• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.43.2016.tde-31052016-173503
Document
Author
Full name
Cássio Alves
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Oliveira, Cristiano Luis Pinto de (President)
Coutinho, Kaline Rabelo
Lima, Luis Mauricio Trambaioli da Rocha e
Morelhao, Sergio Luiz
Salinas, Roberto Kopke
Title in Portuguese
Simulação e modelagem computacional de dados de espalhamento à baixos ângulos - enfoque em estruturas de alta simetria
Keywords in Portuguese
Dinâmica Molecular
Espalhamento a Baixos Ângulos
Modelagem
Simulação
Abstract in Portuguese
Esta tese apresenta uma abordagem para a criação rápida de modelos em diferentes geometrias (complexas ou de alta simetria) com objetivo de calcular a correspondente intensidade espalhada, podendo esta ser utilizada na descrição de experimentos de es- palhamento à baixos ângulos. A modelagem pode ser realizada com mais de 100 geome- trias catalogadas em um Banco de Dados, além da possibilidade de construir estruturas a partir de posições aleatórias distribuídas na superfície de uma esfera. Em todos os casos os modelos são gerados por meio do método de elementos finitos compondo uma única geometria, ou ainda, compondo diferentes geometrias, combinadas entre si a partir de um número baixo de parâmetros. Para realizar essa tarefa foi desenvolvido um programa em Fortran, chamado de Polygen, que permite modelar geometrias convexas em diferentes formas, como sólidos, cascas, ou ainda com esferas ou estruturas do tipo DNA nas arestas, além de usar esses modelos para simular a curva de intensidade espalhada para sistemas orientados e aleatoriamente orientados. A curva de intensidade de espalhamento é calculada por meio da equação de Debye e os parâmetros que compõe cada um dos modelos, podem ser otimizados pelo ajuste contra dados experimentais, por meio de métodos de minimização baseados em simulated annealing, Levenberg-Marquardt e algorítmicos genéticos. A minimização permite ajustar os parâmetros do modelo (ou composição de modelos) como tamanho, densidade eletrônica, raio das subunidades, entre outros, contribuindo para fornecer uma nova ferramenta para modelagem e análise de dados de espalhamento. Em outra etapa desta tese, é apresentado o design de modelos atomísticos e a sua respectiva simulação por Dinâmica Molecular. A geometria de dois sistemas auto-organizado de DNA na forma de octaedro truncado, um com linkers de 7 Adeninas e outro com linkers de ATATATA, foram escolhidas para realizar a modelagem atomística e a simulação por Dinâmica Molecular. Para este sistema são apresentados os resultados de Root Mean Square Deviations (RMSD), Root Mean Square Fluctuations (RMSF), raio de giro, torção das hélices duplas de DNA além da avaliação das ligações de Hidrogênio, todos obtidos por meio da análise de uma trajetória de 50 ns.
Title in English
COMPUTATIONAL MODELING AND SIMULATION OF DATA OF SMALL ANGLE SCATTERING - FOCUS IN HIGH SYMMETRY STRUCTURES
Keywords in English
Modeling
Molecular Dynamics
Simulation
Small Angle Scattering
Abstract in English
This thesis presents an approach to the fast creation of models in different geometries (complex or high symmetry) in order to calculate the scattering intensity, which can be used for the description of small angles scattering experiments. The modeling can be performed using more than 100 geometries cataloged in a database, besides the possibility to build structures from random positions distributed on the surface of a sphere. In all cases the models are generated using the finite element method composing a single geometry, or composing different geometries combined with each other, using a small number of parameters. To accomplish this task it was developed a program called Polygen, written in Fortran language, which allows the modeling of convex polyhedrons in different geometries, as solids, shells, with aligned beads or DNA-like structures at the edges. To simulate the scattering intensity curve, these models are used and is possible simulate oriented and randomly oriented systems. The scattering intensity curve is calculated using the Debye equation and the main parameters describing the models, can be optimized by the fitting of the calculated curves against experimental data. The optimization is performed by the use minimization methods based on simulated annealing, Levenberg-Marquardt and genetic algorithmic. The minimization procedures allows the optimization of themodel parameters (or models of composition) as size, electron density, gyration radius, among others, contributing to provide a new tool for modeling and scattering data analysis. In a further step of this thesis, the design of atomistic models is presented and therespective simulation by Molecular Dynamics. Two geometries for DNA self-assembly
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Alves_tese.pdf (70.00 Mbytes)
Publishing Date
2016-06-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.