp−1

x ◦ expx ◦ t exp−1
x (y)

k

=
√
|Γx(Φ(t, y))|

k
= ρk(Φ(t, y))

we have
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∇grad Γx

(
µ1/2
x ρk V k

x

)
=

= −k∇grad Γx

{
Πx

∫ 1

0
µ1/2
x (Φ(u, ·))uk−1ρk(·) ΠΦ(u,·)

x

(
PV k−1

x

) [
Φ(e2t, ·)

]
du

}

= −k∇grad Γx

{
Πx

∫ 1

0
µ1/2
x (Φ(u, ·))ρk (Φ(u, ·)) ΠΦ(u,·)

x

(
PV k−1

x

) [
Φ(e2t, ·)

] du
u

}

= −k∇grad Γx

{
Πx

∫ 1

0

[
µ1/2
x ρkΠΦ(u,·)

x

(
PV k−1

x

)] [
Φ(e2t, ·)

] du
u

}

u = e2t ⇒ −2k∇grad Γx

{
Πx

∫ 0

−∞

[
µ1/2
x ρk ΠΦ(e2t,·)

x

(
PV k−1

x

)] [
Φ(e2t, ·)

]
dt

}

= 2kΠx d

dl

∣∣∣∣
l=0

{∫ 0

−∞

[
µ1/2
x ρk ΠΦ(e2t,·)

x

(
PV k−1

x

)] [
Φ
(
e2l, Φ(e2t, ·)

)]
dt

}
τ := t+ l⇒

⇒ 2kΠx d

dl

∣∣∣∣
l=0

{∫ l

−∞

[
µ1/2
x ρk ΠΦ(e2(τ−l),·)

x

(
PV k−1

x

)] [
Φ(e2τ , ·)

]
dτ

}
= 2kΠx

[
µ1/2
x ρk ΠΦ(e2(τ−l),·)

x

(
PV k−1

x

)] [
Φ(e0, ·)

]
= 2kΠx

[
µ1/2
x ρk ΠΦ(e2(τ−l),·)

x

(
PV k−1

x

)]
(·)

The expression above is nothing but the transport equation in the form (3.17) for a fixed
x ∈ Ω, and it remains to consider x varying over Ω: therefore, let U ⊂ Ω, geodesic-convex,
be a neighborhood of p ∈ Ω, so the Riesz distributions are defined for all x ∈ U , and
from expressions (3.15a) (3.15b) we conclude the Hadamard coefficients V k ∈ C∞(U ×
Ω,E∗ ⊗ E) depends smoothly on x.

3.5 The Existence of “True” Fundamental Solutions

We have proved for the series (3.12) that the coefficients V k
x exist and are the unique

smooth functions in C∞(Ω × Ω,E∗ ⊗ E) whenever (3.12) is a fundamental solution to
the wave equation, with Ω ⊂ M a geodesic-convex neighborhood of a certain p ∈ M.
However, there is in principle no reason why the presented series should be well defined as
a distribution, since its convergence is not guaranteed by any property of the Hadamard
coefficients nor by the Riesz distributions. What we shall do next is to introduce cutoff
functions in the series in order to establish a local convergence. Since (3.12) may provide
a exact solution, this cutoff might result in a solution up to an error, which can be
proved to be a smooth function and used in the construction of a new and well defined
fundamental solution – which, in the sense of its definiteness, we called it true solution.
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Therefore, in order to guarantee the continuity of R̃±(x), pick a N > n/2 – this is
just to ensure RΩ

±(2 + 2k, x) is continuous for each k ≥ N , according to lemma (13); let
(εj)j ∈ (0, 1] and let the smooth bump function σ : R→ R be such that supp σ ⊂ [−1, 1]
and

σ(x)

{
= 1 ∀x ∈ [−1/2, 1/2];

∈ [0, 1] ∀x ∈ [−1,−1/2] ∪ [1/2, 1].

We rewrite the previous series as

R σ
±(x) :=

∞∑
k=0

V k
x R

Ω
±(2 + 2k, x)

=
N−1∑
k=0

V k
x R

Ω
±(2 + 2k, x) +

∞∑
k=N

σ

(
Γx
εk

)
V k
x R

Ω
±(2 + 2k, x)

which is possible due to the following lemma.

Lemma 14. (i) For each l ∈ N and each β ≥ l + 1, there is a constant C = C(l, β)
such that, for all ε ∈ (0, 1], ∥∥∥∥dlσ

dxl

∥∥∥∥
F (R)

≤ εC‖σ‖Cl(R).

(ii) Let Ω′ ⊂⊂ Ω (i.e., Ω′ ⊂ Ω and Ω′ ⊂ Ω) be open and relatively compact; then there
is a sequence (εk)k ∈ (0, 1] such that, for each k0 ≥ 0, the expression

(x, y) 7−→
∞∑

k=N+k0

σ

(
Γx(y)

εk

)
V k
x (y)RΩ

±(2 + 2k, x)(y)

=

{∑∞
k=N+k0

C(2 + 2k)σ
(

Γx(y)
εk

)
V k
x (y)Γx(y)k+1−n/2 y ∈ JΩ

±(x)

0 otherwise

defines a smooth section in Ω′ × Ω′\Γ−1
0 and it is continuous in Ω′ × Ω′, where C

is the constant given in item (i). In particular,

∞∑
k=N

σ

(
Γx(y)

εk

)
V k
x (y)RΩ

±(2 + 2k, x)(y)

converges.

Proof. See [10], section 2.4.
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Therefore, after the introduction of the cutoff functions we may regard R̃±(x) as a
distribution; for the change in R̃±(x) after the cutoff introduction, we shall represent it
by R σ

±(x), with the following properties:

Lemma 15. For each x ∈ Ω,

supp R σ
±(x) ⊂ JΩ

±(x)

sing supp R σ
±(x) ⊂ CΩ

±(x)

Proof. Considering item (ii) of lemma 14, we know that for every α ∈ C\{0,−2,−4, . . . }∪
{n − 2, n − 4, . . . }, supp RΩ

±(α, x) ⊂ JΩ
±(x), which ensures us the first property. The

second one follows from sing supp RΩ
±(α, x) ⊂ CΩ

±(x) in the same circumstances for α
and from the discontinuity of the expression in the preceding lemma around the borders
of JΩ

±(x). One should note that the conic structure of both JΩ
±(x) and CΩ

±(x) is implicitly
used in the extension of these statements from RΩ

±(α, x) to R σ
±(x).

Theorem 10. With the conditions of lemma 14, it is possible to take the sequence (εk)k
in a manner that there exist K± ∈ C∞(Ω′ × Ω′,E∗ ⊗ E) with

P(2)R
σ
±(x)− δx = K±(x)

Proof. We want to show the equality between distributions

P(2)

{
N−1∑
k=0

V k
x (y)RΩ

±(2 + 2k, x)(y) +
∞∑
k=N

σ

(
Γx(y)

εk

)
V k
x (y)RΩ

±(2 + 2k, x)(y)

}

= K±(x, y) + δx

where, once again, P(2) is acting on the variable y ∈ Ω. From the properties of Hadamard
coefficients (3.13), we have

N−1∑
k=0

P(2)

{
V k
x (y)RΩ

±(2 + 2k, x)(y)
}

=
[
P(2)V

N−1
x (y)

]
RΩ
±(2N, x) + δx

It is remaining to prove the statement for the series starting at k = N :

P(2)

{ ∞∑
k=N

σ

(
Γx(y)

εk

)
V k
x (y)RΩ

±(2 + 2k, x)(y)

}

=

∞∑
k=N

P(2)

{
σ

(
Γx(y)

εk

)
V k
x (y)RΩ

±(2 + 2k, x)(y)

}

=
∞∑
k=N

{
�

[
σ

(
Γx(y)

εk

)
RΩ
±(2 + 2k, x)(y)

]
V k
x (y)− 2∇gradσRΩ

±
V k
x (y)+

+ [P(2)V
k
x (y)]σ

(
Γx(y)

εk

)
RΩ
±

}
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where we have represented σ ≡ σ
(

Γx(y)
εk

)
and RΩ

± ≡ RΩ
±(2 + 2k, x), omitting their

arguments for the sake of notation. It should be noted that the introduction of the
operator P(2) within the summation is not a trivial consequence of its linearity, since such
a property applies when dealing with the action of the operator on linear combinations of
arguments – therefore finite summations; the veracity of this statement is a consequence
of the fact that if a sequence (Tn)n of regular distributions converge as functions, then it
converges as distributions, and, in particular, the same applies for (PTn)n. Thereafter,

P(2)

{ ∞∑
k=N

σ

(
Γx(y)

εk

)
V k
x (y)RΩ

±(2 + 2k, x)(y)

}

=

∞∑
k=N

{
�

[
σ

(
Γx(y)

εk

)]
V k
x (y)RΩ

±(2 + 2k, x)(y)+

+ σ

(
Γx(y)

εk

)
V k
x (y)�

[
RΩ
±(2 + 2k, x)(y)

]
− 2

[
σ∇gradRΩ

±
+RΩ

±∇gradσ

]
V k
x (y)+

+ [P(2)V
k
x (y)]σ

(
Γx(y)

εk

)
RΩ
±(2 + 2k, x)− 2〈gradσ, gradRΩ

±〉V k
x

}
=

= Σ1 + Σ2 + Σ3

with

Σ1 :=
∞∑
k=N

�

[
σ

(
Γx(y)

εk

)]
V k
x (y)RΩ

±(2 + 2k, x)(y)

Σ2 := −2
∞∑
k=N

∇gradσ[V k
x (y)RΩ

±(2 + 2k, x)(y)]

Σ3 :=
∞∑
k=N

σ

(
Γx(y)

εk

){
[P(2)V

k
x (y)]RΩ

±(2 + 2k, x)(y)+

− 2∇gradRΩ
±
V k
x + V k

x (y)�
[
RΩ
±(2 + 2k, x)(y)

]}
The expression Σ2 contains the inner product involving the gradients; one should also
note that the differential operators �, ∇ and grad, induced by P(2), act only on the
variable y ∈ Ω. Now, by using property (3.13b) – or, even better, the calculus that
drove us to it, we obtain for Σ3

Σ3 =
∞∑
k=N

σ

(
Γx(y)

εk

){
[P(2)V

k
x (y)]RΩ

±(2 + 2k, x)− [P(2)V
k−1
x ]RΩ

±(2k, x)

}

(we redefine the index in the right hand side term:)

78



3.5. THE EXISTENCE OF “TRUE” FUNDAMENTAL SOLUTIONS

= −σ
(

Γx(y)

εN

){
P(2)[V

N−1
x RΩ

±(2N, x)]

}
+

+

∞∑
k=N

{
σ

(
Γx(y)

εk

)
+ σ

(
Γx(y)

εk+1

)}{
[P(2)V

k
x (y)]RΩ

±(2 + 2k, x)(y)
}

︸ ︷︷ ︸
Σ4

and

P(2)R
σ
±(x)− δx = Σ1 + Σ2 + Σ4+

+

[
1− σ

(
Γx(y)

εN

)]
×

{
[P(2)V

N−1
x (y)]RΩ

±(2N, x)(y)
}
.︸ ︷︷ ︸

=

C(2N,n)[P(2)V
N−1
x (y)]Γx(y)N−n/2

or 0, according to lemma 14

Finally, since σ ◦Γ is smooth, the gradients, d’Alembert operators and the difference
σ(Γ/εk)− σ(Γ/εk+1) are all smooth sections, and the last would be the proof that both
Σ1, Σ2 and Σ4 converge w.r.t. the distribution norms defined previously. Due to its
pure computational character, we opted for not to present the rest of the demonstration,
which may be found in [10], chapter 2, lemma 2.4.3.

The smooth errors K± obtained when truncating the series R̃±(x) give rise to a
distribution

K± : Ω′ −→
{
C0(Ω′,E∗)→ E∗

}
[K±(x)](ϕ) :=

∫
Ω′
K±(x, y)ϕ(y)dV

or, equivalently, to an operator

K± : C0(Ω′,E∗) −→ C∞(Ω′,E∗)

[K±(ϕ)](·) :=

∫
Ω′
K±(·, y)ϕ(y)dV

from which it is possible to construct the mentioned true fundamental solutions.

Lemma 16. The operator K± is bounded and, for each k ∈ N, Ck(Ω′,E) in the sense
that if u ∈ Ck(Ω′,E) then so is K±u. The support of K± is such that

supp (K±ϕ) ⊂ JΩ′
∓ (supp ϕ).
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Proof. For a k ∈ N and ϕ ∈ C0(Ω′,E∗),

‖K±ϕ‖Ck(Ω′) =

∥∥∥∥∫
Ω′
K±(·, y)ϕ(y)dV

∥∥∥∥
Ck(Ω′)

≤
∫

Ω′
‖K±(·, y)ϕ(y)‖Ck(Ω′)dV

≤
∫

Ω′
‖K±(·, y)‖Ck(Ω′)dV︸ ︷︷ ︸

=:Ck

·‖ϕ‖C0(Ω′)

= Ck · ‖ϕ‖C0(Ω′).

Besides that, suppose x ∈ Ω′ such that K±(x, y)ϕ(y) = 0; then either ϕ(y) = 0 or

K±(x, y) = 0 (or both), that is, P(2)R
σ
±(x) − δx = 0. Since supp R σ

±(x) ⊂ JΩ′
± (x), we

have supp K±(x, y) ⊂ JΩ′
± (x) and therefore the integrand is not null if y ∈ JΩ′

± (x) ∩
supp ϕ. This is equivalent to supp K± ⊂ JΩ′

± (supp ϕ).

Note that as the Ck-norms were defined they have not to be defined for k = ∞,
so the statement K± : C0(Ω′,E∗) −→ C∞(Ω′,E∗) makes sense as K± : C0(Ω′,E∗) −→
Ck(Ω′,E∗) for each k ∈ N.

Now, for a given bounded operator O in a Banach space, 1 + O is invertible iff
‖O‖ < 1. That is the main idea beneath the following lemma.

Lemma 17. Let Ω′ ⊂⊂ Ω be a relatively compact causal domain and assume vol(Ω′)‖K±‖C0 <
1. Then, for each k ∈ N, the operator 1 + K± : Ck(Ω′,E∗) −→ Ck(Ω′,E∗) is an isomor-
phism whose inverse is bounded and given by the Neumann series

(1 + K±)−1 =

∞∑
j=0

(−1)jK j
± ,

which converges in all k-norms. Furthermore,

supp (1 + K±(x))−1R σ
±(x) ⊂ JΩ′

∓ supp R σ
±(x).

Proof. The operator K± : C0(Ω′,E∗) −→ Ck(Ω′,E∗) is bounded w.r.t. each Ck-norm,
so 1 + K± : Ck(Ω′,E∗) −→ Ck(Ω′,E∗) is also bounded for each k. Suppose k = 0, and
so

‖K±ϕ‖C0(Ω′) ≤ vol(Ω′) ‖K±‖C0(Ω′) ‖ϕ‖C0(Ω′)

= (1− η) ‖ϕ‖C0(Ω′)

where η := 1− vol(Ω′)‖K±‖C0(Ω′) is positive due to the assumption of the lemma. This

means that ‖K±ϕ‖C0(Ω′) < 1 and so the Neumann series
∑∞

j=0(−1)jK j
± converges w.r.t.

the C0-norm to (1 + K±(x))−1. For k 6= 0, consider the norm
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‖ϕ‖2 := ‖ϕ‖C0 +
η

2 vol(Ω′) ‖K±‖Ck
‖ϕ‖C0 .

Evaluating K± with respect to ‖·‖2 yields

‖K±ϕ‖2 = ‖K±ϕ‖C0 +
η

2 vol(Ω′) ‖K±‖Ck
‖K±ϕ‖C0

≤ (1− η) ‖ϕ‖C0(Ω′) +
η

2 vol(Ω′) ‖K±‖Ck
(1− η) ‖ϕ‖C0

= (1− η) ‖ϕ‖C0(Ω′) +
η

2 vol(Ω′) ‖K±‖Ck
vol(Ω′) ‖K±‖Ck‖ϕ‖C0

=
(

1− η

2

)
‖ϕ‖C0 ≤

(
1− η

2

)
‖ϕ‖2,

which means that with respect to ‖·‖2, for each k ∈ N, K± has norm less than one, and
the Neumann series converges.

Regarding the support of the operator, let ϕ be as usual, and we write

(1 + K±)−1ϕ = ϕ− (1 + K±)−1K±ϕ,

which may be checked if one multiplies both sides by (1 + K±). It is then a direct

consequence of this equality together with supp ϕ ⊂ JΩ′
± (supp ϕ) that

supp ϕ = supp
{

(1 + K±)−1ϕ+ (1 + K±)−1K±ϕ
}

⇒ supp
{

(1 + K±)−1K±ϕ
}
⊂ JΩ′

± (supp ϕ)

It provides us with the definition of the distribution

[
FΩ′
± (ϕ)

]
(x) := (1 + K±)−1R σ

±(x) (3.18)

which we shall call the advanced true fundamental solution, FΩ′
+ (x), and FΩ′

− (x)
the retarded true fundamental solution around x ∈ Ω′, once we have proved the
coherence of this nomenclature and their following properties.

Lemma 18. Each point x of the Lorentzian manifold M has an arbitrarily small causal
neighbourhood Ω′ whose elements posses both the advanced and the retarded fundamental
solutions FΩ′

± (x) for P , satisfying

(i) supp FΩ′
± (x) ⊂ JΩ

±(x) for all x;

(ii) the map x 7−→ FΩ′
± (x)(ϕ) for each fixed ϕ is a smooth section in E∗.
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Proof. A fundamental solution can be obtained now by defining

x 7−→ [FΩ′
± (x)](ϕ) := (1 + K±)−1[R σ

±(x)(ϕ)]. (3.19)

We first have to show that FΩ′
± indeed define distributions. Therefore, suppose a

sequence ϕn −→ ϕ in D(Ω′,E∗); according to the previous lemma (1 + K±)−1 is
continuous, ans since R σ

±(x) is a distribution, we have (1 + K±)−1[R σ
±(x)(ϕn)] −→

(1 + K±)−1[R σ
±(x)(ϕ)] = FΩ′

± (x)(ϕ). The statement that FΩ′
± (x) provides a fundamen-

tal solution is now completely justified by

[PFΩ′
± (x)](ϕ) = [FΩ′

± (x)](P ∗ϕ)

= (1 + K±(x))−1[R σ
±(x)(P ∗ϕ)]

= (1 + K±(x))−1[PR σ
±(x)(ϕ)]

= (1 + K±(x))−1[(δx +K±(x))(ϕ)]

= (1 + K±(x))−1[(1 + K±(x))(ϕ)]

= ϕ(x)

⇒ PFΩ′
± (x) = δx

For item (i), let x ∈ Ω′ and consider ϕ ∈ D(Ω′,E∗) with supp ϕ ∩ JΩ′
± (x) = ∅; therefore

x /∈ JΩ′
± (supp ϕ)⇒ x /∈ supp FΩ′

± . Finally, item (ii) follows from 1 + K±(x) defining an
isomorphism between sections and from the character or R σ

±(x).

The relation between the fundamental solution FΩ′
± (x) defined in (3.19) and the

formal series R̃±(x) in (3.12) in terms of how good this cutoff approximation might be
now follows.

Theorem 11. Suppose the formal solution R̃±(x) is truncated at the (N + k)th term
for some k ∈ N, where N is the constant adopted by the beginning of this section. Then,
there is a constant C = C(k) such that∥∥∥(FΩ′

± (x)−R σ
±(x)

)
(y)
∥∥∥ ≤ C(k)|Γx(y)|k

for each pair (x, y) ∈ Ω× Ω.

Proof. The demonstration of this theorem demands two auxiliary lemmas presented in
[10], lemmas 2.5.3 and 2.5.4. We shall combine them in a single statement, which shall
not be proved here.

Statement: Let f : Rn −→ R be C3k+1 for some k ∈ N. If f(v) = 0 for all space-like
v ∈ Rn, then there exists h : Rn −→ R such that f = h · γk.
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Letting RN+k
± (x) represent the formal solution truncated at the (N + k)th term ,

[FΩ′
± (x)−RN+k

± (x)](y) =

= [FΩ′
± (x)−RN+3k+1

± (x)] +

N+3k∑
j=N+k

V k
x (y)RΩ

±(α+ 2, x)(y)

= [FΩ′
± (x)−RN+3k+1

± (x)] +
N+3k∑
j=N+k

Γkx(y)V k
x (y)CjR

Ω′
± (2 + 2(j − k), x)(y)︸ ︷︷ ︸

=:hj(x,y)

is obtained by applying repeatedly the relation3

ΓxR
Ω
±(α, x) = Cj(α, n)RΩ

±(α+ 2, x).

Since 2+2(j−k) ≥ 2+2(N+�k−�k) ≥ 2+2n ≥ n, hj is continuous. Assume [FΩ′
± (x)−

RN+3k+1
± (x)](y) is C3k+1. Since supp

(
FΩ′
± (x)−RN+3k+1

± (x)
)
⊂ JΩ′

± , according to the

statement above, there exists h such that

[
FΩ′
± (x)−RN+3k+1

± (x)
]
(y) = Γkx(y)h(x, y).

Then,

[
FΩ′
± (x)−RN+3k+1

± (x)
]
(y) =

[
h(x, y) +

N+3k∑
j=N+k

hj(x, y)
]
Γx(y)k

and taking Ck to be the norm of the right-hand side term in brackets completes the
proof.

It is still remaining to show that (x, y) 7−→
[
FΩ′
± (x)−RN+k

± (x)
]
(y) is Ck(Ω′×Ω′,E∗).

We have

[
R σ
±(x)−RN+k

± (x)
]
(y) =

= −
N+k−1∑
j=N

(
V k
x R

Ω
±(α+ 2, x)

)
+
N+k−1∑
j=N

σ

(
Γx(y)

εj

)
V k
x (y)RΩ

±(α+ 2, x)+

+
∞∑

j=N+k

σ

(
Γx(y)

εj

)
V k
x (y)RΩ

±(α+ 2, x).

According to the already invoked fact that the last term in the right-hand-side, the
infinite sum, is Ck,

[
R σ
±(x) − RN+k

± (x)
]
(y) is Ck since the finite sums is smooth –

3This equation has already been used in this text; it is proved in [10], proposition 1.4.2 item 3.

83



CHAPTER 3. THE CLASSICAL THEORY OF WAVE EQUATIONS ON
MANIFOLDS

that because (σ(Γx(y)/εj)− 1) vanishes on a neighbourhood of Γ−1(0) where RΩ′
± (2 =

2j, x)(y) is not smooth.
It is also possible to prove that [FΩ′

± (x) − R σ
±(x)](y) is Ck, and the proof of the

theorem will be completed from

[
FΩ′
± (x)−RN+k

± (x)
]
(y) =

[
FΩ′
± (x)−R σ

±(x) + R σ
±(x)−RN+k

± (x)
]
(y).

Motivated by FΩ′
± (x)−R σ

±(x) = [(1 + K±)−1 − 1]R σ
±(x), this is done by showing that

the operator −(1 + K±)−1 ◦K± has an integral kernel, and then splitting the difference
between the fundamental solution F and the formal solution with cut-off in three: a sum
for 0 ≤ j ≤ N − 1, a second for N ≤ j ≤ N + k− 1 and a third one for N + k ≤ j ≤ ∞,
all of them involving this integral kernel of the operator. The last step would then be
to prove that each one of this terms defines a Ck-section – the details may be found in
[10], mainly in theorem 2.5.1.

3.6 Non-homogeneous wave equations

The analysis of equations of the form Pu = f proves to be quite important to the process
of globalization of the formalism just presented, as it may be seen in the next section.
We shall explore this topic quite superficially.

Let ϕ ∈ D(M,E∗), f ∈ D(M,E) and let FΩ
± (x) be the fundamental solution for P in

some appropriate Ω around x. Then, let · denote the natural pairing in E∗x⊗Ex, and set

u±(ϕ) :=

∫
Ω
FΩ
± (x)(ϕ) · f(x) dV.

Since FΩ
± (·)(ϕ) is sequentially continuous, then so is u±, so the expression above does

defines a distribution. We may state about it the following.

Lemma 19. Each point in M possesses a relatively compact causal neighbourhood Ω
such that for all f ∈ D(Ω,E) there is u± like above such that

(i) Pu± = f ;

(ii) supp u± ⊂ JΩ
±(supp f);

(iii) u± ∈ C∞(Ω,E).

Proof. (i) Let ϕ ∈ D(M,E∗).

Pu±(ϕ) = u±(P ∗ϕ) =

∫
FΩ
± (x)(P ∗ϕ) · f(x) dV

=

∫
PFΩ
± (x)(ϕ) · f(x) dV =

∫
ϕ(x) · f(x) dV

= f(ϕ)
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(ii) Assume supp ϕ ∩ JΩ
±(supp f), which equivalent to JΩ

∓(supp ϕ) ∩ supp f . Since
supp FΩ

± (·)(ϕ) ⊂ JΩ
∓(supp f), supp FΩ

± (·)(ϕ) ∩ supp f = ∅, so the integrand in the
definition of u± is null. Therefore, supp u± lays within JΩ

±(supp f).

3.7 Globalization

Until now, we have developed the theory of wave propagation in Lorentzian manifolds
considering only small regions of space, geodesically star-shaped neighbourhoods Ω of a
certain point x in terms of which we wrote the Riemannian exponential map expx, used
implicitly in the function Γ – and, thus, in the Fundamental solution FΩ′

± , to connect
this region of the manifold to a vector space inherited by the vector bundle structure.
In the next natural attempt to follow, one could suppose that globalization would come
from glueing local solutions together by using an appropriate collection of partitions of
unity. However, such a construction would not make sense entirely: by picking up some
point of the manifold belonging to two geodesically star-shaped neighbourhoods Nx and
Ny of certain x and y, it would not be clear which equation to solve and where.

Even if not that straightforward, the globalization process is possible, though quite
technical still, and will be performed in this section. We hereby anticipate that, due to
this technicality level, some parts will not be completely developed within this text and
then will be rather indicated. We start by showing the Cauchy problem is well defined:
let P be a normally hyperbolic operator and let S ⊂ M be a Cauchy surface whose
unit normal timelike future directed vector field we denote by n; we call the problem of
finding a solution u to the equation Pu = f for a given f on M with initial conditions

u = u0

∇nu = u1

along S, for given u0, u1 ∈ D(S,E), the Cauchy problem. Therefore, we first aim at
establishing whether it admits a solution, beginning with the trivial case.

Lemma 20. Let M be a globally hyperbolic manifold with a given vector bundle structure
E defined on it. If u is a solution for the Cauchy problem with f = uo = u1 = 0, then
u = 0.

The proof of this lemma, although quite simple and elegant, demands another result.

Lemma 21. Let ∇ denote the connection inducing P and let Ω be like in lemma 17. For
each x ∈ Ω, let FΩ

± be the exact solution to the wave equation at x, as before. Finally,
let u ∈ C∞(Ω,E) be a solution to Pu = f with boundary conditions u0 and u1. Then,
for each ϕ ∈ D(Ω,E∗), by denoting by ψ the distribution ω ∈ D(Ω,E) 7−→ ψ±(ω) :=∫

Ω ϕ(x)FΩ
± (x)(ω) dV , we have

∫
Ω
ϕ · u dV =

∫
S
{[∇n (ψ+ − ψ−)] · u− [(ψ+ − ψ−) · (∇nu)]} dS.
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Proof. First, we analyse

∫
IΩ
−(S)

ϕ · u dV =

∫
IΩ
−(S)

(P ∗ψ+) · u dV =

∫
IΩ
−(S)

(P ∗ψ+) · u− ψ+ · (Pu) dV.

Let W ∈ C∞(M,TM⊗ K) be the vector field obeying 〈W,X〉 = (∇Xψ) · u− ψ · (∇Xu)
for all X ∈ C∞(M,TM)(see [10], lemma 3.2.1); then, by Gauss’ theorem,

∫
IΩ
−(S)

(P ∗ψ) · u− ψ · (Pu) dV = −
∫
IΩ
−(S)

divW dV =

∫
IΩ
−(S)
〈W, n〉dS

=

∫
IΩ
−(S)
∇nψ+ · u− ψ+ · ∇nu dV

and so

∫
IΩ
−(S)

ϕ · u dV =

∫
IΩ
−(S)
∇nψ+ · u− ψ+ · ∇nu dV.

The demonstration is then completed by repeating the calculations for ψ−, with the
integral being evaluated in IΩ

− and summing the two expressions.

Corollary. supp u ⊂ JΩ(supp u0 ∪ supp u1).

Proof. Let ϕ ∈ D(Ω,E∗), and thus supp FΩ
± (ϕ) ⊂ JΩ

±(supp ϕ). Suppose u is such that
supp uj ∩ JΩ

±(supp ϕ) = ∅ for j = 0, 1, which is the same as JΩ
±(supp uj) ∩ supp ϕ = ∅.

Then, by the statement of the lemma
∫

Ω ϕ · u dV = 0, and the distribution u is null
whenever the support of the test function is disjoint of JΩ(supp u0 ∪ supp u1).

This is all we need to prove lemma 20.

Proof. (Of lemma 20) Since M is globally hyperbolic, it admits a foliation by Cauchy
surfaces R × S, (t, S) ≡ St a Cauchy surface and S0 ≡ S. Let p be a point in M, let
τ ∈ R be such that p ∈ Sτ , and suppose w.l.g. τ > 0; we shall prove u(p) = 0 by proving
u = 0 in each Cauchy surface JM− (p) ∩ St for t ∈ [0, τ ].

We define

t0 := sup{t ∈ [0, τ ] : u|JM
− (p)∩St = 0}

which makes sense due to the boundary conditions established in the hypothesis of the
lemma – i.e., t0 is at least 0. Assume t0 < τ (otherwise the thesis follows). Set u0 := u|St0
and u1 := ∇nu|St0 . If t0 = 0, then u0 = u1 = 0 by hypothesis. If t0 > 0, u0 = u1 = 0 in

JM− (p) ∪ St0 still since u = 0 on JM
− (p) ∩ St ∀t ∈ [0, t0].

Pick x ∈ JM− (p) ∪ St0 , and so x has a relatively compact causal neighbourhood Ω
satisfying lemma 17 and such that JM− (p) ∩ St0 is a Cauchy surface w.r.t. Ω. The
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fact that the sections u0 and u1 are null in JM− (p) ∩ St for all t ∈ [0, t0] implies in
particular that u is null in JM− (p) ∩ JΩ

+(St0 ∩ Ω), due to the previous corollary. As the
set JM

− (p)∩St0 is compact, it may be covered by a finite family {Ωj}j=1,··· ,N , and u = 0
on (Ω1 ∪ · · · ∪ ΩN ) ∩ JM

− (p) ∩ JM+ (St0). But (Ω1 ∪ · · · ∪ ΩN ) ∩ JM+ (St0) is an open set,
so there is ε > 0 such that St ∈ (Ω1 ∪ · · · ∪ ΩN ) ∩ JM+ (St0) for all t ∈ [t0, t0 + ε), and so
u = 0 in St, contradicting the fact that t0 is maximal, so we may conclude t0 = τ .

Lemma 22. Let Ω ⊂ M be an appropriate subset of M like in lemma 17. Then, for each
f ∈ D(Ω,E) and for each pair u0, u1 ∈ D(S ∩ Ω,E) of boundary conditions there is a
unique solution u ∈ C∞(Ω,E) to the local Cauchy problem in Ω. Furthermore,

supp u ⊂ JM (supp u0 ∪ supp u1 ∪ supp f︸ ︷︷ ︸
=:K

).

Proof. Uniqueness follows from lemma 20. Since M is globally hyperbolic, consider
its usual foliation and its induced metric −βdt2 + g′. Let u0, u1 ∈ D(S ∩ Ω,E) and
f ∈ C∞(Ω,E). We consider the bundle E trivialized over Ω and therefore its sections
are to be understood as Kn valued, with n the rank of E. Write

P =
1

β

∂2

∂t2
+ Y

where Y is a differential operator of order at most one with respect to t. Suppose the
differential equation Pu = f admits a power series solution

u(t, x) =
∞∑
j=0

tjuj(x)

for some set of smooth sections {uj}j , with u0 and u1 the sections given above. Putting
those two assumptions together entails

Pu =

(
1

β

∂2

∂t2
+ Y

)∑
j=0

tjuj(x) =
1

β

∑
j=2

j(j − 1)tj−2uj(x) + Y u

=
2

β
u2 +

1

β

∑
j=3

j(j − 1)tj−2uj(x) + Y u

and, thus, for t = 0,

Pu(0, x) =
2

β
u2(x) + Y (u0 + tu1)(0, x) = f

due to the order of Y . We may as well differentiate the expression Pu = f w.r.t. t to
obtain

87



CHAPTER 3. THE CLASSICAL THEORY OF WAVE EQUATIONS ON
MANIFOLDS

∂f

∂t
=

1

β

∑
j=3

j(j − 1)(j − 2)tj−3uj −
1

β2

∂β

∂t

∑
j=2

j(j − 1)tj−2uj(x)+

+

(
∂

∂t
◦ Y
)

(tu1 + t2u2)

so we may conclude that each term uj is recursively determined by the j − 1 previous
terms and by f up to its (j − 1) times derivative.

Now, drop the assumption of a power series solution, but keep the recursive relation
obtained. Since there is no reason why a series of those terms should converge, hence
defining a smooth section, we shall make use of some cut-off to obtain a meaningful
power series. Let σ : R −→ R be a bump function such that σ ≡ 1 in [−1

2 ,
1
2 ] and σ ≡ 0

in outside [−1, 1], and let {εj}j be a sequence of real numbers such that 0 < ε < 1 ∀j.
Then, for each k and for each j > k it is possible to prove the existence of a constant
c1 = c1(k) such that

∥∥σ(t/εj)t
juj(x)

∥∥
Ck(Ω)

≤ c1(k)
∥∥σ(t/εj)t

j
∥∥
Ck(R)

‖uj‖Ck(S)

due to the previous lemma 14 (see [10], lemma 1.1.11 for details). Furthermore, also due
to lemma 14, for l < k we have a c2 = c2(l, j) such that

∥∥∥∥dlσ

dxl

∥∥∥∥
F (R)

≤ εjc2‖σ‖Cl(R)

which implies

∥∥σ(t/εj)t
juj(x)

∥∥
Ck(Ω)

≤ εjc(k, j)‖σ‖Ck(R)‖uj‖Ck(S).

We may now choose εj such that the right hand side of last inequality is less or equal to
2−j for k < j. This is enough for

û(t, x) :=

∞∑
j=0

σ

(
t

εj

)
tjuj(x)

to be a smooth section with compact support, which, by construction, lays within
JM (K). Define now

v(t, x) :=

{
(Pû− f)(t, x) for t ≥ 0;

0 otherwise.

which is a smooth section, since, due to the construction of the terms uj , Pû ≡ f up to
infinite order on S. We must now find a way to expand our solution to M.
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According to the analysis of inhomogeneous wave equations, we know we can solve
equation Pũ = v for some section ũ with past compact support; besides, supp ũ ⊂
JM

+ (supp v) ⊂ JM
+ (supp û ∪ supp f) ⊂ JM(K). It can be proved about ũ that ũ = 0 on

IΩ
−(S) – this is a consequence of the restriction of ũ having past compact support and

satisfying Pũ = 0 on IΩ
−(S); by theorem 3.3.1 in [10], this, along with extra conditions

fulfilled by a globally hyperbolic Lorentzian manifold implies that ũ vanishes in IΩ
−(S),

which is a globally hyperbolic manifold for its own right. Let u+ := û − ũ; then all
this means that u ≡ û up to infinite order on S. It sure is a smooth section, and
obeys Pu+ = Pû − Pũ = v + f − v = v on JM

+ (S ∩ Ω), besides u+|S = û|S = u0 and
∇nu+|S = ∇nû|S = u1. Finally, we could construct u− on JM

− (S) and define u(t, x) as
u+(t, x) for t ≥ 0 and u−(t, x) for t ≤ 0, the continuity at t = 0 following from û and v.
Then Pu = f on M with desired initial conditions and supp u lays in JM(K).

After the statement of the trivial global Cauchy problem and the local non-trivial
one, the global Cauchy problem may be formulated after the technical results above.

Lemma 23. For each compact subset K of M there is a δ > 0 such that for each t ∈ R
and for each pair u0, u1 with support in K, there exists u obeying Pu = 0 defined in
the foliation (t − δ, t + δ) × S with boundary conditions u0, u1 in St. Furthermore, the
support of u is within JM (K ∩ St).

We shall not prove this lemma, whose demonstration is quite technical. We refer to
lemma 3.2.10 of [10].

Theorem 12. On the existence and uniqueness of solutions of the global
Cauchy problem For each f ∈ D(M,E) and for each pair of initial conditions u0, u1 ∈
D(S,E) there is a unique u ∈ C∞(M,E) such that Pu = f , u|S = u0 and ∇nu|S = u1.
Furthermore, supp u = JM (K), where K is the set defined in lemma 22.

Proof. Uniqueness of solution follows from the trivial Cauchy problem presented in
lemma 20, so we are only left with showing existence.

Once again, consider M = R×S and (0, S) ≡ S. Let K = supp u0∩supp u1∩supp f
and assume there is Ω ⊂ M with the usual properties such that K ⊂ Ω; this hypothesis
will turn out not to imply any loss of generality since we shall work with a partition
of unity {ρi}i=1,··· ,n to write uj =

∑
i ρiuj , j = 0, 1. Indeed, we shall furthermore

suppose a ε > 0 such that ((−ε, ε)× S) ∩ JM (K) ⊂ Ω. Let u be the solution of the
local Cauchy problem in Ω; whithin (−ε, ε) × S, we may extend u smoothly by 0 since
supp u ⊂ JM (K). Let τ be the supremum of the set of t ∈ R for which u may be
smoothly extended to a solution in (−ε, t)× S with support in the causal development
of K, and we shall prove τ = ∞. We remark that uniqueness implies two extensions
should coincide in their common domain and that in [ε,∞)×S the equation to be solved
is simply Pu = 0 since support of f lays within K.

Assume τ <∞. We affirm that K ′ := {[−ε, τ ]× S} ∩ JM (K) is compact, and hence
pick its δ > 0 satisfying the lemma above. Now, fix a certain t < τ such that τ − t < δ
and with K ⊂ (−ε, t) × S. Let v solve Pv = 0 on (t − δ, t + δ) × S with boundary
conditions uj = vj . Let η > 0 be such that f vanishes on (t− η, t+ δ)× S. As u and v
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coincide in (t− η, t)×S, v is a smooth extension of u to (t− η, t+ δ)×S; this, together
with the fact that the support of v is still contained in JM (K), violates the maximality
of τ . We conclude τ = ∞. An analogous computation considering the negative part
of the real line entails the theorem. The assertion about the support of v is proved as
follows:

supp v|[t,t+δ)×S ⊂ JM+ (supp v0 ∪ supp v1) ⊂ JM+ (K ′ ∩ St) ⊂ JM+ (JM+ (K))

= JM+ (K)

where vj is the restriction to the boundary condition uj to St.
In conclusion, if {ρi}i=1,··· ,m is the partition of unity used, the globalization is

achieved by writing uj =
∑

i piUj , f =
∑

i ρif .

Lemma 24. The association (u0, u1, f) 7−→ u is linear and continuous.

Proof. See [14], section V.6 and [10], theorem 3.2.12.

Theorem 13. On the existence of global fundamental solutions. For each x ∈ M
there is a unique pair of fundamental solutions F±(x) for P at x satisfying supp F±(x) ⊂
JM (x) and such that for each section ϕ ∈ D(M,E∗) the map x 7−→ F±(x)(ϕ) defines a
smooth section of E∗ solving P ∗ (F±(x)(ϕ)) = ϕ(x).

Proof. Consider the usual foliation of M. Let ϕ ∈ D(M,E), and let t ∈ R be chosen in
order to satisfy supp ϕ ⊂ IM

− (St). Let χ ∈ C∞(M,E) obey P ∗χ = ϕ with conditions
χ|St = (∇nχ|St) = 0 – please notice that χ does depend on the choice of ϕ, but, for a
moment, assume that it does not depend on the choice of t, and we shall prove it ahead.
As stated above, the map ϕ 7−→ χ is continuous; as χ is such that P ∗χ = ϕ = u∗ for
some u ∈ D(M,E) with Pχ∗ = u and since both ∗ : C∞(M,E) −→ C∞(M,E∗), v 7−→ v∗

and the evaluation map are continuous, so is the dual evaluation map D(M,E∗) −→ E∗x
ϕ 7−→ χ(x). Therefore,

F+(x)(ϕ) := χ(x)

defines a distribution, which we have to prove is a fundamental solution. Representing
explicitly the dependence of χ on ϕ, from P ∗χP ∗ϕ = P ∗ϕ we have P ∗(χP ∗ϕ − ϕ) = 0;
that, along with the boundary conditions of the later equation being null on St and the
trivial Cauchy solution assures χP ∗ϕ − ϕ = 0. Thereafter,

[PF+(x)] (ϕ) = F+(P ∗ϕ) = χP ∗ϕ(x) = ϕ(x) = δx(ϕ)

Thus it is a fundamental solution.
We return to the assertion that χϕ does not depend on the choice of t, as long

as the condition on the support of ϕ be maintained. Pick τ, t′, t′′, τ < t < t′ such that
supp ϕ ⊂ IM

− (Sτ ) ⊂ IM
− (St) ⊂ IM

− (St′). Consider the (globally hyperbolic) open subspace
M′ :=

⋃
τ<i Si; if χ is the solution for t, let χ′ be the one for t′. Then, P ∗χ′ = 0 on M′ and
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the boundary conditions for χ on St are zero, which implies χ′ = 0 on M′. Particularly,
P ∗χ′ has null boundary conditions on St also. We conclude χ−χ′ has vanishing Cauchy
data in St; by definition, P ∗(χ− χ′) = 0 on the whole M, so χ− χ′ ≡ 0.

Uniqueness now follows from corollary 3.1.2 of [10], which assures the existence of
at most one global fundamental solution for any globally hyperbolic operator acting on
the sections of a vector bundle E whose base space M is a Lorentzian manifold without
causal closed curves, where relation ≤ is closed and where the time separation function
is continuous4. We affirm this is the case of globally hyperbolic manifolds.

It follows from the previous assertions that supp F+(x) ⊂ JM(K).

3.8 Green’s operator

The use of Green’s operators provide a way to define an inverse operator for the normally
hyperbolic operator P . Precisely, given P , operators G± : D(M,E) −→ C∞(M,E)
satisfying

(i) P ◦G± = idD(M,E);

(ii) G± ◦ P |D(M,E) = idD(M,E);

(iii) supp G±ϕ ⊂ JM± (supp ϕ) for all ϕ ∈ D(M,E)

are called Green’s operators. Their existence is guaranteed in the context of our
interest by the following.

Lemma 25. Let ϕ ∈ D(M,E∗) and let F±(ϕ) be fundamental solutions for P ∗, smooth
w.r.t. x ∈ M, obeying PF±(x)(ϕ) = ϕ(x). Under these conditions, the operators defined
by

(G±ϕ) (x) := F∓(x)(ϕ)

are Green’s operators for P . Furthermore, given Green’s operators G± for P , F±(x)(ϕ) :=
(G±ϕ) (x) defines a fundamental solution.

Corollary. If M is a globally hyperbolic Lorentzian manifold and P is a normally hyper-
bolic operator acting on sections of E −→ M, then there is a unique pair of an advanced
and a retarded Green’s operator G± : D(M,E) −→ C∞(M,E) for P .

Proof. (Of lemma 25) We prove G± as defined in lemma 25 obeys conditions (i)-(iii) of
the definition above. First,

4The time separation function M ×M −→ R ∪ {∞} represents the maximum length that a future
directed causal curve connecting two point may have. For a more precise definition, see [10], definition
1.3.14.
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P (G±ϕ)(x) = PF∓(x)(ϕ) = ϕ(x) ∀x ∈ M, ∀ϕ ∈ D(M,E∗)

shows assertion (i). To prove assertion (ii), notice that

(G±Pϕ)(x) = F∓(x)(Pϕ) = P ∗F∓(x)(ϕ) = ϕ(x) ∀x ∈ M, ∀ϕ ∈ D(M,E∗).

Finally, let x ∈ supp G±ϕ. Since supp F∓(x) ⊂ JM∓ (x), then the support of ϕ must be
partially within JM∓ (x), which is equivalent to x ∈ JM∓ (supp ϕ).

As for the corollary, it follows directly from the lemma and uniqueness of fundamental
solutions.

An interesting property of Green’s operator G± is that if G∗± is the operator relative
to P ∗, then G∗± is the formal adjoint of G±. Let ϕ ∈ D(M,E∗) and u ∈ D(M,E); then,

∫
M

(G∗±ϕ) · u dV =

∫
(G∗±ϕ)PG∓u dV =

∫
(P ∗G∗±ϕ)G∓u dV

=

∫
ϕ(G∓u) dV.

In the above, an important detail is the introduction of PG∓ instead of PG±, i.e. ∓
instead of ±, since supp G± ϕ ∩ supp G∓u ⊂ JM

± (supp ϕ) ∩ JM
∓ (supp u) – which is

compact in a globally compact hyperbolic manifold.
An immediate use of this information regards an important analytic property of

Green’s operators. We denote C∞SC(M,E) the space of spacelike compact supported
sections – i.e., ϕ ∈ C∞(M,E) is sad to be spacelike compact if there exists K ⊂ M
compact such that supp ϕ ⊂ K; notice ϕ itself is not required to have compact support.
The term “spacelike” stands for the fact that for each Cauchy surface in M supp ϕ|S ⊂
JM(K) ∩ S, which in its turn is compact – see [10], corollary A.5.4. Now, the map
G± : D(M,E) −→ C∞SC(M,E) are sequentially continuous in the sense of sequentially
continuous for distributions on manifolds already presented.

As a last remark for this chapter, we should say that part of what was done here
may be extended to non-globally hyperbolic manifolds, although something is lost –
for example, existence of Green’s operator may not be guaranteed any longer once one
abandon global hyperbolic spaces. As usual, we refer to [10].
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Chapter 4

Functorial Quantization

4.1 Introduction

Everything that was developed in the previous chapter has a clear physical motivation,
since the Schrödinger, Klein-Gordon and Dirac equations, among others, are particular
cases of the general problem we analysed. However, we have only discussed classical
equations until now, in the sense that no quantization argument was presented yet.
A typical way to introduce quantization in a theory, e.g., the free scalar field theory
described by the Klein-Gordon equation (� + m2)ϕ = 0, is through the imposition
of canonical commutation relations. This quantization process, often called canonical
quantization, is presented, for example, in [20] and [21]. We here attempt at another
quantization method, one which applies to general globally hyperbolic spaces.

We shall not deal with interacting models: our main interest will remain dealing with
free scalar fields, the simplest example possible, though still endowed with significant
interest and motivation. Moving further to other situations, even the already solved
ones, would considerably extend this work.

We present a very limited discussion about physical systems, observables and states;
for a further treatment of these topics, we refer to [22]1, to [23] and to [15]. Following
[23], our discussion shall not entails any consideration on the role of the observer.

By a physical system, we understand the set of all elements of Nature which may
be observed, both directly or indirectly, and its observable interactions. Each component
of a system is then called an observable, a social construction of those who perform
an experiment, and which is supposed to reflect the existence of an element of the
Universe independent of the observer. Thereafter, every assertion about Nature should
be understood as an assertion about the model, the description of the observation. The
conditions of the experimental apparatus and of the observables in a given moment is a
state, and the act of associating to some observable in a given state a (real) number is
what we understand as a measurement. We may then think of a state as a real-valued
linear functional over the system S, a function associating a number to each observable.
On the other hand, we may identify the observables with real-valued functionals over

1lecture notes currently available only under request to the author
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the set of states. The migration from this abstract presentation to a solid formalism is
found in the referred texts [22], [23] and [15].

That said, the quantization process presented in this chapter consists on an associa-
tion from globally hyperbolic spaces, endowed with wave operators, to the observables.
The quantum character of the theory lays on the algebraic structure of the set of ob-
servables: we shall request it to be a C∗-algebra, though weaker assumptions could be
made; we shall define a C∗-algebra ahead. Furthermore, locality condition implies the
observables ought to be described not by a single operator algebra, but by a net of local
algebras.

4.2 Categories

The present analysis of categories is based on [24]. Although these objects appeared
in local quantum physics much earlier, Brunetti, Fredenhagen and Verch presented in
[2] a new formalism of quantum field theories in which categories are used to develop a
naturally covariant theory from the functorial processes involved in quantization, and so
this is why we start this chapter introducing briefly this concept.

A metagraph consists of objects a, b, c, . . . and arrays, or morphisms f, g, h, . . .
connected by the following associations:2

• Domain: for each array f , we associate an object a ≡ Dom f called the domain
of f ;

• Codomain: for each array f , we associate an object b ≡ Cdom f called the
codomain of f .

For a given array f of a metagraph, the associations of objects presented above may be
represented by a proper array by the diagram

f : a −→ b.

A metacategory thereafter is a metagraph with the two extra following associations:

• Identity: for each given object a, the identity associates an array 1a such that
1a : a −→ a;

• Composition: for each pair f, g of arrays such that Cdom g = Dom f , the com-
position associates an array f ◦ g such that f ◦ g : Dom g −→ Cdom f ; we call such
f ◦ g the composition of f and g.

Furthermore, the associations above ought to fulfil the following axioms in order for a
metagraph to be a metacategory:

2Each concept introduced in this first paragraph is absolutely fundamental and therefore has no
definition rather what was given within the text. For a “connection” we do not refer to the mathematical
concept, but to a smeared and rough ideas of association between elements of a theory.
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• Associativity: given the arrays f, g, h satisfying

a
f−−−−→ b

g−−−−→ c
h−−−−→ d,

then (f ◦ g) ◦ h = f ◦ (g ◦ h) ≡ f ◦ g ◦ h;

• Unity: For each array f with Dom f = a there is an array 1a such that the
composition f ◦ 1a is well defined and equals to f . Besides, for each array g,
Cdom g = b, there is an array 1b such that 1b ◦ g is not only well defined but also
equals to g. We call 1a a left-identity and right-identity.

The passage to set theory now turns a metacategory into a category: a graph is a
metagraph formed by a set O of objects and a set S of arrays, between which we define
the functions

S
Dom−−−−−−−→ O

S
Cdom−−−−−−−→ O.

We define in a graph the set S ×O S := {(f, g) : f, g ∈ S and Dom f = Cdom g } of
composable pairs. Then, a category C is a graph with the two additional functions

O
id−−−−−→ S

a 7→ ida ≡ 1a

and

S ×O S
◦−−−−→ S

(f, g) 7→ f ◦ g

respectively named identity and composition, and fulfilling

• Dom 1a = Cdom 1a = a for each object a ∈ O;

• Whenever the composition is well defined Dom f ◦ g = Dom g, Cdom f ◦ g =
Cdom f ,

the latter one implying associativity.
The last element of the theory of categories we shall define is a functor, which is

a morphism between categories. I. e., given the categories B and C, a functor is an
array T : B −→ C which consists of the object functions B −→ C, b 7→ Tb and on the
array function B −→ C, f 7→ Tf , the first mapping objects into objects and the second
mapping arrays into arrays, supposed to satisfy

T (1b) = 1Tb and T (f ◦ g) = Tf ◦ Tg

whenever the composition is well defined.
The composition of functors is now defined in terms of the composition of the func-

tions defining them.
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4.3 C∗-Algebras

As a K-algebra, we understand a vector space V over the field K with an operation
· : V ×V −→ V , named product or multiplication, which commutes with the two vector
spaces operations. Precisely, the product · has to satisfy

u · (αv + w) = α(u · v) + u · w

(αu+ v) · w = α(u · w) + v · w

for all u, v, w ∈ V and for all α ∈ K. As previously observerd, we shall not be very
orthodox with respect to the notation for the operations in an algebra, and · may be
used for both the product by an scalar, for the algebra product, and for the natural
pairing between fibres in the bundles E∗ and E, as in the last chapter.

An algebra A is called unital if it contains an element 1 ∈ A named identity such
that 1 · a = a · 1 = a for all a ∈ A. If there exists an identity, then it can be proved
to be unique. The algebra is said to be normed if it is normed as a vector space and
submultiplicative, i.e., ‖AB‖ ≤ ‖A‖.‖B‖ for all A,B ∈ A. If the vector space is a Banach
space w.r.t. this norm, the algebra is then called a Banach algebra if, in addition, it
is unital and ‖1‖ = 1. This last condition excludes the trivial algebra A = {0}.

A K-anti-linear map ∗ : A −→ A, a 7−→ a∗ between (not necessarily normed) algebras
is called an involution if, for all a, b ∈ A

a∗∗ = a

(ab)∗ = b∗a∗.

An algebra A equipped with an involution ∗ is called a ∗-algebra. Finally, a C∗-algebra
is a ∗-algebra whose involution is an isometry, – i.e., such that ‖a∗‖ = ‖a‖ for all a ∈ A,
and which obeys the C∗-condition

‖a∗a‖ = ‖a‖2 ∀ a ∈ A.

An element a of A is called self-adjoint if it is invariant under ∗, i.e., if a∗ = a. In
particular, if 1 is an element of the algebra, it is self-adjoint, since, for each a ∈ A,

1∗a = 1∗a∗∗ = (a∗1)∗ = a∗∗ = a,

and similarly for a1∗ = a. The uniqueness of the unity then implies its self-adjointness.
We comment that usually a C∗-algebra is not required, in principle, to contain a unity.

Furthermore, we clarify that the conditions above are not completely independent; for
instance, the isometry of the involution may follow from the C∗ property ‖a∗a‖ = ‖a‖2,
from the sub-multiplicativity of the algebraic product and from the involution condition
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a∗∗ = a. As for the C∗ condition, its motivation is that, when dealing with states for
physical theories, positivity implies norm continuity. We notify this statement may be
found proved in [25], theorem 4.3.2.

A C∗-subalgebra of a given C∗-algebra is a subspace A′ ⊂ A invariant under ∗, i.e.,
for each a ∈ A′, a∗ ∈ A′. A C∗-subalgebra is then a C∗-algebra in its own right.

Lemma 26. For A being a C∗-algebra, denote by A−1 the set of invertible elements of A
– i.e., A−1 := {a ∈ A : ∃ a−1 ∈ A s.t. a−1a = aa−1 = 1}. Then, the operations of vector
addition, product by scalar, algebraic product, the involution and A −→ A−1, a 7→ a−1

are all continuous w.r.t. the norm.

Proof. The proof of this statement may be found in any introductory book on the subject;
we refer to [25] and [15].

An algebra homomorphism A −→ B between ∗-algebras is called a ∗-morphism if
commutes with ∗ – i.e., π is a ∗-morphism iff π(a∗) = π(a)∗ for all a ∈ A. In case π is
also an automorphism, we call it a ∗-automorphism.

Example: Let H be a complex Hilbert space, with its inner product denoted by
〈·, ·〉. The set of bounded linear operators over H defines a C∗-algebra, with unit
1 = id : H −→ H, in terms of the operator norm

‖a‖∞ := sup
x∈H
{‖ax‖ : ‖x‖ = 1}

and with the involution given by the adjoint map a 7→ a∗, where a∗ is the unique operator
such that 〈x, ay〉 = 〈a∗x, y〉 for all x, y ∈ H. The only non-trivial part of the definition
which has to be shown is the C∗-condition:

‖a‖2 =

(
sup
x
‖ax‖

)2

= sup
x
‖ax‖2 = sup

x
〈ax, ax〉 = sup

x
〈x, a∗ax〉

≤ sup
x
‖x‖ ‖a∗ax‖ = ‖a∗a‖ ≤ ‖a∗‖ ‖a‖ = ‖a‖2.

The theory of C∗-algebras is much deeper than what we presented and extremely
interesting in terms of its physical significance. For example, the C∗-algebra of operators
over a Hilbert space is intimately related to axioms of quantum physics, though we shall
not explore this connection with foundations of Physics any further than the strictly
necessary. We shall have to refer to [25] for the algebraic basis; with regard to the interest
Physics has on it, we suggest Professor Walter Pedra’s lecture notes [22] C∗-algebras and
Mathematical Foundation on Quantum Mechanics and Statistical Mechanics. A more
complete list of references, including [23], may be found there.

Joining the present section to the previous one, we may define the category C∗, whose
objects are C∗-algebras and whose arrows are ∗-monomorphisms between them.
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4.4 Weyl Systems

The relation between operator algebras and the free fields will be firmly established
from the algebra of canonical commutation relations, because we shall only deal with
free scalar fields. If we were dealing with fermions, the canonical anti-commutation
relations would have to be considered. Weyl systems are nothing but a formalization of
these commutation relations in terms of exponentials.

We define a symplectic vector space as vector space V equipped with an antisym-
metric non-degenerate bilinear map ω : V × V −→ R – i.e., an antisymmetric bilinear ω
such that ω(ϕ,ψ) = 0 for all ϕ ⇔ ψ = 0. Then, a Weyl system for V ≡ (V, ω) is a
C∗-algebra A with a map W : V −→ A obeying

(i) W (0) = 1; (4.1a)

(ii) W (−ϕ) = W (ϕ)∗; (4.1b)

(iii) W (ϕ) ·W (ψ) = e−iω(ϕ,ψ)/2W (ϕ+ ψ). (4.1c)

We may therefore regard the map W as a representation of the algebra A up to the term
e−iω(·,·)3. It has the following properties.

Lemma 27. If (A,W ) is a Weyl system over the symplectic vector space V , then

(i) for all ϕ ∈ V , W (ϕ) is unitary;

(ii) the family {W (ϕ)}ϕ∈V is linearly independent;

(iii) for each pair ϕ,ψ ∈ V with ϕ 6= ψ, ‖W (ϕ)−W (ψ)‖ = 2;

(iv) the linear span [W (V )] ≡ [{W (ϕ) : ϕ ∈ V }] is closed under ∗ and under the algebra
product;

(v) [W (V )] is unique up to an ∗-isomorphism.

Proof. Item (i) is quite trivial: W (ϕ)∗W (ϕ) = W (−ϕ)W (ϕ) = e−iω(0,0)W (0) = e01,
and similarly for W (ϕ)W (ϕ)∗. To prove item (ii), consider the linear combination

n∑
j=1

αjW (ϕj) = 0

with ϕi 6= ϕj if i 6= j. For n = 1, it is only possible if α = 0: suppose there was some ψ
with W (ψ) = 0; then, for all ϕ ∈ V , W (ψ)W (ϕ) = eiω(ψ,ϕ)W (ψ + ϕ) = 0, which is only
possible if W (ψ+ϕ) = 0 for all ϕ. Under these conditions, either W is identically equal
to some element of A, which would have to be 0 in order for W (ψ) equals 0, and then W
would not define a Weyl system, or ψ = 0, which contradicts the condition W (0) = 1.
We proceed by induction on n and suppose αn 6= 0 to write

3If H is a Hilbert space, a map π : A −→ L (H) is called a representation of the algebra A if it is
a ∗-morphism.
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W (ϕn) =

n−1∑
j=1

−αj
αn︸︷︷︸

=:βj

W (ϕj) =⇒

1 = W (ϕn)∗W (ϕn) =
n−1∑
j=1

βjW (−ϕn)W (ϕj) =
n−1∑
j=1

βje
−iω(ϕn,ϕj)W (ϕj − ϕn)

=
n−1∑
j=1

εjW (ϕj − ϕn)

where the term εj absorbed the exponential. It now follows that for each ψ ∈ V

1 = W (ψ)W (−ψ) = W (ψ)1W (−ψ)

=

n−1∑
j=1

εjW (ψ)W (ϕj − ϕn)W (−ψ) =

n−1∑
j=1

εje
−iω(ψ,ϕj−ϕn)/2W (ϕj − ϕn + ψ)W (−ψ)

=

n−1∑
j=1

εje
−iω(ψ,ϕj−ϕn)/2e−iω(ϕj−ϕn+ψ,−ψ)/2W (ϕj − ϕn)

=

n−1∑
j=1

εje
−iω(ψ,ϕj−ϕn)/2e−iω(ϕj−ϕn,−ψ)/2e−i��

��: 0
ω(ψ,−ψ)W (ϕj − ϕn)

=

n−1∑
j=1

εje
−iω(ψ,ϕj−ϕn)W (ϕj − ϕn) =

n−1∑
j=1

εjW (ϕj − ϕn).

By induction on n, the last equality implies ω(ψ,ϕj − ϕn) = 0 for all ψ, so ϕj = ϕn
for all j = 1, . . . , n − 1, a contradiction. The alternative is that εj = 0 for all j, hence
αj = 0 for all j, another contradiction.

The property announced in item (iii) will not be proved here, we refer to [15]. Item
(iv) follows immediately from the definition, and for item (v), suppose an alternative
Weyl system W ′(V ) related to V ; the map π : [W (V )] −→ [W ′(V )] given by π(W (ϕ)) :=
W ′(ϕ) defines a bijection between the basis B := {W (ϕ) : ϕ ∈ V } and B′ := {W ′(ϕ) :
ϕ ∈ V } and therefore is a isomorphism. That it is also a ∗-morphism follows from
π(W (ϕ)∗) = π(W (−ϕ)) = W ′(−ϕ) = W ′(ϕ)∗ = π(W (ϕ))∗.

We give an example of a Weyl system, therefore proving its existence. Let V be a
symplectic vector space without further assumptions, and let H = L 2(V,C) be the set of
square-integrable functions f : V −→ C vanishing in almost all V , i.e., f(x) = 0 except
for a finite set of elements x ∈ V , so that the integration is performed with respect to
the counting measure. On H, we define the inner product
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〈f, g〉 :=
∑
x∈V

f(x)g(x)

which is well defined as a finite sum and induces a norm ‖f‖2L 2 :=
∑

x∈V |f(x)|2, there-
fore turning H into a Hilbert space. Let now A = B(H) be the C∗-algebra of bounded
linear operator H −→ H, and we construct the map W : V −→ B(H) to be

x 7−→W (x) : H −→ H

(W (x)f) (y) := e−iω(x,y)/2f(x+ y);

hence, W is a bounded linear map which satisfies the required properties for (B(H), H)
to be a Weyl system over V . The proof may be found in [10]. We denote by CCR(V)
the C∗-subalgebra of B(H) the generated by [W (x) : x ∈ V ], which together with W :
V −→ B(H) is a Weyl system: in general, a Weyl system of a given symplectic vector V
space is called a CCR-representation of V . If the algebra A is a C∗-algebra generated
by [W (V )], it is called A the CCR-algebra of V . The assertion about the uniqueness
of the space [W (V )] up to an ∗-isomorphism induces then a similar result to CCR-
representations,

Theorem 14. Let (A,W ) and (B, X) be two distinct CCR-representations for a com-
mon symplectic V . Then, there is a ∗-isomorphism π : A −→ B such that the following
diagram commutes.

V A

B

π

We need some further development in order to prove this theorem. On a subalgebra
generated by a set like [W (x : x ∈ V ], the norm

∥∥∥∥∥∑
x∈V

α(x)W (ϕ)

∥∥∥∥∥
1

:=
∑
x∈V
|α(x)|, α(x) ∈ C∀x ∈ V

is also well defined as a finite sum, since it is in the (finitely) generated subalgebra
[W (x)]. It clearly does not satisfy the C∗ condition,

∥∥∥∥∥
(∑
x∈V

α(x)W (x)

)∗(∑
x∈V

α(x)W (x)

)∥∥∥∥∥
1

=

∥∥∥∥∥∑
x∈V

α(x)α(x)W (x)∗W (x)

∥∥∥∥∥
1

=
∑
x∈V
|α(x)|2 6=

∥∥∥∥∥∑
x∈V

α(x)W (x)

∥∥∥∥∥
2

1

.
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However, for each C∗-norm ‖·‖ considered on [W (V )], due to the unitarity of W (x) for
all x ∈ [W (V )] and to the triangle inequality, as may be seen in the calculation just
presented, ‖·‖ ≤ ‖·‖1, what implies that in the expression for the norm

‖A‖max := sup{‖A‖0 : ‖·‖0 is a C∗-norm in [W (V )]},

the supremum is finite – it is also not taken over an empty set, since [W (V )] naturally
inherits a C∗-norm from A. We affirm that ‖·‖max is a C∗-norm – the proof is actually
quite simple.

It is now possible to prove the uniqueness of a CCR-representation of a symplectic
vector space up to an isomorphism. We extend the previous assertion to [W (V )] −→ A
and [W ′(V )] −→ B: π : [W (V )] −→ [W ′(V )] extends to a ∗-morphism [W (V )] −→ B,
where the overline means the completion with respect to the norm ‖·‖max, because
‖π(A)‖B ≤ ‖A‖max. In [10], lemma 4.2.7 we find a proof that π is injective.

4.5 Quantization Functor

In this section we present a quantization process based on categories and functors. For
quantization we shall mean the association of an operator C∗-algebra to our theory
describing the observables, and for instance we shall not make any further assumption
on the states whatsoever. However, locality is not ab initio present within the operator
algebra – and probably could not be. In order to construct a relativistic mathematical
basis for physical theories, the Principle of Relativity will be encoded in the nets of quasi-
local C∗-algebras, where the locality condition then arises naturally. All this, plus the
accordance with Haag-Kastler axioms will be properly developed ahead in some depth.

Our main strategy is the construction of a functor connecting the category of wave
equation theories to C∗, but this will involve some steps.

We construct the category Hyp, whose objects are triplets (M,E, P ), E −→ M a real
vector bundle over a globally hyperbolic time-oriented Lorentzian manifold with a inner
product and P a formally selfadjoint normally hyperbolic operator, all this meaning
the following. Assume the bundle E, now a real one, is equipped with a inner product
defined in each fibre which depends smoothly on the base point – i.e., for each x ∈ M,
the finite dimensional real vector space Ex has a inner product 〈·, ·〉x defined, in such a
way that for each pair f, g ∈ E the function x 7−→ 〈f, g〉x ∈ R is continuous. If, for each
pair of sections ψ,ϕ ∈ D(M,E), the normally hyperbolic operator satisfies

∫
M
〈ψ, Pϕ〉 dV =

∫
M
〈Pψ,ϕ〉 dV,

being this expression well defined as

∫
M
〈ψ, Pϕ〉 dV ≡

∫
M
〈ψ(x), Pϕ(x)〉 dV (x),
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then we regard it as formally self-adjoint, in a similar way as what was defined previously
for differential operators acting on distributions. We give a unique example of such a
structure, related to the free scalar field, extracted from [10], where other examples may
be found.

Example: The free scalar field: if ∇ denotes the connection on M, we assume that
it is related to the inner product in the vector bundle as

∂X〈ψ,ϕ〉 = 〈∇Xψ,ϕ〉+ 〈ψ,∇Xϕ〉

Consider the isomorphism E −→ E∗ given by ϕ 7−→ 〈ϕ, ·〉. Thus, it is not hard to prove
that

∇X〈ϕ, ·〉 = 〈∇Xϕ〉

With some more extra work, one may show that

〈ϕ,�ψ〉 =

n∑
j=1

εj〈∇ejϕ,∇ejψ〉 − divV

where V is a vector field whose support lays in the support of both sections ψ and ϕ. It
then follows that

〈ϕ,�ψ〉 − 〈�ϕ,ψ〉 = div (V ′ − V )

Suppose both sections have compact support; then we conclude that

∫
M
〈ϕ,�ψ〉 − 〈�ϕ,ψ〉 dV =

∫
M

div (V ′ − V ) dV = 0

The category Hyp contains at least one class of objects, those which fit in the example
above; its morphisms, on the other hand, connecting (M1,E1, P1) −→ (M2,E2, P2) are
given by pairs of mappings (f, F ), f : M1 −→ M2 an isometric embedding such that
f(M1) is a causally compatible subset of M2; and F : E1 −→ E2 a homomorphism
constituting an isometry in each fiber. We therefore request that the diagrams

E1 E2

M1 M2

F

f

and
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D(M1,E1) D(M1,E1)

D(M2,E2) D(M2,E2)

P1

ext ext

P2

to be both commutative – in the second one, ext means the extension D(f(M1),E2) ↪→
D(M2,E2) given by ext(ϕ) := F ◦ ϕ ◦ f−1, which involves the commutativity of the
former diagram. The second condition may be regarded as the invariance of normally
hyperbolic operator.

Let Sym be the category of symplectic vector space, whose morphisms are symplec-
tomorphisms, maps f : (V1, ω1) −→ (V2, ω2) such that the pull-backs preserve the sym-
plectic map, i.e., f∗ω2 = ω1: for all x ∈ V1, (f∗ω2)(x) = (ω2 ◦ f)(x) = ω2(f(x)) = ω1(x).
For each given object (M.E, P ) in Hyp, consider the unique pair of Green’s operator
associated – formally, we may extend each object to (M,E, P ) 7−→ (M,E, P,G+, G−), in
such a way that the second diagram above becomes

C∞(M1,E1) D(M1,E1) D(M1,E1)

C∞(M2,E2) D(M2,E2) D(M2,E2)

P1

ext

G1
±

extres

P2

G2
±

where res stands for the restriction F−1◦ψ◦f . In this extension on the category, we also
request the morphisms (f, F ) allow the commutativity of this third diagram, but this is
a direct consequence of the commutativity of the first one, so we will not worry about
the morphisms for this extension covering the objects. It is now possible to construct a
functor from Hyp to Sym connecting objects (M,E, P,G±) to symplectic vector spaces
defined over the vector space D(M,E)/ker(G) with a symplectic map induced by

ω(ϕ,ψ) :=

∫
M
〈Gϕ,ψ〉 dV. (4.2)

If we consider ω, as defined above, as a map D(M,E) × D(M,E) −→ R, the map
will be degenerated – in fact, from the definition of Green’s operator we have that
PD(M,E) := {Pϕ : ϕ ∈ D(M,E)} ⊂ ker(G), since G(Pϕ) = (G+ − G−)(Pϕ) = 0 – in
considering globally hyperbolic manifolds, however, it is possible to prove that ker(G)
equals the set PD(M,E), see [10] for this. Anyway, we simply remove the degenerescence
of ω by considering the quotient D(M,E)/ker(G) and regarding the induced form

ω([ϕ], [ψ]) := ω(ϕ,ψ) (4.3)

for any representatives ϕ ∈ [ϕ], ψ ∈ [ψ], as for if ϕ′, ψ′ are another pair of representatives,
(ϕ−ϕ′), (ψ−ψ′) ∈ ker(G) then ω(ϕ,ψ)−ω(ϕ′, ψ′) = ω(ϕ−ϕ′, ψ−ψ′) = 0. Returning
to our main point, the functor
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Hyp ⇒ Sym (4.4)

(M,E, P,G±) 7−→ D(M,E)/ker(G)

(f, F ) 7−→ ext∗ω

is constructed as follows.

Lemma 28. ext : D(M1,E1) −→ D(M2,E2) maps ker(G1) into ker(G2) and induces a
symplectomorphism between the quotient spaces.

Proof. Let ϕ ∈ kerG1 and let ψ ∈ D(M1,E1) such that P1ψ = ϕ. Then, ext(ϕ) ∈
D(M2,E2) and, from the commutativity of the diagrams in Hyp, G2(ext(ϕ)) = G2(ext(P1ψ)) =
G2(P2 ext(ϕ)) = 0. The induced symplectomorphism is given by the pullback since

ω2(ext(ϕ), ext(ψ)) =

∫
M2

〈G2ext(ϕ), ext(ψ)〉 dV2

=

∫
M1

〈resG2ext(ϕ), ψ〉 dV1

=

∫
M1

〈G1ϕ, ψ〉 dV1

= ω1(ϕ,ψ).

Therefore, the map between morphisms in the above functor is well defined. We shall
denote this functor by Sym : Hyp ⇒ Sym.

Moving forward with the quantization process, it is necessary a functor connecting
Sym to C∗, but this is quite easy: first, we shall denote it by CCR : Sym ⇒ C∗; let
S : (V1, ω1) −→ (V2, ω2) be a symplectomorphism in the category of symplectic vector
spaces, and by theorem 14 we conclude the existence of a unique injective ∗-morphism
CCR(S) : CCR(V1) −→ CCR(V2) mapping C∗-algebras given by the Weyl systems on
V1 and V2, such that the diagram below commutes,

(V1, ω1) (V2, ω2)

CCR(V1) CCR(V2)

S

W1 W2

CCR(S)

(4.5)

Since CCR(idV ) = idCCR(V and CCR(S ◦ S′) = CCR(S) ◦ CCR(S′), we have the
functor CCR mapping (V, ω) 7−→ CCR(V ) and with the map between ∗-morphisms
given by S 7−→ CCR(S). We represent this net of categories and functors describing
quantization with the following diagram.
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Hyp Sym C∗
Sym CCR

(4.6)

All this would be enough if we were not interested in a relativistic theory: there is no
locality condition within the algebras of observables yet. This is introduced via Haag-
Kastler axioms as presented in [10] and [18]. Without a very deep discussion about the
meaning of those axioms, we may understand the introduction of locality in a physical
theory as a restriction to the information influencing an experimental arrangement. If
one is performing a measurement of a certain observable over some apparatus in a given
well defined state (let it be a pure state, for instance), this measurement takes a time
interval which is restricted by Heisenberg’s Uncertainty Principle. The value δt of this
time interval determines a limited region in space which may influence or may be influ-
enced by this experiment, all the rest of the Universe being causally disconnected to this
measuring process. It is then natural to conceive these physically interesting regions of
spacetime with the properties and characteristics we explored so far. Furthermore, it
is also natural to expect coherence between causally connected regions: if we consider
our experiment is causally determined by some region O of the Universe and if there is
some other region O′ causally connected to O, then we would expect our experiment to
be either determined or influenced by O′. In a concrete example, suppose O ⊂ O′, what
implies that considering the effect of the information laying within O′ should not imply
any loss whatsoever in the experiment. On the other hand, we should also expect com-
plete independence of any kind of influence between experiments performed in causally
disconnected regions. This, in accordance to the basic principles of quantum mechanics,
traduces into the possibility of the simultaneous measurement of any observable within
the disconnected regions. The last motivation we may mention to the set of Haag-Kastler
axioms is the following: we affirm it is enough that two regions have a common Cauchy
surface for the measurement process be equivalent. This is not a deterministic condition,
since we are only imposing the equality of the algebras of observables, and no statement
about expected values is made. For this, a discussion about states would be necessary,
but this is beyond the scope of this work.

Thereafter, without further discussions we present a version of the mentioned ax-
ioms. We recall that these axioms presented here only apply for free theories.

Haag-Kastler Axioms:

Axiom 1: On the existence of a local net of algebras of observables: for each bounded
open region O of M, there exists a C∗-algebra A(O) such that ifO1, O2 ⊂ M andO1 ⊂ O2,
then A(O1) ⊂ A(O2).
Axiom 2: On a global algebra of observables: A(M) =

∨
A(O), i.e., it is the C∗-algebra

generated by {A(O)}∅6=O 6=M, and it is simple, i.e., all unit preserving ∗-morphism is in-
jective.
Axiom 3: On the causal coherence and independence between the nets: if J(O1) ∩
O2 = ∅, [A(O1),A(O2)] = {0}, i.e., the algebras commute. Besides, if O1 and O2

are non-empty, if the Cauchy development D of O2 is compact and if O1 ⊂ D, then
A(O1) ⊂ A(O2).
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Axiom 4: The algebras A(O) are required to have a common unit 1.
Axiom 5: The time-slice axiom: if O1 and O2 are non-empty and admit a common
Cauchy surface, then A(O1) = A(O2).

We emphasize the compacity of D in axiom 3 because it may not be even if O2 is
– needles to say we are still and always dealing with a globally hyperbolic Universe M.
An example, actually quite simple one, may be found on [10], remark 4.5.2, and consists
of the removal of the top and the bottom of D. One also usually sees the request of
permittivity of the algebra A(M) instead of simplicity, as in [18]; for now, we only affirm
this condition is fulfilled in the present case, but we shall return to this topic ahead.

In order to move onwards with the quantization functor, we must create a new
category of nets of C∗-algebras satisfying the axioms just presented. We begin with the
following. Let I be a non-empty set, which we shall later regard as an indexing set. We
say I is partially ordered with orthogonality relation if it is given a partial order
relation ≤ and a symmetric relation ⊥ such that

(i) for each x ∈ I, there is a y ∈ I such that x ≤ y;

(ii) for all x ∈ I, there is a z ∈ I such that x ⊥ z;

(iii) x ≤ y and y ⊥ z ⇒ x ≤ z;

(iv) x ⊥ y and x ⊥ z ⇒ there is w ∈ I such that y ≤ w, z ≤ w and x ⊥ w.

(For example, consider the subset of R2 given by I := R+×{(x, x) ∈ R+×R+}). Next, we
define a quasi-local C∗-algebra as a pair (A, {Ax∈I}) of a C∗-algebra A and a family
{Ax}x∈I where I is partially ordered with a orthogonality relation, obeying

(i) x ≤ y ⇒ Ax ⊂ Ay;

(ii) A =
⋃
Ax – the completion with respect to the norm topology;

(iii) there is a common 1 ∈ Ax;

(iv) x ⊥ y ⇒ [Ax,Ay] = {0}.

One may already see where we are trying to get: we shall label the algebras with the
open sets of M, and define the orthogonality relation as a causal independence, i.e., we
define

O ⊥ O′ ⇔ J(O) ∩O′ = ∅. (4.7)

In fact, we have the following result.

Lemma 29. The collection of relatively compact, causally compatible and globally hyper-
bolic open subsets of M with {∅,M} is a partially ordered set with orthogonality relation,
where the partial order is given by ⊂ and the orthogonality by (4.7).
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Proof. For each subset O of M satisfying the conditions of this lemma, we may take M
to show item (i) on the definition. Trivially, item (ii) is fulfilled by z = ∅. If O ⊂ O′

and O′ ⊥ O′′, then item (iii) follows since J(O) ⊂ J(O′), thus J(O) ∩ O′′ = ∅. For
property (iv), consider O,O′ and O′′, all of them satisfying the necessary conditions
and all of them different of M – in this case the result is trivial. Consider O ⊥ O′ and
O ⊥ O′′ and let N := O′ ∪ O′′, and N obviously satisfies O ⊥ N and O′, O′′ ⊂ N . The
global hyperbolicity of N , however, is not a direct consequence of its definition, and we
use lemma A.5.13 of [10], which says that for a given relatively compact subset K of
a globally hyperbolic manifold there is K ⊂ K ′ globally hyperbolic in order to claim a
N ′ ⊂ M\J(O) satisfying the conditions of the present lemma and causally compatible
w.r.t. M\J(O). That N ′ is causally compatible in M follows from N ′ ⊂ M\J(O), since
the latter set is causally compatible with respect to M.

Finally, we define a morphism between quasi-local C∗-algebras (A,Ax∈I) and (B,Bx∈J)
as a pair of maps (ϕ,Φ), φ : I −→ J a orthogonality preserving monotonic map and
Φ : A −→ B is a ∗-morphism such that Φ(Ax) ⊂ Bϕ(x) for each x ∈ I. The construction
of a category LocC∗ of quasi-local C∗-algebras is now complete; the functor connecting
Hyp to LocC∗, for its turn, will be defined in the next step.

Consider the inclusion O ↪→ O′ of open subsets on M; since the morphisms in Hyp
are pair of isometries, this inclusion induces a morphism iO,O′ in this category simply
by regarding the bundle map as E|O ↪→ E|O′ ; let αO,O′ be the induced unit preserving
injective *-morphism in C∗ from iO,O′ , αO,O′ := (CCR ◦ Sym)(iO,O′). We then consider
each algebra AO of the net as

AO = (αM,O ◦ CCR ◦ Sym)(O,E|O, P,G±), (4.8)

with the collection of open sets O as in lemma 29, and the global algebra AM as the
C∗-subalgebra of CCR(VM) generated by the collection {AO}O,

AM :=
⋃
O⊂M

AO, (4.9)

while A∅ := C.1.

Lemma 30. As defined above, (M,E, P,G±) 7−→ (AM, {AO}O∈I) defines a quasi-local
C∗-algebra. Let (M1,E1, P1, G

1
±) and (M2,E2, P2, G

2
±), and let (AM, {AO}O∈I) and (BM, {BO}O∈J)

be the quasi-local algebras respectively related to them. Furthermore, let (f, F ) be a mor-
phism in Hyp connecting (M1,E1, P1, G

1
±) to (M2,E2, P2, G

2
±), and let (ϕ,Φ) be given

by

ϕ : I −→ J,

{
ϕ(M1) := M2,

ϕ(O) := f(O) ∀O 6= M1

Φ : CCR(VM1) −→ CCR(VM2),

Φ := (CCR ◦ Sym) (f, F ).
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Then (ϕ,Φ) is a morphism in LocC∗, and thus we have a functor from Hyp to LocC∗,
which we shall denote by Loc.

Proof. We already know the indexing set is partially ordered with orthogonality relation.
Condition (ii), namely that AM =

∨
AO is guaranteed by construction. Let 0O ∈

Sym(O,E|O, P,G±) ≡ VO, and thus W (0O) = 1CCR(VO); consider in the same way
1M, and, therefore, 1O = 1M by construction – i.e., since we are considering 0 as the null
section, according to the definition of the symplectic vector space as D(M,E)/ker(G).
Let O ⊂ O′; from the definition of αO′,O in terms of the inclusion iO′,O, we have the
diagram

CCR(VM)

CCR(VO) CCR(VO′)
αO′,O

αM,O
αM,O′

(4.10)

commuting; since α is injective, AO ⊂ AO′ . To prove the commutativity of the algebras,
it is enough proving the commutativity of the generators W (V ): suppose now O ⊥ O′,
i.e. J(O)∩O′, and let ϕ ∈ D(O,E) and ψ ∈ D(O′,E); since supp Gϕ ⊂ J(O), the causal
independence translates into supp Gϕ∩ supp ψ = ∅, and hence

∫
〈Gϕ,ψ〉 dV = 0. Let ϕ

and ψ denote the equivalence classes of the sections trivially extended to the whole M,
and thus we have ω(ϕ,ψ) = 0. According to the relations of a Weyl system, this implies
W (ϕ)W (ψ) = W (ϕ+ ψ) = W (ψ)W (ϕ). This cncludes the first part of the lemma.

Consider the pair of maps (ϕ,Φ) as presented. Let O ⊥ O′, and since f is an
embedding, ϕ is monotonic, ϕ(O) ⊥ ϕ(O′) since the orthogonality is maintained by f .
To see this, suppose the contrary; then, there would be a subset U ⊂ O′ such that
J(f(O)) ∩ f(U) 6= ∅, and, using the hypothesis that f(M1) ⊂ M2 is causally complete,
there would be a causal curve connecting f(O) to f(U). Consider the pre-image of this
curve, which, since f is an injective isometry, is also a causal curve which would connect
J(O) to U , a contradiction.

Consider now the diagram

O O′

f(O) M2.

iO,O′

f |O1 f |O2

if(O),M2

It implies

Φ(A(O)) = (CCR ◦ Sym) (f, F )

(
αM,O ◦ CCR ◦ Sym (O,E|O, P,G±)

)
= CCR ◦ Sym(f, F ) ◦ CCR ◦ Sym(iM1,O) ◦ CCR ◦ Sym (O,E|O, P,G±)

= CCR ◦ Sym(iM2,f(O)) ◦ CCR ◦ Sym(f |O, F |E|O) ◦ Sym (O,E|O, P,G±)
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⊂ αM2,f(O) ◦ CCR ◦ Sym(f(O),E|f(O), P,G±)

= Bf(O1)

which also applies for M1 in the form of Φ(A(M1)) ⊂ BM2 .

Now it only remains to prove that this net of observables obtained through this
functorial formalism satisfy the Haag-Kastler axioms presented above, which are to be
understood as the main fundamental axioms of a local quantum theory.

Theorem 15. Each net of observables in LocC∗ satisfies the Haag-Kastler axioms.

Proof. Let O,O′ ⊂ M with O ⊂ O′. That A(O) ⊂ A(O′) is clear from the commutativity
of the diagram (4.10) for α

A(O) = (αM,O ◦ CCR ◦ Sym) (O,E|O, P,G±)

=

([
(CCR ◦ Sym) (iO,M)

]
◦ CCR ◦ Sym

)
(O,E|O, P,G±)

⊂
([

(CCR ◦ Sym) (iO′,O)
]
◦
[

(CCR ◦ Sym) (iO′,M)
]
◦ CCR ◦ Sym

)
(

(O,E|O, P,G±) ↪→ (O′,E|O′ , P,G±)

)
⊂ A(O′)

what can also be represented in the diagram

O A(O)

O′ A(O′).

That AM =
∨
AO follows immediately from the definition of quasi-local algebras.

The simplicity of the quasi-local algebras follows from the fact that CCR-algebras of
symplectic vector spaces are simple4. The commutativity was already proved, so it only
remains to prove the last part of axiom 3 – i.e., that A(O) ⊂ A(O′) if O is a subset of
the relatively compact Cauchy development of O′, and the time-slice condition.

Proving that the net of quasi-local algebras satisfy the Time-slice condition if more
difficult and requires a technical statement, presented in the lemma below.

4In [18] the simplicity condition is replaced by a primitivity condition: an algebra is sad primitive
if it has a faithful irreducible representation into a given Hilbert space. A comment about simplicity
implying primitivity in the present case may be found in [10], with a reference to a detailed explanation
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Lemma 31. Let (M,E, P,G±) ∈ Hyp and let O ⊂ M be a causally compatible and
globally hyperbolic open subset of M. Let, in addition, S be a Cauchy surface of both O
and M. Then, each section ϕ ∈ D(M,E) may be written as

ϕ = φ+ Pψ

with φ, ψ ∈ D(M,E) and supp φ ∈ O.

Proof. See [10], lemmas 4.5.4 and 4.5.6.

Now, the Time-slice axiom is a corollary of the lemma above: consider O ⊂ O′ as we
should, i.e., causally compatible, open and globally hyperbolic with a common Cauchy
surface. Let [ϕ] ∈ D(O′,E)/kerG′, and, according to the previous statement, there are
φ ∈ D(O,E) and ψ ∈ D(O′,E) such that ϕ = extφ+ Pψ. As Pψ ∈ ker G′, we conclude
that [ϕ] = [extφ], which is exactly the same of saying that [ϕ] is the image of a symplectic
map [ψ] 7−→ [extψ] induced by the inclusion O ↪→ O′. Since this map is surjective, it
defines an isomorphism between symplectic spaces, and thus an isomorphism between
C∗-algebras, and thus we conclude A(O) = A(O′) up to an isomorphism.

There is now only axiom 3 to be completed: let O,O′ ∈ I with O ⊂ D(O′), the latter
is relatively compact. Let S be a Cauchy surface in O′. Since O′ is causally compatible
in M, S is acausal and, therefore, the Cauchy development of S, D(S), is causally
compatible and globally hyperbolic. On the other hand, by definition, D(S) = D(O′),
and thus we showed D(O′) ⊂ I. By the Time-slice axiom, A(O′) = A(D(O′)), and by
the first axiom we conclude A(O) ⊂ A(D(O′)) = A(O′). This completes this proof.

The following diagrams summarizes the concepts of this section up to now.

Hyp LocC∗

Sym C∗

Sym

CCR

Loc (4.11)

(M,E, P,G±) AM (f, F ) (ϕ,Φ)

D(M,E)/ker(G) CCR (D(M,E)/ker(G)) ext ∗ ω CCR(ext ∗ ω)

In this final part of the chapter, we would like to present an example of a theory
satisfying the formalism presented and the Haag-Kastler axioms, hence recollecting some
part of the material presented.

Let us first consider again the function spaces C∞(M,C) and D(M,C), like in chapter
2 – i.e., in the example to come, the regarded bundle will be C −→ M. By taking one
element of each space, say f ∈ C∞(M) and u ∈ D(M), we may consider each of these
functions separately as a distribution via the pairing 〈u, f〉 =

∫
M uf dV . Consider now

the Klein-Gordon equation
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(
� +m2

)
f = 0. (4.12)

We now know there is a pair of Green’s functions G± : D(M) −→ C∞(M) such that
G±

(
� +m2

)
=
(
� +m2

)
G± = id and supp G±f ⊂ J± (supp f). Since the Klein-

Gordon operator
(
� +m2

)
is self-adjoint, we may continuously extend Green’s functions

to distributions as

f ∈ C∞(M) 7−→G±(f) : D(M) −→ C (4.13)

G±(f)(u) := 〈G∓f, u〉. (4.14)

Denoting this operator extension by G′±, we then have G′± = G∓, and so G = G+ −
G− ⇒ G′ = −G. One should notice that this is nothing other than what was presented
in chapter 3, section “Green’s operator”. Once again we emphasize the origin of the
change future-past ± 7−→ ∓ in this extension: we always have 〈G+f, u〉 = 〈G+f, (� +
m2)G+u〉; however, under these conditions we cannot ensure the self-adjointness of the
differential operator �+m2, since the integration domain is in general non-compact and
we cannot guarantee that G±u decays fast enough. However, for 〈G+f, (� +m2)G−u〉,
the compactness of the set J+(supp f) ∩ J−(supp u) follows from the hypothesis of a
globally hyperbolic space.

Consider now a Cauchy surface S ⊂ M and the operators ∇n : C∞(M) −→ C∞(S),
the forward normal derivative, and ρ0 : C∞(M) −→ C∞(S), the restriction operator.
Let u ∈ C∞(M) and u0 := ρ0u, u1 := ∇nu. Define the adjoints ∇∗ and ρ∗0 from
D∗(M) to C∞(S)∗. According to the extension G′± : D∗(M) −→ (C∞(M))∗, when then
have Gρ∗0, G∇∗ : D∗(S) −→ C∞(M)∗. As presented in [18], those operators reduce to
continuous operators D(S) −→ C∞(M) such that

u := Gρ∗0u1 −G∇∗nu0 (4.15)

is the solution to the Cauchy problem with Cauchy data u0, u1.
We now turn to the quantum problem. We introduce the CCR representation over

a Cauchy surface S as follows. Consider a complex Hilbert space H and a pair of maps

θ, π : D(S) −→ L (D), (4.16)

defining linear operators on a dense subset D ⊂ H. Weakening slightly the terminol-
ogy, we shall name a map with this domain-codomain structure an operator-valued
distribution. Impose now the following condition on the maps,

[θ(f), π(f ′)] = i〈f, f ′〉. (4.17)

Example: (the neutral, bosonic scalar Fock space) let H0 := C, H1 = L2(S) – the
completion of the space of functions D(S) −→ C with respect to the inner product 〈f, f ′〉,

111



CHAPTER 4. FUNCTORIAL QUANTIZATION

and define the Hilbert space H :=
⊕∞

n=0 Sym
⊗

nH1 =
⊕∞

n=0Hn, Hn = Sym
⊗

nH1.
If a and a† are the usual creation and annihilation operators defined, as in [26], by
a, a† : D(S) −→ L(D),

a(f)ψ0 := 0

a†(f)ψ0 := f ∀ψ0 ∈ C,

a(f)Sym (ψ1 ⊗ · · · ⊗ ψn) :=n1/2〈f, ψ1〉Sym (ψ2 ⊗ · · · ⊗ ψn)

a†(f)Sym (ψ1 ⊗ · · · ⊗ ψn) := (n+ 1)1/2Sym (f ⊗ ψ1 ⊗ · · · ⊗ ψn)

for all f ∈ D(S), it is possible to prove that these operators obey the commutation
relation – see [26] or [10]

[
a(f), a†(f ′)

]
= −i〈f, f ′〉, f, f ′ ∈ D(S). (4.18)

Consider now the operator-valued distributions θ, π as

θ(f) :=
1√
2

(
a(f) + a†(f)

)
(4.19a)

π(f) :=
i√
2

(
a†(f)− a(f)

)
. (4.19b)

Then, by means of (4.18), we then have θ and π satisfying the required commutation
relation for a CCR representations of the Cauchy surface S over the Hilbert space H.

Once a CCR representation is at hand, the next step is to define the field operator
as the operator-valued distribution

f ∈ D(M) 7−→ φ(f) := θ (∇nGf)− π (ρ0Gf) . (4.20)

Theorem 16. The field operator φ, defined above to mimic the solution (4.15) of the
Cauchy problem, solves the Klein-Gordon equation.

Proof. We want to show that (� +m2)φ = 0. Let f ∈ D(M) and so

φ(f) = θ (∇Gf)︸ ︷︷ ︸
∈D(S)

−π (ρ0Gf)︸ ︷︷ ︸
∈D(S)

.

Then,

φ
(
(� +m2)f

)
= θ
(
∇G(� +m2)︸ ︷︷ ︸

=0

f
)
− π

(
ρ0G(� +m2)︸ ︷︷ ︸

=0

f
)
.

112



4.5. QUANTIZATION FUNCTOR

Besides this, we may also show that the field operator satisfies the commutation
relation

[φ(f), φ(f ′)] = −i〈∇Gf, ρGf ′〉+ i〈ρ0Gf,∇Gf ′〉 = −i〈f,Gf ′〉. (4.21)

The last expression is proved in [18], corollary 1.3, as an immediate consequence of
equation (4.15).

We next introduce the net of algebras. By introducing the Weyl form of the CCR
representation, we ensure the boundness of the operators involved; according to the
Baker-Campbell-Hausdorff relation for the exponential of operators (see [7]),

eA eB = eA+B+ 1
2

[A,B]+ 1
12

[A,[A,B]]+ 1
12

[B,[B,A]]+···, (4.22)

we have, considering (4.17),

W (f, f ′) := exp{i[θ(f)− π(f ′)]}

W (f, f ′)W (g, g′) = W (f + g, f ′ + g′) exp

{
−i
2

[
〈f, g′〉 − 〈g, f ′〉

]}
.

Consider now W as map D(S) ⊕ D(S) ≡ D(S)2 −→ L(D), and define ω : D(S)2 ×
D(S)2 −→ R, ω ((f, g), (f ′, g′)) := [〈f, g′〉 − 〈g, f ′〉]. It then follows immediately that ω
defines a symplectic form, and so the pair (W,ω) is a symplectic vector space.

With all these conditions, we also have, for t ∈ R,

exp{iφ(f)t} = W (t∇Gf, tρ0Gf). (4.23)

This allows us to define a net of C∗-algebras as follows: for open O ⊂ M causally com-
patible, relatively compact and globally hyperbolic, consider f ∈ D(M) with supp f ⊂ O
and

A(O) := C∗-algebra generated by exp{iφ(f)t} (4.24)

A :=
⋃
O

A(O), (4.25)

the completion with respect to the norm topology, [27]. We briefly comment that it
is possible to obtain the CCR representation from the Weyl system by considering t ∈
R 7−→ W (tf, tf ′) so that limt→τ W (tf, tf ′) = W (τf, τf ′)), and by means of Stone’s
theorem we may define the operators θ and π as

exp{iθ(f)t} := W (tf, 0)

exp{iπ(f)t} := W (0, tf).

Besides, following this, line the field may then be defined from equation (4.23).
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Theorem 17. The net of algebras A(O) is independent of the choice of the Cauchy sur-
face S. Once the Cauchy surface is chosen, the net is also independent of the symplectic
space defining the CCR representation (H,W ).

Proof. Consider two representations (H,W ) and (H̃, W̃ ) for a given Cauchy surface S;
we must prove there is an isomorphism between the algebras h : A −→ Ã such that
h (A(O)) = Ã(O), but this follows from theorem 14. Since the algebras are generated
by W and W̃ , this means that h : A −→ Ã is such that h (W ) = W̃ ⇒ h (exp{iφt}) =
exp{iφ̃t}, and thus h (A(O)) = Ã(O).

Consider now two Cauchy surfaces in M, say S and S̃, and some representation
(H,W ) over D(S). Take H̃ = H and construct W̃ from the restriction of the field φ to
S̃,

W̃ (f, f ′) := W (∇Gρ̃∗0f −∇G∇̃∗f ′, ρ0Gρ̃
∗
0f − ρ0G∇̃∗f ′).

It follows then that exp{iφ̃(f)t} = exp{iφ(f)t} – see the details in [18], theorem 3.

As a last comment, with respect to fields, we should understand them as operator-
valued distributions, a family of maps whose exponential D(M,E∗) −→ A(M) or φ :
D(O,E∗) −→ A(O), as in (4.23), respects the diagram

O M

D(O,E∗) D(M,E∗)

A(O) A(M).

(4.26)

A family of operators respecting the commutativity of a diagram like this is called a
natural transformation. We finally have a relation between sections in the vector
bundle and fields.

As for the Haag-Kastler axioms, we may not prove the algebra defined in (4.24) satis-
fies them, simply because the construction of the presented example mimics the general
formalism developed in this chapter, which in turn was proved to obey those axioms.
However, we refer to [18] for an explicit proof that the free scalar field is in agreement
with Haag-Kastler.

We thus constructed an association between globally hyperbolic manifolds and the
algebra of possible observables related to this manifold, an association we called quanti-
zation. The development presented, however, was quite abstract, as some fundamental
and motivational discussions could not be presented in this text. For instance, the mo-
tivation on the behalf of the use of C∗-algebras, and alternative algebraic structures as
well were not discussed. Rather, some references were indicated previously. Natural
next steps could be the study of Dirac fields, thus explicitly including spin in the theory,
which in turn would involve the study of gauge theories, or an attempt to an interacting
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theory, although the presence of interaction significantly increases the complexity of the
problem, and few interacting models were precisely presented until now. Another possi-
ble content to follow up this work would be an analysis of physical states, which could
also contain analysis of the Hadamard condition and of the KMS condition.

Since the precise formulation of quantum field theories by G̊arding and Wightman,
as presented in [28], our comprehension of quantum physics, specifically of quantum field
theory, evolved significantly, not only from a technical point of view, but also in more
conceptual terms. In this context, the formalism of Haag and Kastler provided us with
a new way to understand or to look at Nature, i.e. through the nets of algebras; these,
in turn, evolve into an interesting inverse problem: if our perception of space is due to
observations we are always performing, how could we obtain space from the algebra?
This interesting inverse problem also goes beyond the scope of this work, but it would
also be a natural follow-up.

All these possible ramifications become significantly more complex in the context of
general curved space-time: as we have seen, the absence of symmetry transformations
hinders or precludes extensions of well-defined objects on Minkowski space, as vacuum
states, for example. In this text a basis for the approach of quantum theories on curved
background was presented, and a simple example discussed, but this field goes much
further, as we still lack a precise description for many aspects of local quantum physics.
Under these conditions, this attempt to a conclusion for this work is vague but honest:
we are left with a complex and incomplete, but fundamental and a bit general description
of relativistic quantum theories. Furthermore, we are left with many questions, yet to
be answered (or even asked), and, at most, only the basics to explore them. This is,
of course, partially because of the limitations of this work, and of the author, but also
reflects the much it is yet to be done and studied in a framework that attempts to a
rigorous local quantum theory.
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