• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.44.2008.tde-14082008-165227
Documento
Autor
Nombre completo
Jorge Watanabe
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2008
Director
Tribunal
Yamamoto, Jorge Kazuo (Presidente)
Monteiro, Marcelo Costa
Rocha, Marcelo Monteiro da
Título en portugués
Métodos geoestatísticos de co-estimativas: estudo do efeito da correlação entre variáveis na precisão dos resultados
Palabras clave en portugués
Amostragem colocalizada
Amostragem multicolocalizada
Co-estimativa
Coeficiente de correlação de Pearson
Cokrigagem colocalizada
Efeito de suavização
Geoestatística multivariada
Krigagem com deriva externa
Modelo Markoviano
Semivariograma cruzado
Resumen en portugués
Esta dissertação de mestrado apresenta os resultados de uma investigação sobre os métodos de co-estimativa comumente utilizados em geoestatística. Estes métodos são: cokrigagem ordinária; cokrigagem colocalizada e krigagem com deriva externa. Além disso, a krigagem ordinária foi considerada apenas a título de ilustração como esse método trabalha quando a variável primária estiver pobremente amostrada. Como sabemos, os métodos de co-estimativa dependem de uma variável secundária amostrada sobre o domínio a ser estimado. Adicionalmente, esta variável deveria apresentar correlação linear com a variável principal ou variável primária. Geralmente, a variável primária é pobremente amostrada enquanto a variável secundária é conhecida sobre todo o domínio a ser estimado. Por exemplo, em exploração petrolífera, a variável primária é a porosidade medida em amostras de rocha retiradas de testemunhos e a variável secundária é a amplitude sísmica derivada de processamento de dados de reflexão sísmica. É importante mencionar que a variável primária e a variável secundária devem apresentar algum grau de correlação. Contudo, nós não sabemos como eles funcionam dependendo do grau de correlação. Esta é a questão. Assim, testamos os métodos de co-estimativa para vários conjuntos de dados apresentando diferentes graus de correlação. Na verdade, esses conjuntos de dados foram gerados em computador baseado em algoritmos de transformação de dados. Cinco valores de correlação foram considerados neste estudo: 0,993, 0,870, 0,752, 0,588 e 0,461. A cokrigagem colocalizada foi o melhor método entre todos testados. Este método tem um filtro interno que é aplicado no cálculo do peso da variável secundária, que por sua vez depende do coeficiente de correlação. De fato, quanto maior o coeficiente de correlação, maior é o peso da variável secundária. Então isso significa que este método funciona mesmo quando o coeficiente de correlação entre a variável primária e a variável secundária é baixo. Este é o resultado mais impressionante desta pesquisa.
Título en inglés
Co-estimation geostatistical methods: a study of the correlation between variables at results precision
Palabras clave en inglés
Co-estimation
Collocated sampling
Collocated simple cokriging
Cross semivariogram
External drift kriging
Markov model
Multicollocated sampling
Multivariate geostatistics
Pearson's correlation coefficient
Smoothing effect
Resumen en inglés
This master dissertation presents the results of a survey into co-estimation methods commonly used in geostatistics. These methods are ordinary cokriging, collocated cokriging and kriging with an external drift. Besides that ordinary kriging was considered just to illustrate how it does work when the primary variable is poorly sampled. As we know co-estimation methods depend on a secondary variable sampled over the estimation domain. Moreover, this secondary variable should present linear correlation with the main variable or primary variable. Usually the primary variable is poorly sampled whereas the secondary variable is known over the estimation domain. For instance in oil exploration the primary variable is porosity as measured on rock samples gathered from drill holes and the secondary variable is seismic amplitude derived from processing seismic reflection data. It is important to mention that primary and secondary variables must present some degree of correlation. However, we do not know how they work depending on the correlation coefficient. That is the question. Thus, we have tested co-estimation methods for several data sets presenting different degrees of correlation. Actually, these data sets were generated in computer based on some data transform algorithms. Five correlation values have been considered in this study: 0.993; 0.870; 0.752; 0.588 and 0.461. Collocated simple cokriging was the best method among all tested. This method has an internal filter applied to compute the weight for the secondary variable, which in its turn depends on the correlation coefficient. In fact, the greater the correlation coefficient the greater the weight of secondary variable is. Then it means this method works even when the correlation coefficient between primary and secondary variables is low. This is the most impressive result that came out from this research.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
JW.pdf (3.50 Mbytes)
Fecha de Publicación
2008-09-02
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.