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ABSTRACT 

Ramos, G. Z., 2022, Hybrid objective function applied to optimize infill sampling 

location [Doctorate’s Thesis], São Paulo, Instituto de Geociências, Universidade de São 

Paulo, 101 p. 

Different moments of the exploration of mineralized bodies demand that sampling 

infill be made, those new samples have the objective of furthering knowledge about 

mineralized rock grade distribution. Usually, drillholes collars are located by geologists with 

experience and knowledge about the domain under analysis. Other methodologies can be 

applied to help the decision of where to locate the drillholes, for example, optimization of the 

infill drillhole location. Optimization is a method to assess the best parametrization to solve a 

problem, in the case of the infill location the problem depends on what the new samples are 

made for. Some research utilizes the kriging variance to guide the location of the new samples 

but has a limitation in assessing the sample distribution uncertainty. Another method that can 

be applied to locate the infill samples is simulation variance, which is dependent on the 

sample value. The application of a compost objective function to optimize the infill location is 

tested. This compost function considers both models kriged and simulated to search for the 

optimal infill drillhole configuration, therefore, considering both the sample spatial 

distribution and uncertainty. This method is compared with the objective function that uses 

either the kriged or simulated data directly to assess the competence of the compost one. 

Another test considers the influence of the values associated with the samples while searching 

for the optimum location of drillholes. Those tests have proven that the use of the simulation 

alone fared better in locating the infill samples in synthetic data than the compost or the 

kriging-dependent objective function. Both objective functions that utilize direct models, 

either kriged or simulated, fared better in different distributions. Considering the values 

associated with the samples, the median fares better than the other 3 values, mean, P10, and 

P90 of the simulated block distribution. Regarding the methodology of the search is important 

to notice that optimizing the direction of the drillhole tends to have a better response 

regarding the objective function but more tests should be made. The optimized infill location 

tends to further the representativity of the original sampling after the drillholes are done, 

therefore it can help assess portions of the domain with higher uncertainty that should be 

considered when the infill location decision is being made. 
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Terms: Infill, Optimization, Kriging, Simulation, Objective function, Uncertainty, 
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1 INTRODUCTION 

 

Infill sampling is necessary for all phases of the mining enterprise. Higher uncertainty 

of the mining profitability, while in the initial research, demands for the best and more 

reliable data to decrease it. The location of infill samples is usually dependent on the research 

demand, being either the region with higher grade and/or higher uncertainty. The decision as 

to where to locate infilled samples is made by a geologist or mining engineer that knows the 

data and genetic history of the mineralization. This approach is subjective but effective, 

despite that an objective approach is necessary to guide the location that considers the needs 

of the research and the original information disposed of in the research. One approach to 

contemplate possible infill location sites are made utilizing computational optimization. 

Different methods of how to optimize the infill were proposed, with many utilizing the 

estimation uncertainty to guide the model to locate new samples. Besides, the mining project 

phase is also considered, in the initial stages the focus is on the uncertainty of the data, and 

while exploiting the mine operational aspects are focused on increasing efficiency.  

Several studies were made considering the kriging variance as a guide to locate infill 

sampling. Examples of those studies are: Szidarovszky (1983); Gershon (1987); Groenigen et 

alli (1999); Delmelle & Goovaerts (2009); Wilde (2009); Soltani et alli (2011); Mohammadi 

et alli (2012); Silva & Boisvert (2013); Soltani & Hezarkhani (2013); Dutaut & Marcotte 

(2020).  Those works differ from each other by the optimization algorithm utilized or the 

application of the kriging variance as the objective function, that can be considered alone, be 

averaged in the domain, weighted, with the estimated value, and others. However, there is a 

limitation if the kriging variance is utilized to assess uncertainty, as its value is 

homoscedastic, considering only the distance and spatial configuration of the samples that 

were used to estimate the node. This limitation does not mean the application of the kriging 

variance is useless, once it can point out regions of the domain that are sub-sampled, what 

must be considered while locating infill drillholes. This limitation arises from the need to 

consider different approaches while using kriging variance, such as using weights, adding 

other values to the objective function, or using a completely different model to derive the 

objective function. 

Another approach is infill optimization based on different methodologies, as 

examples: Boucher, Dimitrakopoulos, and Vargas-Guzman (2004); Boucher, 

Dimitrakopoulos & Vargas-Guzman (2005); Al-Mudhafer (2013); Martínez-Vargas (2017); 
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Dirkx & Dimitrakopoulos (2018). Their research is based on simulated models of the data, or 

the objective function considers other aspects, such as profitability, misclassification, and 

other relevant factors that should be considered when infilling samples. The important factor 

to decide the approach, the algorithm, or the objective function, is the purpose of the infill 

location search. 

Two papers compose the bulk of this thesis, one using a compost approach, combining 

estimated and simulated models to derive an uncertainty factor of the original data that 

represents local and global uncertainty in a single function. Utilizing kriging variance and 

simulated model uncertainty, this function represents subsampled portions of the domain 

while indicating regions with higher local variability. Another distinction is the time frame of 

the application, in this thesis, the focus is given to the initial stage of the mineral prospect 

when the uncertainty of the enterprise is higher. To obtain the best information as possible, 

with high reliability, is extremely important to indicate and further the knowledge regarding 

the mineralized body spatial distribution, so the focus is to warranty that infill will provide 

higher representativity as possible. In that way, this work will present the compost objective 

function and compare it to the approach of the single objective function to assess the 

competence of each in locating the infill regarding the population data. Another test considers 

the effect of the value associated with the samples while optimizing the infill location. This 

method tests 4 possible values that can be utilized as the new sampled value to assess the 

effects while optimizing. The last test considers the optimization that varies the drillhole 

direction while searching for the optimum infill location. All analyses were held in synthetic 

data created by Takafuji (2015) and Takafuji et al. (2017) and a real data set on a mine site. 

The synthetic data is preferred to assess the competence of the methodology proposed as the 

population distribution is available allowing comparisons with the optimized infilled samples. 

While the real data demonstrates the application in more complex domains than the synthetic 

data. 

2 HYPOTHESIS 

 

The principal hypothesis in consideration is that sample grade uncertainty and their 

spatial position improves the infill location and considering these aspects combined as an 

objective function to be optimized would lead infill sampling to perform better in terms of 

sample representativity of the population. A secondary hypothesis is that grade values 
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associated with the proposed infill samples would directly impact the optimized new 

boreholes positions.  

3 OBJECTIVES 

 

The main objective of this thesis is to evaluate the competence of the optimization in 

locating infill and answer the question: does an objective function combining estimated and 

simulated models fare better in representing the population data when locating infill, or does 

the singular model objective function is better to further representativity? The second 

objective is to assess the effects of the value associated with the possible infill samples while 

optimizing, and what is the best possible value that should be considered. 

4 LITERATURE REVIEW 

 

This review focuses on the details of the geostatistical estimation and simulation 

without over-detailing the models but pointing out the applicability of each. For more details, 

the author recommends reading the relevant citations presented in the text. A small 

explanation of the Kolmogorov-Smirnov test will also be presented. 

4.1  Geostatistics  

 

The term geostatistics was firstly coined by Matheron in 1963, at that time 

geostatistics studied the spatial relationship of the data related to mining. Matheron (1963) 

refers to Krige and Sichel as the precursors of the spatial variability analysis, even if they 

believed their proposals were classical statistics, their work guided the development of 

geostatistics as it is known. To differentiate the random variable from the data used by 

geostatistics, the term regionalized variable was also coined by Matheron (1963). 

The regionalized variable values are attached to the spatial position of the analysis 

(Matheron 1963). There are 4 characteristics related to regionalized variables, being so 

(Matheron 1963): 

Location: spatial coordinates of the data samples. 

Support: related to the location, is the physical volume of the sampled data. 
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Continuity: the variability between neighbors tends to increase as distances increase. 

Anisotropies: different directions could have a higher or a lower variability. 

To analyze the characteristics of the regionalized variable, and spatial variance of data 

distribution, geostatistics utilizes the variogram (Matheron 1963). Defined by Matheron 

(1963) variogram is a graphic that represents the continuity of a mineralization. The 

variogram abscissa axis represents the distance h of the analysis, and the ordinate axis is the 

mean spatial variance of data with h vector between them (Matheron 1963). Matheron (1963) 

defines the variogram as a triple integer of the square difference of data separated by vector h, 

representing the mining 3D grid. However, the limit in applying the variogram proposed by 

Matheron is the fact that data is not taken continuously at the mineralized domain. The 

experimental variogram is utilized to calculate the spatial variability between sampled data, 

and is represented in the following equation (I) (Isaaks & Srivastava 1989; Chilès & Delfiner 

1999):  

2𝛾(ℎ) =  
1

𝑛
 ∑[𝑍(𝑋𝑖 + ℎ) −  𝑍(𝑋𝑖)]

2

𝑛

𝑖=1

 (I) 

 

where 𝛾(ℎ) is spatial variance; 𝑍(𝑋𝑖) is the regionalized variable sampled in the 

point (𝑋𝑖) = (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖); 𝑍(𝑋𝑖 + ℎ) is the sample data at a distance vector ℎ from 𝑍(𝑋𝑖); 𝑛 is 

the number of sample pairs with vector ℎ separations between themselves. 

If the domain is stationary the following relation (equation (II)) between the variogram 

and spatial covariance is valid (Armstrong 1998): 

 

𝛾(ℎ) = 𝐶(0) −  𝐶(ℎ) (II) 

 

where 𝛾(ℎ) is the variogram 𝐶(0) is the null distance covariance (statistical 

variance) and spatial covariance given a distance h is 𝐶(ℎ). This correlation is graphically 

represented in Figure 01. 
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Figure 01 – Relation between variogram and covariogram. (Taken from Yamamoto 2001). 

 

To quantify anisotropies the variogram must be calculated in different directions, 

varying the directions of the vector h the occurrence of anisotropies can be analyzed 

(Matheron 1963; Armstrong 1998). Different methods to calculate multidirectional variogram 

were proposed, the directions should be related to the geological structure of the data 

(Armstrong 1998; Deutsch 2002). In the case of no noticeable preferential direction, it is 

recommended to start North and take one direction every 45 degrees until South (Armstrong 

1998; Olea 1999). The vertical Direction should be considered in the variogram if the data is 

tridimensional (Deutsch 2002). The value of h can be derived, from each direction, as the 

mean value of the first neighbor at each direction of interest (Olea 1999). Other parameters 

can be defined to better calculate and represent the spatial variability of the domain, for 

details refer to Olea (1999) and Deutsch (2002). 

After the initial analysis of the anisotropy, the next step is to define a variogram model 

to represent the spatial variability continuously (Deutsch 2002). The model must be valid and 

adjust well to the experimental variogram while being admissible by a group of factors and 

tests. For more details on variogram models refer to Armstrong (1998); Olea (1999) and 

Deutsch (2002). 

4.2 Kriging 

 

Kriging refers to a series of estimation methods that minimizes the mean square errors 

of estimate (Deutsch 2002). The term BLUE, best linear unbiased estimator, is used to 

describe kriging, as the method that minimizes the variance error between the real and 

estimated data (Armstrong 1998; Deutsch 2002). Generally, the estimative is made as a 

weighted mean with minimal variance (Armstrong 1998). Matheron (1963) defined kriging as 
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a grade estimation of a panel computing weighted means of proximal samples, the name 

honors Professor Daniel G. Krige and his pioneer studies in quantifying spatial variability. 

The kriging estimator equation (III) presented by Matheron (1963) is: 

𝑍∗(𝑋0) =  ∑𝜆𝑖𝑍(𝑋𝑖)

𝑛

𝑖=1

 (III) 

 

where 𝑍∗(𝑋0) is the estimated data at position 𝑋0 given by the summation of the 

weights 𝜆𝑖 associated with each sample 𝑍(𝑋𝑖).  

Secondly, the weights should be such that the variance between real and estimated 

data should be minimal (Matheron 1963). 

Matheron (1963) addresses as advantages of kriging that the method returns the best 

estimative values, with the smallest variance; and can help assess the mine’s future 

production. 

To Armstrong (1998) factors that guarantee kriging the estimation accuracy are: 1) 

number and quality of samples at each point; 2) position of samples in the domain; 3) distance 

between samples and estimated point, with more acuity around sampled sites; and 4) spatial 

continuity of the variable of interest. 

In this thesis, two kriging methods will be considered, simple kriging and ordinary 

kriging. 

Simple kriging considers that the mean is known (Armstrong 1998) and to define its 

weights the estimative error is needed (Olea 1999), therefore, the error expected value should 

be equal to zero. Simple kriging equation (IV) is presented as (Olea 1999 and Deutsch 2002): 

𝑍𝑆𝐾
∗ (𝑋0) =  𝑚0 + ∑𝜆𝑖(𝑍(𝑋𝑖) − 𝑚𝑖)

𝑛

𝑖=1

 (IV) 

 

where 𝑍𝑆𝐾
∗ (𝑋0) the simple kriging estimator is given by the mean at the 

unsampled location 𝑚0 plus the sum of the weighted difference between samples and the 

local mean 𝑚𝑖. 
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The weights are defined by a linear equation system derived from the estimated error 

variance (Armstrong 1998), where the number of equations is dependent on the number of 

samples used to estimate (Olea 1999). The linear equation deduction can be seen in detail by 

Amrstrong (1998) and Olea (1999). From those deductions the system is given by the 

following equation(V), in matrixial presentation (Olea 1999): 

[

𝐶𝑂𝑉(𝑋1, 𝑋1) 𝐶𝑂𝑉(𝑋2, 𝑋1) ⋯ 𝐶𝑂𝑉(𝑋𝑛, 𝑋1)

𝐶𝑂𝑉(𝑋1, 𝑋2) 𝐶𝑂𝑉(𝑋2, 𝑋2) ⋯ 𝐶𝑂𝑉(𝑋𝑛, 𝑋2)
⋮ ⋮ ⋮ ⋮

𝐶𝑂𝑉(𝑋1, 𝑋𝑛) 𝐶𝑂𝑉(𝑋2, 𝑋𝑛) ⋯ 𝐶𝑂𝑉(𝑋𝑛, 𝑋𝑛)

] ∗ [

𝜆1

𝜆2

⋮
𝜆𝑛

] =  [

𝐶𝑂𝑉(𝑋0, 𝑋1)

𝐶𝑂𝑉(𝑋0, 𝑋2)
⋮

𝐶𝑂𝑉(𝑋0, 𝑋𝑛)

] (V) 

 

where 𝐶𝑂𝑉(𝑋1, 𝑋1) is the spatial covariance between the sample 𝑋1 and itself, 

𝐶𝑂𝑉(𝑋2, 𝑋1).is the spatial covariance between sample 𝑋2 and sample 𝑋1 and so on. 

The simple kriging variance is presented as shown in the following equation (VI) 

(Deutsch & Journel 1998): 

𝜎𝑆𝐾
2 (𝑋0) = 𝐶𝑂𝑉(0) − ∑𝜆𝑖𝐶𝑂𝑉[𝑋0, 𝑋𝑖]

𝑛

𝑖=1

 (VI) 

 

Ordinary kriging considers the mean unknown but locally stationary, being a weighted 

mean that can be calculated as shown in equation (VII) (Armstrong 1998): 

𝑍𝑂𝐾
∗ (𝑋0) =  ∑𝜆𝑖𝑍(𝑋𝑖)

𝑛

𝑖=1

 (VII) 

 

Considering the mean of estimate error and the fact that the method is unbiased the 

equation, known as the unbiased condition of the ordinary kriging, is shown in equation (VIII) 

(Armstrong 1998): 

∑𝜆𝑖 =  1

𝑛

𝑖=1

 (VIII) 

 

Different from the simple kriging system, where there are 𝑛 variables and 𝑛 equations 

– each one related to a sample chosen to estimate – the ordinary kriging system has 𝑛 + 1 
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equations and 𝑛 + 1 variables. The additional equation is related to the constraint imposed by 

the unbiasedness condition. Therefore, the ordinary kriging system is given by equation (IX): 

[
 
 
 
 
𝐶𝑂𝑉(𝑋1, 𝑋1) 𝐶𝑂𝑉(𝑋2, 𝑋1) ⋯ 𝐶𝑂𝑉(𝑋𝑛, 𝑋1) 1

𝐶𝑂𝑉(𝑋1, 𝑋2) 𝐶𝑂𝑉(𝑋2, 𝑋2) ⋯ 𝐶𝑂𝑉(𝑋𝑛, 𝑋2) 1
⋮ ⋮ ⋮ ⋮ 1

𝐶𝑂𝑉(𝑋1, 𝑋𝑛) 𝐶𝑂𝑉(𝑋2, 𝑋𝑛) ⋯ 𝐶𝑂𝑉(𝑋𝑛, 𝑋𝑛) 1
1 1 ⋯ 1 0]

 
 
 
 

∗

[
 
 
 
 
𝜆1

𝜆2

⋮
𝜆𝑛

−𝜇]
 
 
 
 

=  

[
 
 
 
 
𝐶𝑂𝑉(𝑋0, 𝑋1)

𝐶𝑂𝑉(𝑋0, 𝑋2)
⋮

𝐶𝑂𝑉(𝑋0, 𝑋𝑘)

1 ]
 
 
 
 

 (IX) 

 

Ordinary kriging variance is computed as presented in equation (X): 

𝜎𝐾𝑂
2 (𝑋0) =  ∑𝜆𝑖

𝑛

𝑖=1

𝛾(𝑋𝑖 , 𝑋0) + 𝜇 (X) 

 

Some kriging characteristics are important to be considered in this thesis, the first 

kriging is a conditional method, in other words, if an estimated point coincides with a sample, 

the estimative is equal to the sample value as can be shown in Chilès & Delfiner (1999). The 

second characteristic is the smoothing of the estimative, the dispersion of estimate distribution 

is smaller than the original/sampled data one, this is given by the fact that the estimated 

variance differs from the sample variance the exact value of the kriging variance (Chilès & 

Delfiner 1999). 

Another important point is the homoscedastic characteristic of the kriging variance, 

meaning that the value is not dependent on the sampled values considered while estimating, 

which disables kriging variance as an uncertainty value (Armstrong 1994). The kriging 

variance value is dependent on the spatial configuration of the samples used while estimating, 

therefore, two identical configurations, with different sample values, will have the same 

kriging variance, given the same variogram model (Armstrong 1994).  

4.3 Simulation 

 

Olea (1999) points to limitations of kriging that are related to the smoothing effect: 

• The estimation variogram differs from the sample variogram. 

• The estimation histogram differs from the sampled data histogram. 

• Kriging tends to underestimate high values and overestimate small values. 
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Stochastic simulations were proposed to deal with the smoothness of the estimative 

(Deutsch & Journel 1998; Olea 1999). The stochastic simulation in geostatistics refers to 

models that compute different and equiprobable values given a variogram model (Deutsch & 

Journel 1998). Kriging models represent a global trend while the simulated models are 

sensitive to local variability, the equiprobable models can be used to derive uncertainty of the 

distribution, therefore, the global characteristics and statistics are maintained to the detriment 

of the local accuracy (Deutsch & Journel 1998). Simulation computes l equiprobable 

realizations, called conditional if it is conditioned by the data (Olea 1999). The choice of 

which model is given by the user’s interest, if he wants to minimize local error, he should opt 

to use kriging, while if the aim is to keet spatial continuity, simulation must be chosen (Olea 

1999). 

The focus of this work will be Sequential Gaussian Simulation (SGS) which is a 

conditional method. The algorithm of the SGS as presented in Deutsch & Journel (1998), 

Olea (1999) and Deutsch (2002) are:  

1. Transform the sample distribution into a normal distribution 𝑁[0,1], if the data 

is not normal, Gaussianity is a requirement of geostatistical simulation 

methods. 

2. Adjust a variogram model to the normal distribution experimental variogram. 

3. Define a grid or block model to be simulated. 

4. Define the number of realizations. 

5. Define a seed that shall produce a random path of nodes to be simulated at 

each realization. 

6. Estimate the node by simple kriging and compute its simple kriging variance 

considering the local samples and previous simulated nodes in the 

neighborhood. 

7. Consider 𝑁(𝑍𝐾𝑆
∗ (𝑋0), 𝜎𝐾𝑆

∗ (𝑋0)) as the normal distribution of the possible 

values at the given node. 

8. Obtain the simulated value at the node drawing it at random pull from the 

normal distribution 𝑁(𝑍𝐾𝑆
∗ (𝑋0), 𝜎𝐾𝑆

∗ (𝑋0)) based on the equation (XI): 

𝑍𝑆𝐺𝑆
𝑙 (𝑋0) = 𝑍𝐾𝑆

∗ (𝑋0) + 𝑅(𝑋0) (XI) 
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where  𝑍𝑆𝐺𝑆
𝑙 (𝑋0) is the simulated node; 𝑍𝐾𝑆

∗ (𝑋0) is the simple kriging 

estimator; 𝑅(𝑋0) is drawn by classical Monte Carlo simulation that considers 

the variance value 𝜎𝐾𝑆
∗ (𝑋0). 

9. Add the 𝑍𝑆𝐺𝑆
𝑙 (𝑋0) value data to be considered in the next simulations on the 

same realization. 

10. Repeat steps 6 to 9 until the last node is simulated. 

11. If the data was transformed in normal back transform, it to the original 

distribution. 

The use of a Gaussian distribution guarantees that the simulated distribution is 

representative of the sample distribution, which isn’t when other distributions are considered 

(Deutsch 2002). Working in the Gaussian domain guarantees that the result is Gaussian and, 

therefore, that the mean, variance, and variogram model are reproduced (Deutsch 2002). 

However, the reproduction of the statistics is not perfect, even with the Gaussianity of the 

data, this is an effect associated with the uncertainty of the sampled values (Deutsch & 

Journel 1998). The ergodic fluctuations in results may occur, with the data being ergodic if 

the analyzed parameter tends to the real (sampled) with more realizations being made 

(Deustch & Journel 1998). With more conditional data the ergodic fluctuation should be 

smaller (Deutsch & Journel 1998). Therefore, if the data is stationary, ergodic, and different 

realizations are made, it is expected that the statistics of each realization reproduce the real 

model of the data (Deutsch & Journel 1998).  

4.4 Optimization 

 

Optimization refers to a decision-make an act or resolving complex problems by 

modifying values of the variables related to the objective while computing the quality of the 

results attained (Luenberger & Ye 2008). The objective is maximized or minimized while 

considering the restrictions imposed on the variables that the problem is subjected to 

(Luenberger & Ye 2008). The complexity, relations between variables, and limitations could 

turn the solution inviable, or even impossible to attain a definitive answer, therefore, usually 

the optimization approximates which results indicates the closer solution of the ideal desired 

(Luenberger & Ye 2008). The mathematical model of the objective shall be accurate to best 

represent the reality of the problem and the solution must be attained in a reasonable time 

(Luenberger & Ye 2008). 
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Linear programming, the original optimization methodology to solve linear problems, 

where developed by Dantzig in 1947 with the simplex algorithm (Dantzig 1981). Even when 

considering that as previous work Kantorovich, in 1939, deals with the planning and 

distribution of materials and workforce in the USSR, his work only gained notoriety with the 

development of mathematical programming (Dantzig 1981). The contributions of Dantizig, as 

presented by himself in 1981, are: practical planning can be formulated as mathematical 

systems of linear inequalities; selection of optimal planning with an objective; and the 

development of the simplex. 

Optimization uses basic equations that represent the problem, this can be generically 

presented as the following equation (XII) (Schäffer 2012, Snyman & Wilke 2018): 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥): 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]   ∈  ℝ𝑛 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑔(𝑥) ≥ 𝐿 
 

(XII) 

The function 𝑓(𝑥) represents the problem, it is called the objective function and must 

honor the relation imposed by 𝑔(𝑥) in the search and its relationship with the value of 

interest. Optimizations that consider limitations are called restrictions, those limitations are 

given by functions of inequality or equality (Snyman & Wilke 2018). Representing the 

problem using the objective function is extremely important once its development and 

modeling will indicate the formulation and methodologies necessary to attain the optimal 

result desired (Snyman & Wilke 2018). 

Natural phenomena rarely can be represented by linear equations; therefore, the use of 

non-linear programming is preferred (Pintér 2009). One of the characteristics of non-linear 

functions is the occurrence of local optima, which in turn points to the interest in utilizing 

global optimizations (Pintér 2009). The limitation in those cases comes from the 

computational and time limitations that arise from the solution of non-linear problems, in the 

case of continuous data the number of iterations tends to infinity, which indicates the 

necessity of applying stochastic methods (Romeijn 2009).  

Global stochastic optimizations must be applied when there is no evidence of the 

problem having a real solution, which may be related to dimensional reasons, the search space 

of the objective function, or the fact that optimal value cannot be attained in a feasible 

computational time (Schoen 1991). The addition of a stochastic parameter in the algorithm 
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can be applied to solve those difficulties when optimizing (Schoen 1991). There are two 

distinctions applicable to stochastic optimization algorithms (Schoen 1991): 1) stochastic 

model, the objective function is given because of a stochastic process; and 2) in stochastic 

algorithms, the values of the objective function are defined stochastically. Different 

algorithms deal with both types of stochastic approaches through probabilistic and heuristic 

search (Schoen 1991). The application of global optimization recommends the search division 

in three parts (Schoen 2009): global search, which contemplates the whole domain; local 

search, limiting the region to where a given local optimum is acceptable; and stop criteria. 

As heuristics is related to stochastic and global optimizations it is important to detail 

it. Heuristics refers to a methodology to define the best and most efficient result based on the 

different alternatives related to the desired objective (Pearl 1984). Two exigencies limit the 

heuristic search (Pearl 1984): the criteria that define the best value being simple; and the 

possibility to differentiate between good and bad values while searching. Therefore, heuristics 

do not guarantee that the best overall possible value overall is attained, once not all possible 

values are contemplated in the search. However, the result is sufficient in most of the 

applications (Pearl 1984). Applying heuristic optimization has the main goal indicate an 

acceptable good option among a big number of configurations even if not attaining the best 

result (Pearl 1984). When dealing with big domains, or with the number of possibilities 

tending to be infinite, heuristics reduce the number of evaluations of the objective function 

and attain solutions in a feasible computational time (Pearl 1984). According to Bianchi et al. 

(2008), there are two groups of heuristic algorithms: the constructive algorithms, which add 

solution components to search the solution; and the localized search algorithms, which use an 

initial solution that is developed by modifying its values.  

Different modifications can be applied in heuristic optimization to evade local 

optimum, those algorithms are usually called metaheuristics (Voss 2009). Metaheuristics refer 

to methods of search applied to an objective function parameters domain to diversify the 

result and intensify the search to attain the result (Blum & Roli 2003). Diversifying the search 

refers to the exploration of the solution domain and intensifying is related to the comparisons 

between results to guide the search (Blum & Roli 2003). The search made by metaheuristics 

algorithms depends on the interest while searching, so it can be made while evading local 

optima with the algorithm searching for best results, as the simulated annealing (SA) 

algorithm does (Blum & Roli 2003). Other algorithms use learning where the components of 
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the search “learn” to differentiate regions of the domain with higher interest, where the results 

tend to be better (Blum & Roli 2003). 

This thesis will focus on the simulated annealing algorithm that was applied in the 

papers. Simulated annealing applies the effects of the annealing and cooling in solids to solve 

problems with high complexity or infinity number of solutions (Romeijn 2009; Gall 2014). 

The SA method is based on the work developed by Metropolis et al. (1953) that uses a 

computational methodology to describe the properties of substances by considering the 

interaction of the molecules that compose it while applying equations of state and simulating 

through a modified Monte Carlo method to obtain the spatial configuration of those 

molecules. Application of the methodology proposed by Metropolis et al. (1953) as a heuristic 

optimization is presented by Kirkpatrick et al. (1983), which shows the relation between the 

idea of metal smelting and the slow cooling of this system to search for the best position 

(solution) of each molecule that “evade” imperfections to form the crystal. The principal idea 

of Kirkpatrick et al. (1983) is to present the relation between the arrangement of the particles 

by the energy present in the system with the search for the most stable configuration, as the 

acceptance of only the best relates to a fast-cooling and more unstable system. Therefore, the 

algorithm usually accepts worse configurations to guarantee that the best solutions can be 

attained (Kirkpatrick et al. 1983; Romeijn 2009). The probability of acceptance of worse 

results is important in the SA method as it guarantees that the search for the optimal continues 

even when a local optimum is obtained, which can be evaded to continue the search for a 

possible best optimum (Romeijn 2009). 

The basic SA algorithm varies at random the position of the particle and computes the 

result of the new configuration applied in the objective function, when a better value is 

attained the new position of the particle is accepted; if a worse result is obtained the 

acceptance of the new position is given by a probability test given by the method, which 

decides if it will or not be accepted (Kirkpatrick et al. 1983). The proceeding of acceptance of 

worse configurations is related to the temperature of the system, meaning, the domain is 

heated up to a maximum temperature at the initial point and is cooled progressively during the 

search, therefore, there is a higher probability of acceptance of worse results when the system 

temperature is higher; this procedure is called cooling schedule (Kirkpatrick et al. 1983; 

Romeijn 2009). The probability of acceptance of worse results is related to a Boltzmann 

distribution given by the relation with the system entropy, which is dependent on the 

temperature; when a worse value is obtained a random value is drawn from a uniform 
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distribution (0,1), and in case of the drawn value being smaller than the probability calculated 

the worse value is maintained and the optimum is actualized (Pardalos & Mavridou 2009). 

5 MATERIALS AND METHODS 

 

5.1 Materials 

 

The materials utilized in this thesis were: the synthetic data used to assess the 

optimization methods and the original sampling made over that domain; the real data of the 

Capanema mine, and the computational programs used to develop the geostatistical analysis, 

and sample the synthetic domain. 

5.1.1 Synthetic domain and sampling 

 

The optimization algorithms were applied in a synthetic database developed by 

Takafuji (2015) and Takafuji et al. (2017). The data set mimics metamorphized sandstone and 

phyllite that were folded and affected by a reverse fault, where the copper mineralization 

occurs in a quartzite (Takafuji 2015 and Takafuji et al. 2017). The whole synthetic domain 

has 600 meters on the North axis, 300 meters on the East axis, and 300 meters in depth.  

A sampling composed of 32 drillholes was drawn at random with most of the 

drillholes being perpendicular to the ore body. The statistics of the sampling are presented in 

Table 01. In Figures 02 and 03 the base map of the drillholes samples and the histogram of the 

sampling are, respectively, presented. 

Table 01 – Statistic of the copper sampling made over the synthetic domain. 

 

 

 

 

Basic statistic 

Mean 0.602 

Variance 0.034 

CV 0.308 

Minimum 0.501 

Maximum 1.656 

Median 0.524 
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(Taken from Ramos 2016) 

 

Figure 02 - Base map of the sampling made. The samples from each drillhole are presented as crosses, with the 

size of each cross being dependent on the copper percentage attained. (Source: Author).  

 

Figure 03 – Original sampling histogram (Source: Author). 

 

5.1.2 Capanema Mine data set 

 

The Capanema Mine is in the Quadrilatero Ferrífero area on Minas Gerais state, 

Brazil. The iron ore mineralization occurs in a BIF that is subjected to a synclinal fold. Details 

of the genetical and geological mineralization body of Capanema Mine can be seen in 

Massahud & Viveiros (1983), Fonseca (1990), and Rocha (1999). The infill tests were made 

in the drillhole sampling while the competence of the new data location was taken regarding 

the rockdrill data set of the mine while active as the population. The drillhole data is 



16 

 

composed of 69 collars that were regularized by benches of 13 meters in height. Capanema 

mine is exploited on an open pit with approximate dimensions of 2000 (NW axis) by 400 (NE 

axis) meters and 200 meters in depth. In Figure 04 the base map of the samples is presented, 

most of the drillholes are vertical with one exception. Table 02 presents the statistics of the 

Capanema Mine drillhole and rockdrill sampling. 

 

 
Figure 04 - Capanema Mine drillhole sampling base map. The size of the crosses indicates iron grades at the 

location (Source: Author). 

 
Table 02 – Statistic of Capanema Mine drillhole and rockdrill sampling. 

 

Basic statistic  

 Drillhole Rockdrill 

Mean 55.77 59.95 

Variance 58.22 28.12 

CV 0.1368 0.0884 

Minimum 27.15 3.08 

Maximum 66.8 67.67 

Median 57.66 61.56 
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5.2 Methods 

 

The methods will be presented concerning the applied objective functions and 

optimization algorithm. The methodology and details of the geostatistical analysis were not 

presented, and such is not the focus of the thesis. 

5.2.1 Objective Functions 

 

Five objective functions were applied in this thesis, two presented in Ramos (2016) 

and three developed in the present work. The objective functions are: Simulated Block 

Variance; Simulated Block Coefficient of Variation; Kriging Variance Sum; Simulated and 

Kriged Block Variance; and Simulated Block Coefficient of Variation and Kriged Variance. 

5.2.1.1 Simulated Block Variance (SBV) 

 

The Simulated Block Variance (SBV), as defined by Ramos (2016) represents the 

uncertainty related to the original sampling, the function value is attained after simulating the 

domain by SGS and attaching all the simulated blocks variance. To be used as an objective 

function the SBV necessarily needs that a new simulation is made at each iteration, 

considering the new probable collar infill configuration, while the search for an optimum 

continues. The algorithm should then minimize the SBV value at the optimization. The SBV 

function is presented in equation (XIII): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐵𝑉 = ∑𝜎𝑆𝐺𝑆
2 (𝑋𝑖)

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛 ∗ 𝑍(𝑋𝑀): 𝑋𝑀 = [𝑋1, 𝑋2, … , 𝑋𝑀];  (𝑋𝑀) =  (𝑋𝑀, 𝑌𝑀, 𝑍𝑀);  

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑀 ≤ 𝑋𝑚𝑎𝑥; 𝑌𝑚𝑖𝑛 ≤ 𝑌𝑀 ≤ 𝑌𝑚𝑎𝑥;  𝑍𝑀 = 𝑍𝐵𝑚𝑎𝑥  

(XIII) 

 

where 𝜎𝑆𝐺𝑆
2 (𝑋𝑖) is the simulated block variance at a node, 𝑁 is the number of 

simulated nodes, 𝑛 ∗ 𝑍(𝑋𝑀) are the 𝑛 collar infill locations that should be optimized, 

𝑋𝑀, 𝑌𝑀, 𝑍𝑀 are the coordinates of the collar location in the axis East, North, and elevation, 

𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the limits imposed by the user at the coordinates in the East axis, while 

𝑌𝑚𝑖𝑛 and 𝑌𝑚𝑎𝑥 are limits imposed in the North axis and 𝑍𝐵𝑚𝑎𝑥 is the defined as the highest 
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elevation value of the block model used, therefore the infill collars are considered with a fixed 

elevation value. 

5.2.1.2 Simulated Block Coefficient of Variation (SBCV) 

 

The Simulated Block Coefficient of Variation (SBCV), as defined by Ramos (2016) 

uses the same procedure as SBV, simulating each iteration by SGS, but instead of using 

simulated block variance the value considered is the coefficient of variation. This function is 

interesting because while optimizing infill collars minimizing SBCV values would not only 

minimize the uncertainty of the domain but would also raise the mean simulated values, as the 

coefficient of variation value is inversely proportional to the mean value of the distribution 

considered. Therefore, the minimization of SBCV should return not only the collars that 

reduce uncertainty but also rises the grades. The SBCV function is presented in equation 

(XIV): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐵𝐶𝑉 = ∑(
{𝜎𝑆𝐺𝑆

2 (𝑋𝑖)}
1/2

𝑍𝑆̅̅ ̅(𝑋𝑖)
)

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛 ∗ 𝑍(𝑋𝑀): 𝑋𝑀 = [𝑋1, 𝑋2, … , 𝑋𝑀];  (𝑋𝑀) =  (𝑋𝑀, 𝑌𝑀, 𝑍𝑀);  

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑀 ≤ 𝑋𝑚𝑎𝑥; 𝑌𝑚𝑖𝑛 ≤ 𝑌𝑀 ≤ 𝑌𝑚𝑎𝑥;  𝑍𝑀 = 𝑍𝐵𝑚𝑎𝑥  

(XIV) 

 

where 𝑍𝑆̅̅ ̅(𝑋𝑖) is the mean of the simulated values on the node. 

5.2.1.3 Kriging Variance Sum (KVS) 

 

The Kriging Variance Sum (KVS) considers kriging variance as an objective function 

to be compared to simulation-based objective functions and the compost function, which 

considers both simulation and kriging in the same function. Minimizing KVS should locate 

the infill collars in the regions of the domain with low sample density. Nowadays it is 

relatively easy and fast to estimate a domain with kriging, so in this work, at each iteration, a 

new estimative will be done to assess how the global kriging variance value, computed as the 

sum of kriging variance of all estimated nodes, changes from an iteration to another. The KVS 

function is presented as follows, at equation (XV): 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐾𝑉𝑆 = ∑𝜎𝐾𝑂
2 (𝑋𝑖)

𝑁

𝑖=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑛 ∗ 𝑍(𝑋𝑀): 𝑋𝑀 = [𝑋1, 𝑋2, … , 𝑋𝑀];  (𝑋𝑀) =  (𝑋𝑀, 𝑌𝑀, 𝑍𝑀);  

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑀 ≤ 𝑋𝑚𝑎𝑥; 𝑌𝑚𝑖𝑛 ≤ 𝑌𝑀 ≤ 𝑌𝑚𝑎𝑥;  𝑍𝑀 = 𝑍𝐵𝑚𝑎𝑥  

(XV) 

  

with 𝜎𝐾𝑂
2 (𝑋𝑖) being the ordinary kriging variance of the block. 

5.2.1.4 Simulation and Kriging Block Variance (SKBV) 

 

The Simulated and Kriged Block Variance (SKBV) was developed to consider both 

the uncertainty derived from the simulation and the estimation of the domain, therefore 

considering the sampling uncertainty and spatial sample distribution. Minimize the SKBV as 

an objective assessment of the influence of the regions with lower sample density in the 

locations of infill while still considering the factor of grade uncertainty provided by 

simulation. When the SKBV is used both simulation and kriging should be made at each 

iteration and then compute the objective function value, this demand more computational 

time. Another change from the previous objective functions regards the fact that weighs (a 

and b) are associated with each term of the function, the simulated and the kriged related sides 

of the function, that summed should be constrained to 1. The SKBV function is presented in 

equation (XVI): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐾𝐵𝑉 = 𝑎 ∗ ∑𝜎𝑆𝐺𝑆
2 (𝑋𝑖)

𝐿

𝑖=1

+ 𝑏 ∗ ∑𝜎𝐾𝑂
2 (𝑋𝑗)

𝑁

𝑗=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑛 ∗ 𝑍(𝑋𝑀): 𝑋𝑀 = [𝑋1, 𝑋2, … , 𝑋𝑀];  (𝑋𝑀) =  (𝑋𝑀, 𝑌𝑀, 𝑍𝑀);  

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑀 ≤ 𝑋𝑚𝑎𝑥; 𝑌𝑚𝑖𝑛 ≤ 𝑌𝑀 ≤ 𝑌𝑚𝑎𝑥;  𝑍𝑀 = 𝑍𝐵𝑚𝑎𝑥; 

𝑎𝑛𝑑 𝑎 + 𝑏 = 1; 

(XVI) 

  

where 𝑎 is the weight associated with the simulation side of the function and 𝑏 is 

the weight associated with the kriging side of the function; 𝐿 is the number of simulated nodes 

on the domain, note that 𝐿 can be different from the number of kriged blocks 𝑁. 

5.2.1.5 Simulated Block Coefficient of Variation and Kriging Variance 

(SBCVKV) 

 



20 

 

The Simulated Block Coefficient of Variation and Kriged Variance (SBCVKV) is the 

last function considered and follows the same procedure as the SKBV, with the difference 

being the use of the coefficient of variation in the place of the variance. The same strong point 

of the SBCV is considered in this function, when SBCVKV is minimized not only the 

uncertainty would be reduced but, at the same time, the mean ore percentage should rise, both 

added to the consideration of regions of the domain with low sample density. The SBCVKV 

function is presented in equation (XVII): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝐵𝐶𝑉𝐾𝑉 = 𝑎 ∗ ∑(
{𝜎𝑆𝐺𝑆

2 (𝑋𝑖)}
1/2

𝑍𝑆̅̅ ̅(𝑋𝑖)
)

𝐿

𝑖=1

+ 𝑏 ∗ ∑𝜎𝐾𝑂
2 (𝑋𝑗)

𝑁

𝑗=1

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛 ∗ 𝑍(𝑋𝑀): 𝑋𝑀 = [𝑋1, 𝑋2, … , 𝑋𝑀];  (𝑋𝑀) =  (𝑋𝑀, 𝑌𝑀, 𝑍𝑀);  

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑀 ≤ 𝑋𝑚𝑎𝑥; 𝑌𝑚𝑖𝑛 ≤ 𝑌𝑀 ≤ 𝑌𝑚𝑎𝑥;  𝑍𝑀 = 𝑍𝐵𝑚𝑎𝑥; 

𝑎𝑛𝑑 𝑎 + 𝑏 = 1 

(XVII) 

  

5.2.2 Optimization algorithm 

 

The algorithm applied to optimize the location of the infill drillhole is based on the 

simulated annealing (SA) procedure. Optimizing by simulated annealing method in the 

present thesis was adapted to the interests of the search, considering the different possible 

objective functions applied, the method of location of the infill collars, and the 

parametrization while searching for the optimum. The direction of the drillholes located can 

be optimized in the algorithm, which can modify the azimuth and dip of each collar at each 

iteration.  

In the SA algorithm collar parameters, at each iteration, are changed through a 

unidimensional approach, meaning that: first, the only collar will be modified during the 

iterations, and the choice of which will be modified is made at random from the n collars 

defined to be considered as infill; second, the modification of the collar is unidimensional, 

meaning that only one of the parameters that define the collar (East, North, Azimuth, Dip) 

shall be modified at the iteration, the choice of which parameter will be changed is made at 

random too. The elevation parameter is not considered in the modification as the elevation of 

each collar is considered fixed or is dependent on the topography of the domain, in that way 

this information must be provided.  
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Another difference is the value associated with the samples while optimizing the infill. 

As some of the objective functions consider the simulation model, the value of the samples 

considered in the neighborhood will change the simulated value, so the value that samples 

receive when being considered as probable infill data can influence the result of the search. 

Therefore, the definition of which value shall be associated with the possible infill samples 

can be defined as one of 4 values: the mean, median, P10, or P90 of the nearest simulated 

node to the sample considered. This procedure was adopted to assess the influence of the 

values associated with the samples while optimizing the infill drillholes. 

The difference related to the objective function is in the sense of considering the 

models while optimizing, being kriging, and/or simulation. Originally the algorithm used only 

simulated models, but with the new objective function proposed the kriging value can be 

considered by itself or with the simulated value. So, in the case of the direct objective 

functions, only one of the models is made in each iteration and is considered to calculate the 

objective function. When the compost objective functions are considered both, kriging and 

simulation should be made at each iteration to then compute the objective function. Each of 

those approaches is automatically made when the objective function to locate the infill is 

defined. 

For this thesis, only a fast cooling schedule was considered, which minimizes the 

system “temperature” by the following equation (XVIII). 

[
niter + 1

i + 1
]

niter
 

(XVIII) 

 

where the temperature of the present iteration is dependent on the present iteration 

number, i, and the total number of iterations, niter. 

The temperature value is compared with the control value, a random number in the 

interval [0,1], only when a worse objective function is obtained. The worse value will only be 

accepted as a new optimum when the temperature is higher than the control value.  
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6 RESULTS 

 

To assess the competence of the infill sampling optimization proposed methods a 

series of tests were performed. The workflow is: first comparing the SBV and KVS objective 

function in optimizing the infill is done; secondly, a comparison considering the five objective 

function competence in optimizing the infill position was performed; third the influence of the 

value associated with the infill sampling was tested while optimizing; lastly the influence of 

optimizing the drillhole direction while searching the best infill configuration. 

The first and second tests were completed, with the results of minimizing the objective 

function and the optimization being presented and compared. The third comparison was only 

made in the synthetic data set. The last results are presented only to show the effect of the 

method in minimizing the objective function.  

Each of those tests was made to assess which optimization parametrizations could 

perform better in terms of infill configuration, in the sense of furthering the original sampling 

populational representativity. A series of comparisons considering the population statistical 

parameters were made to that end. By the end of this section, a discussion of the best 

parametrization will be presented to demonstrate which reached the best results, i.e., infilled 

samples with higher representativeness of the population. 

 

6.1 Paper 1: comparisons of infill sampling optimization using 

simulated, and kriging based objective functions 

 

6.1.1 Introduction 

 

The process of sampling is basic to further the knowledge of a mineral deposit. Using 

samples as a guide one can interpret and predict (by estimation or simulation) values to assess 

the population, i. e. the exhaustive data information of the phenomena. During a mine, life is 

common to produce new sampling campaigns to further, even more, the data representability. 

Problems related to where locate new samples rises, mostly, considering cost and accessibility 

to acquire more information. One common reason behind infill samples is the uncertainty of 
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the original data. Model uncertainty must be considered, but more so one must infer the data 

uncertainty to better represent the reality of the phenomena studied. Using models one can 

assert areas or portions of the domain with greater uncertainty to consider increasing sampling 

at those locations. The problem arises from the doubt if those new samples will add the 

information gathering positively, i. e. the new data have a higher representativity of the 

population facing the economic cost of obtaining said data. Therefore, it is necessary to test 

methods to locate the new samples and, also, the representativeness of this new information 

regarding the population being sampled.  

Kriging variance is an uncertainty measurement derived from the kriging procedure, 

which was tested as one of these methods by several authors. Gershon (1987) minimizes the 

kriging variance to locate new samples.  Lloyd & Atkinson (1999) compared the location of 

new drillholes using the mean of ordinary kriging variance and the conditional variance of 

different thresholds, based on the indicator kriging. Wilde (2009) uses six different algorithms 

to optimize the objective function that minimizes the simple kriging variance sum of all 

estimated blocks. Soltani et al. (2011) minimize the average kriging variance to guide the 

genetic algorithm in locating new drillholes in 3 dimensions. Mohammadi et al. (2012) 

optimized sampling locations through a simulated annealing algorithm guided by the average 

of kriging variance weighted by block estimate. The average kriging variance considering 

drillhole dip in locating the infill was used by Soltani & Hezarkhani (2013) to maximize the 

information amount inside the orebody. Silva & Boivest (2013) minimize the kriging variance 

average to locate the new drillholes using 4 optimization algorithms, in addition for search the 

objective function considers the block classification and maximization of the tonnage of each 

block. Safa & Mohammadi (2017) applied the minimization of the kriging variance added 

with a local variance, consisting of the weighted average of the data samples used in the 

estimative and the estimated value difference, to guide the search for new drillholes location. 

The kriging variance is minimized in search of the infill configuration by the particle swarm 

optimization method in Fatehi et al. (2017). Dutaut & Marcotte (2020) applies the kriging 

estimative and variance to determine the new drillholes position, considering the distance of 

the new data from the block center as a selection of possible candidates for the infill position. 

Some of the cited papers try to develop the representation of the kriging variance as a 

decision maker to locate new drillholes. This procedure is important due to kriging variance 

being limited in the sense of uncertainty representation, as its value is not dependent on the 

sample data used in the estimation, rather is dependent on the variogram model and the data 
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configuration, i. e. distance on the data to the point estimated (Armstrong, 1994; Goovaerts, 

1997). For the reasons previously exposed the use of kriging variance could point out sub-

sampled portions in the domain, rather than provide an assessment of the uncertainty of the 

data. Being the focus of the infill further the representativity the use of kriging variance is 

recommended in association with another tool in other to decide the best locations for infilled 

drillholes.  

Another approach to infill location optimization is to apply simulated models to guide 

the search for the best sampling configuration. The simulation can either be used in the 

objective function or in the search for the best infill configuration. Usually, the values of the 

possible new drillholes are drawn from the simulation and then the objective function is 

calculated. Some papers that use simulation to locate infill are: Goria et al. (2001) that 

simulated golden ore and uses 3 different values derived from the simulation to attribute the 

ore data to new drillholes, with the new samples a new simulation is calculated for each 

scenario to analyze the dispersion attained; Pilger et al. (2001) simulate the original data and 

uses the interquartile range to assess the local and global uncertainties and locate the new 

samples in the blocks with higher range value, after the location a new simulation is computed 

with the new data set to observe if the local and global uncertainty value was reduced. 

Martinéz-Vargas (2017) uses simulation to define values to different drillhole configurations 

and calculate the cost associated with the information, regarding the errors associated with 

block misclassification and the drillholes sampling cost; Pinheiro et al. (2017) use as an 

objective function the sum of average block variance and the width of the 95% probability 

interval of the simulation to guide the infill location. Zagré et al. (2018) use the variance of 

the Bernoulli variable based on the probability of a given block being ore or waste to assess 

the uncertainty, using simulation to calculate the distribution of possible value and from that 

derive the probabilities needed, locating the new drillholes on portions with high uncertainty; 

In Dirkx & Dimitrakopoulos (2018) new drillholes receive values drawn from a simulation 

which is then re-simulated, classified and compared with the previous classification; Nowak 

& Leuangthong (2019) calculate the confidence limit of panels simulated with new drillholes 

to assess the uncertainty, used to classify the information, with less uncertainty the panel class 

is higher. 

The present paper seeks to compare the use of kriging and simulation approaches in 

locating new drillholes. As such it is proposed the application of two objective functions that 

have the shared intent: locate, under the same constraints, the best infill position drawn from 
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the same original dataset. The objective function based on simulation results is the sum of the 

simulated block variance and the one based on kriging is the sum of the kriged variance. The 

first objective function is given that for each simulation block there are L equiprobable values, 

considering that it is possible to calculate the variance of the simulated block, i. e. the local 

uncertainty of the simulated value. Applying the sum of the simulated block variance one can 

represent the global uncertainty associated with the original sampling information. The 

second objective function uses kriging variance as the guide to search for the best new 

drillholes locations through a global approach using the sum of kriging variance calculated for 

each block in the domain. The simple idea is that the second function shall guide the search 

towards portions with less information on the domain, while the first function guides the 

search towards areas with higher uncertainty based on the original samples. The search was 

developed using an algorithm based on the simulated annealing (SA) optimization, and the 

parametrization was made considering the number of new drillholes sampled and the number 

of iterations used to complete the search. 

The objective of these comparisons is to point out how capable each approach is to 

further the representability of the original sampling regarding the population. Tests were made 

in a synthetic 3D body representing a geological occurrence of copper. Therefore, for each 

optimized configuration, the new drillholes can be made easily and the results could be 

compared to attest efficacy. 

6.1.2 Methods and Materials 

 

6.1.2.1 kriging variance sum (KVS) 

 

The object function based on the estimative is the block kriging variance sum (KVS) 

of the domain. The ordinary kriging variance is presented in equation (I) (Armstrong 1998, 

Olea 1999): 

𝜎𝐾𝑂
2 (𝑋0) =  ∑𝜆𝑖

𝑛

𝑖=1

∗ 𝛾(𝑋𝑖 , 𝑋0) + 𝜇 
(

I) 

 

where 𝜎𝐾𝑂
2 (𝑋0) is the kriging variance calculated regarding the estimated location 𝑋0.  

𝜆𝑖 is the weight associated with the i-est sample. 𝛾(𝑋𝑖 , 𝑋0) is the spacial variance between the 
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sample 𝑋𝑖 and 𝑋0. 𝜇 is the Lagrange term attained from the ordinary kriging equations. For 

more details about ordinary kriging and its variance proceedings, equations, and 

parametrizations the authors refer to Isaaks & Srivastava (1989); Deutsch & Journel (1998); 

Chilès & Delfiner (1999); Deutsch (2002). 

From equation (I) the kriging variance sum is presented in equation (II): 

𝐾𝑉𝑆 =  ∑𝜎𝐾𝑂
2 (𝑋𝑖)

𝑛

𝑖=1

 
(

II) 

 

The application of the KVS as an objective function is presented in equation (III): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐾𝑉𝑆(𝑥) 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛𝑍(𝑥), 𝑥 =  𝑋, 𝑌;  𝑋 ⊂  [𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛];  𝑌 ⊂ [𝑌𝑚𝑎𝑥, 𝑌𝑚𝑖𝑛] 

(

III) 

 

where n is the number of new drillholes Z(x) that should be located in the positions x; 

x is decomposed in two coordinates X for east and Y for north, both limited by the domain 

where the infill will be located, the superior and inferior limits of the east (Xmax, Xmin) and 

north (Ymax, Ymin). The lack of a third coordinate is related to the fact that the altitude of the 

new holes is constant and defined by the user as the highest value used in the block model. 

6.1.2.2 simulated block variance (SBV) 

 

The second objective function applied is dependent on simulating the data to guide the 

optimization. To each simulated block, there are (l) equiprobable values. The simulation 

method applied is the sequential Gaussian simulation (SGS). Each simulated point in the 

domain is given by equation (IV) (Olea 1999): 

𝑍𝑆𝐺𝑆
(𝑙) (𝑥0) =  𝑍𝐾𝑆

∗ (𝑥0) + 𝜎𝑘𝑠(𝑥0) ∗ 𝑒 (IV) 

 

where: 𝑍𝑆𝐺𝑆
(𝑙) (𝑥0) is the simulated value, of l-est realization, given by the simple 

kriging estimative 𝑍𝐾𝑆
∗ (𝑥0) plus the estimation standard deviation 𝜎𝑘𝑠(𝑥0) times the value 𝑒 

which is randomly obtained in the interval [-1,1] by Monte-Carlo simulation. For more details 

on SGS, the authors recommend: Deutsch & Journel (1998); Olea (1999); Deutsch (2002). 
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The simulated block variance is given by equation (V): 

𝜎𝑆𝐺𝑆
2 (𝑥0) =

1

𝑛
 ∑(𝑍𝑆𝐺𝑆

(𝑙) (𝑥0) − 𝜇𝑠𝑔𝑠(𝑥0))
2

𝑛

𝑙=1

 
(V) 

 

where 𝜇𝑠𝑔𝑠(𝑥0) is the mean of the simulated values at 𝑥0. 

The sum of simulated block variance (SBV) is computed as (equation VI): 

𝑆𝐵𝑉 =  ∑𝜎𝑆𝐺𝑆
2 (𝑥𝑖)

𝑛

𝑖=1

 
(VI) 

 

The SBV as an objective function is presented in equation (VII) 

Minimize SBV(x) (

VII) Subject to nZ(x), x = X, Y; X ⊂ [Xmax, Xmin]; Y ⊂ [Ymax, Ymin] 

 

Both objective functions use the same constraints to enable comparisons between 

functions. The only difference is in how the functions are calculated. 

6.1.2.3 Optimization algorithm 

 

The optimization algorithm implemented is based on simulated annealing (SA), a 

heuristic stochastic optimization method. SA is based on Metropolis et al. (1953) who 

presented the calculation of equations of state using a computer, and Kirkpatrick et al. (1983) 

who developed the SA optimization procedure. What differentiates the SA from other 

optimizations is the probability that allows the acceptance of worst results of objective 

function value as new optima. This SA characteristic is interesting for evading the 

occurrences of local optimal during the search. The acceptance of worst values is not 

completely random but is stochastic in nature, the algorithm decides for acceptance with a 

higher chance when the search is in the initial stage. At the beginning of the annealing 

procedure, the entropy of the system shall be the maximum and gradually decrease, emulated 

by what is named as cooling procedure in the algorithm. During the high entropy state, some 

particles may tend to move to the worst location overall, which is reproduced by the algorithm 

when worst configurations are taken as new optima. The acceptance is given by the 
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temperature at the iteration and a control value that is obtained randomly from an interval 

predefined, therefore given the stochastic portion of the optimization. 

Two stochastic components were implemented in the algorithm, the acceptance 

previously appointed, and the movement given between each iteration. At each iteration, the 

movement is dependent on a succession of 3 choices randomly made by the algorithm. The 

first choice is which drillhole shall be moved between the n new drillholes that will be located 

by the search. The second choice is which coordinate shall be moved, in this paper the choice 

is given between East and North coordinates, X and Y respectively. The final choice is the 

new position of the coordinate, given randomly in the complete interval given by the range of 

possible and acceptable coordinates of the domain. Those choices were implemented to 

maintain some sequential aspect in the drillhole configurations tested, evading the complete 

random approach of the research that can be a hindrance.  

The cooling schedule utilized considers the total number of iterations and the present 

iteration to calculate its value. In equation (VIII) is presented the cooling schedule is applied. 

[(niter+1)/(i+1)]/niter (VIII) 

 

Where niter is the number of iterations applied in the research and i is the present 

iteration. The limits imposed by this function tends to 1 and 0, i. e. the temperature value does 

not represent the control interval that is given between [1,0]. Regarding this limitation the 

temperature tends to the control limits when the number of iterations is higher, therefore it is 

recommended that the user gives a high enough iterations range to best develop the search, 

which results in a higher elapsed time of processing and probability of obtaining best results 

of the optimization. 

The algorithm result is the configuration where the lowest objective function during 

the optimization and the function value was obtained. The only difference applied to each 

objective function is the theoretical variogram model adjusted to each, simulation, and 

kriging, which are different. To allow the full comparisons between methods the 

parametrization of the search was the same, and the number of new drillholes and interval of 

possible collar coordinates was the same, with constant altitude, azimuth, dip, and length of 

the drillholes.  
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6.1.2.4  Programming languages and software 

 

The optimization algorithm applied was developed in PythonTM. No SA optimization 

library was used, the algorithm was developed by the authors. The libraries used were 

NumPy, random, math, DateTime, and subprocess. Subprocess was used to obtain the 

simulation and kriging results necessary for each iteration, used to spawn the Geostatistical 

Software Library (GSLIB) developed by Deutsch & Journel (1992).  

The sgsim program of GSLIB performs SGS on the spatial data analyzed, its results 

are the realization in Gaussian or original distributions. There were applied 2 major 

differences to the original sgsim algorithm: maintaining the output in binary to attain a higher 

velocity of the processing; and the association of convex hull information to the simulation, 

limiting the blocks to be simulated inside a hull. 

6.1.2.5 Synthetic data 

 

The synthetic dataset developed by Takafuji (2015) and Takafuji et al. (2017) and 

mimics a cooper occurrence genetically related to a fault system. For each block that 

composes the mineralized body, there is information regarding the lithology and the copper 

percentage. The initial exploratory sampling was composed of 32 drillholes, all of them 

intercepting mineralized bodies. Those samples were preferentially taken perpendicular to the 

ore body, with an azimuth of 270 degrees and a dip of 45 degrees for each drillhole. Sampling 

location was taken randomly at the domain and shows some areas without information, and 

some portions with clustered drillholes, this proceeding was made to represent the need for 

infill to better represent the population data. The base map of the drillhole samples is 

presented in Figure P01-05. 
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Figure P01-05 – Base map representing the samples’ location. The size of the cross indicates the ore percentage. 

6.1.3 Results and discussion 

 

The first comparison between the objective functions applied regards the minimization 

attained by optimizing each function. To compare results, 1 to 15 new drillholes were 

considered, each one of them located after 1000 iterations, in Figure P01-06 the proportional 

objective function values are presented. The proportional objective function value is a 

proportion taken from the optimum result to the original sampling objective function. The 

KVS objective function achieves a smaller value by optimizing a single drillhole, with almost 

half of the original sampling KVS value. But the degree of the minimization is lower than the 

SBV objective function, for those reasons from 7 new drillholes onward SBV attained lower 

optimal values. 
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Figure P01 -06 – Minimization comparison of SBV and KVS under the same circumstances. An interval of 1 to 

15 new drillholes was located, each new configuration attained after 1000 iterations.  
The second comparison made regards the infill results. The comparisons were made 

with 2 infill configurations and 3 different iteration numbers, with a total of 6 scenarios 

applied to each objective function. After the drillholes were made, the results were compared 

to observe the representativity attained by each objective function and scenario. Each result is 

compared with the population distribution – from the synthetic deposit – statistically, by using 

the mean and standard deviation, and the Kolmogorov-Smirnov distance – the maximum 

distance between 2 distributions. The population mean and standard deviation are the base 

values that all optimized infill should approximate. The Kolmogorov-Smirnov distance is 

given zero to the population, as the distribution should have no difference in itself. The 

second base value is the exploratory sampling data, used to observe if representativity was 

enhanced in comparison to the initial data. Each scenario is repeated 10 times due to the 

stochastic approach given by the optimization method applied. To fully show the competence 

of the stochastical search of optima there is a need to repeat and assess if the range of results 

approximates the infilled sampling to the population. 

In Figure P01-07 the mean of each distribution is compared. Figure P01- 07 A 

compares infill with 10 new drillholes located where each optimum attained was after 1000, 

10000, or 50000 iterations. Figure P01-07 B presents the same iteration number but locates 15 

new drillholes. The infill defined by SBV minimization did values closest to the population 

mean with both 10 and 15 infill drillholes. It is noticeable that with 15 new drillholes both 

objective functions presented a closer mean value regarding the population mean than with 10 
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new drillholes. The KVS minimization for 15 new drillholes has results proximal to each 

other, with a small dispersion in 3 of the 10 tests, a behavior that does not occur with 10 new 

drillholes nor when minimizing SBV. Regarding the number of iterations, it is not clear if the 

higher number of iterations attained the best results overall. The minimization of SBV to 

locate 10 new drillholes obtained the best results with both 1000 and 10000 iterations, with 

the best overall result with 10000 iterations. Locating 15 new drillholes by minimizing SBV 

the best number of iterations, regarding proximity to the population mean, is given by 10000 

iterations, a value that surpasses the population mean, probably due to outlier occurrences. 

Minimizing KVS attained the best results with 50000 iterations for both infill configurations.  

 

 
Figure P01 -07 – Infill comparisons to population and original sampling considering the mean. 

Comparisons with 10 (A) and 15 (B) new drillholes. The infill location was attained by either SBV or 

KVS minimization. The number of iterations necessary for each optimum is 1000, 10000, or 50000. 
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The second comparison was made between the standard deviation of the infill located 

in each scenario. Figure P01-08 presents the results of locating 10 (A) and 15 (B) new 

drillholes considering the same scenarios. The first remarkable difference to the mean is the 

more behavior that the standard deviation has between the different optimums obtained. 

Overall, the SBV returned the most approximated values to the population when locating 10 

new drillholes, but in some cases, the KVS minimizations presented better or equal values to 

those obtained by the SBV function. The results considering only one scenario proves that 

there is not a trend in the results, for example minimizing SBV with 50000 iterations there are 

results closer to the population and the original data, the same can be said of 10000 iterations 

with the same function, or even minimizing KVS with 50000 iterations. It is important to 

notice that the infilled data tends to approximate more to the population standard deviation 

than its mean, this proves that the original standard deviation is greatly underrepresented, 

pointing out the occurrence of outliers in the population. Some of the optimums were able to 

attain outliers, which sometimes affected the representability negatively, as in the cases where 

the infilled data standard deviation surpasses the population standard deviation. When 

considering the location of 15 new drillholes there is again a remarkable difference between 

both objective functions, the KVS resulted in a lower dispersion of results that are overall 

worse than those attained by the minimization of SBV. It is interesting to notice that the same 

scenario – index-wise – that obtained the best result regarding the mean, repeats the feat when 

the standard deviation is considered. This does not disprove that the better option to optimize 

the location of 15 new drillholes is given by minimizing SBV with 1000 iterations, as the 

other results obtained by the same scenarios disperse closer to the population and the original 

sampling. If the range is overall considered the SBV function with 10000 iterations, when 

locating 15 new drillholes is the parametrization that comes closest to the population, overall. 
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Figure P01-08 – Infill comparisons to population and original sampling considering the standard deviation. 

Comparisons with 10 (A) and 15 (B) new drillholes. The infill location was attained by either SBV or KVS 

minimization. The number of iterations necessary for each optimum is 1000, 10000, or 50000. 

 

The last comparison was made considering the Kolmogorov-Smirnov distance to the 

populational distribution. In Figure P01-09 the comparisons are presented considering an 

infill of 10 (A) and 15 (B) new drillholes. The first difference between the comparisons using 

statistics and the Kolmogorov-Smirnov distance is the fact that both objective functions have 

a distinctive range of occurrence, and SBV distances are lower than those of KVS. This 

means that the minimization of SBV tends to provide a more proximate distribution regarding 

the population. Another great difference is the overlap between objective functions, that in the 

Kolmogorov-Smirnov distance tends to be minimal, each function separates from the other 

results. It is also noticeable that even infilling more drillholes, most of the results minimizing 

KVS did not reach the 10 new drillhole responses attained by the minimization of SBV. At 

last, it is interesting to notice that the ranges obtained by the Kolmogorov-Smirnov distance 
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are smaller when considering the mean and especially the standard deviation. Considering 

minimization of SBV there is not a trend when the number of iterations is considered, with 

good results coming from both the lowest, 1000, and highest, 50000, iterations number. 

 

 
Figure P01-09 – Infill comparisons to population and original sampling considering the Komolrov-Smirnov 

distance. Comparisons with 10 (A) and 15 (B) new drillholes. The infill location was attained by either SBV or 

KVS minimization. The number of iterations necessary for each optimum is 1000, 10000, or 50000. 
 

6.1.4 Final considerations and conclusions 

 

Considering both the SBV and the KVS minimization as objective functions to locate 

infill drillholes proves to be functional in further the representability of the original data. The 

infill located by minimizing SBV tends to approximate the sampling distribution to the 

population, given the different proposed optimization scenarios applied. The competence of 

the SBV is evident considering the Kolmogorov-Smirnov distance, where the results of KVS 
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presented a subpar, i. e. more proximal to the exploratory data than the population. Even so, 

the use of KVS is possible to guide the search for infill, as it can further the representability of 

the original sampling. 

Utilizing both methods should not mean that different approaches could not be taken 

or explored. Using the SBV or KVS to help guide the infill location, or even present possible 

areas of the domain where a higher uncertainty occurs, especially when the SBV is used, is 

commendable. Therefore, it is interesting to explore different approaches or try to integrate 

the results of both objective functions. 
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6.2 Paper 2: objective function utilizing estimative and simulation 

data to optimize infill 3d dillhole samples 

 

6.2.1 Introduction 

 

The process of sampling is inherent to exploring and developing geoscientific 

knowledge. A good sampling campaign must be able to fully represent the variables under 

study. All sampling shall be made in a way to better represents the population, which raises 

the question of how to infer the uncertainty of the data regarding the population and what to 

do if that value is higher than a theoretical optimal threshold. One way to assess the 

uncertainty is by modeling the population through samples. In earth sciences a usual modeling 

tool is geostatistics. Geostatistical methods enable not only estimation or simulation of 

unsampled locations as it is possible to quantify and assess uncertainties associated with 

predicted values. Those uncertainties are kriging variance and simulation variance. 

Several papers can be cited as examples of the use of kriging variance to locate infill 

sampling: Gershon (1987) presented four methods of optimizing drillhole location while 

minimizing the kriging variance. Wilde (2009) minimized the kriging variance sum for all 

estimated data. Soltani et al. (2011) minimized the average kriging variance to locate 3D infill 

drillholes utilizing a genetic algorithm. Fatehi et al. (2017) minimized the average kriging 

variance to guide the optimal infill configuration searched by the particle swarm optimization 

algorithm. Some researchers have applied different parameters with the kriging variance to 

further the search for infill sampling configurations as examples of such methods: 

Mohammadi et al. (2012) have applied a weighted average kriging variance, where the weight 

is the estimated grade. Soltani & Hezarkhani (2013) minimized the mean kriging variance 

while searching for drillholes that have the maximum length inside the orebody while having 

a minimum length outside. Silva & Boisvert (2013) minimized the kriging variance while 

maximizing ore tonnage. Safa & Soltani-Mohammadi (2018) utilized the minimization of the 

combined variance sum, composed of kriging variance times local variance, obtained as the 

weighted variance between the estimated value and the samples. Dutaut & Marcotte (2020) 
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applies kriging estimate and variance with indicator kriging estimate to assess the probability 

of a drillhole being considered as an infill sample.  

Geostatistical simulation methods results are always a set of equiprobable scenarios 

that reproduces sample statistics and spatial variance. In that way, areas with higher 

uncertainty can be assessed and used to guide infill optimization, or simulation scenarios can 

be utilized to compare possible sampling configurations in the domain. 

Examples of geostatistical simulation applied to guide infill location are many and 

diverse. As examples can be cited: Goria et al. (2001) used simulation to represent the 

possible values the new information could have and assess the impact of the new data 

compared to the initial sampling values. Pilger et al. (2001) simulated the data and utilized the 

fact that at each simulated node there are l possible values to assess an uncertainty index 

through the interquartile value of the node’s distribution. Pinheiro et al. (2017) used the 

average variance and the 95% interval width of the simulated nodes distribution to assess the 

uncertainty and guide the location of new drillholes using a simulated annealing algorithm. 

Dirkx & Dimitrakopoulos (2018) applied simulation to guide the search for drillhole location 

using the mineral classification of the blocks as a guide for the best sampling configuration. 

Zagré et al. (2018) utilized simulation to assess the probability of each node being of a given 

geological facies and from that value derive the Bernoulli random variable variance, used as 

the uncertainty index that guides the location of new samples.  

The present work uses both estimate and simulation to define the location of infill 

drillholes. This approach is useful to guide the search for new samples considering the data 

value uncertainty and sampling density. The compost objective functions are compared to 

functions composed of just estimated values or simulated ones (single approach), therefore 

appointing the competence of the new proposed approach regarding the specific methods. 

6.2.2 Objective 

 

This paper aims to assess the competence of the proposed objective function and 

check if its use improves sample representativity when compared to the population. Tests and 

comparisons are held considering a synthetic orebody, which will be detailed in the next 

section and using the dataset of an actual iron ore mine as a study case. Comparisons are 

made considering the goodness of the objective function minimization, the elapsed time of 
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each method (compost and single approach), and statistical comparisons between infilled 

sampling, original sampling, and population. 

6.2.3 Materials and Methods 

 

In this section used software, programming languages, and data sets will be presented. 

The objective functions, the optimization algorithm, the search methodology applied, and the 

constraints imposed on the search for the new collars will be shown and explained. 

6.2.3.1 Programming languages and software 

 

The optimization algorithm was developed in PythonTM, with no simulated annealing 

library being used. The libraries applied are limited to:  

• NumPy is an algebra and array program used to read the original sampling and block 

data, generate the arrays of new collars and drillholes, and even calculate the objective 

functions; 

•  random to obtain the random values, from the choice between which collar to move 

and which coordinate of said collar, to calculate new coordinates for each collar;  

• subprocess to use the geostatistics that was not from the PythonTM library;  

• DateTimeme to calculate the processing time of each iteration and the complete 

optimization;  

• math to use the trigonometric function used to project each collar drillhole and obtain 

the barrel length and position of said drillhole;  

• tempfile used to generate temporary files to proceed with the kriging/simulation at 

each iteration;  

• os that uses the operating system interface and makes actions;  

• scipy.spatial library was utilized to compute the convex hull of the samples over the 

block data.  

The last PythonTM library is relative to the geostatistical library applied, in this case 

being the GSLIB. GSLIB is a geostatistical library written by Deutsch & Journel (1992) in 

Fortran programming language. The GSLIB is robust, even with its age, and functionality, 

and as an open-source one can read and change the algorithms in the program, what was done 

in this work. Of all the programs in GSLIB only two, the kt3d and sgsim, were used. The kt3d 

is a tridimensional kriging program used to calculate kriging and kriging variance. The sgsim 

is used to calculate the sequential Gaussian simulation over the domain. Defaulted 

information on how to use GSLIB routines can be seen in Deutsch & Journel (1992 and 

1998).  
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Two changes were made to the sgsim program, the first one is to the program to use a 

convex hull limiting the blocks that shall be simulated. The second modification was applied 

to the results, which were maintained in the binary form to decrease the computational time 

needed to simulate the block data. This gain of computer processing time is interesting since it 

can allow the optimization to have less elapsed time in the research, allowing its application 

as an analysis of infill data location. 

The last program used was Studio RM® of Datamine Software. The program is used 

to assign the drillhole values of the synthetic deposit. The synthetic data is imported to Studio 

RM, and with the infilled collar configuration, it was possible to project the drillholes and 

associate the "real sample value" to each sample that composes the drillholes. As at all 

positions inside the domain the variable is known, it was possible to associate values to each 

sample of the infilled data. 

6.2.3.2 Synthetic data and its initial sampling 

 

The synthetic data was developed by Takafuji (2015) and Takafuji et al. (2017) to 

emulate a copper deposit with a complex disposition of lithologies where occurs faults and 

folds. The copper is genetically associated with the fault, with mineralized rocks occurring in 

quartzite, and some of the copper is disseminated at the embedding rocks.  

The first sampling is composed of 32 drillholes most of them perpendicular to the 

geological fault, so the drillholes have a direction of 270° azimuth and 45° dip. The sampling 

schema was designed to present some clusters and gaps over the domain. Locate the sampling 

in that configuration was made to justify the importance of infill. Figure P02 - 01 presents the 

spatial map of the samples made in the synthetic data. 
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Figure P02-10 - Base map of the sampling made in the synthetic data. Lined-up crosses indicate the horizontal 

projection of samples along drillholes. 

 

Each of the proposed objective functions shall produce different results of infilled 

collar configurations that shall be compared to define which result is the best in terms of 

representativity of the population searched. Knowing the population, it is possible to compare 

the infill schema reached by each optimization and then classify which one fared in further 

representativity of the population in the new samples. The objective is to rate all different 

results and point out which one performed best in population reproduction and what objective 

function was better to achieve that. This approach is practically impossible using real data, as 

the population is never attainable, but one can use the synthetic data to infer the competence 

of the method. 

6.2.3.3 Real data set 

 

To test the methodology developed is important to see how well it fares in a real case. 

The problem previously exposed is how to infer the infilled data quality if the population is 

unknown. One way to overcome this is by using different drilling campaigns. In that way, the 

Capanema mine drillhole data were used as initial sampling information possible of being 

infilled. And as a representation of the population, the blast drilling grade information was 

used. Figure P02-11 presents the base map of the Capanema mine drillholes. 
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Figure P02-11 - Base map of the Capanema mine samples. The size of the cross indicates the iron grade. 

 

Capanema is an iron ore mine in the so-called Quadrilatero Ferrífero of Brasil, in 

Minas Gerais state. The deposit is a folded BIF that was sampled by 69 drillholes (for more 

information about the geology of Capanema Mining the authors recommend Massahud & 

Viveiros 1983; Fonseca 1990; Rocha 1999). Those drillholes are mostly vertical, with one 

exception. Sampling design follows the ore body direction with the main axis with an azimuth 

of 135°.  

6.2.3.4 Kriging variance sum (KVS) 

 

The application of kriging is extensive in mining, details can be seen in several papers 

and books, such as: Matheron (1963), Matheron (1971), Isaaks & Srivastava (1989), 

Goovaerts (1997), Armstrong (1998), Deutsch & Journel (1998), and Olea (1999). 

Unsampled points of the domain are estimated by kriging, a weighted mean, where the 

weights are calculated through the spatial variance between the samples and the estimated 

point. From the weights and spatial variance between samples and estimated points, it is 

possible to compute the kriging variance associated with the kriged value. The kriging 
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variance does not consider the sampled grades, considering only the samples spatial 

distribution. 

The authors have chosen to use ordinary kriging, and the ordinary kriging variance, as 

they are the main technics applied in mining. Ordinary kriging variance can be seen in 

equation (I): 

𝜎𝑂𝐾
2 (𝑋0) =  ∑𝜆𝑖

𝑛

𝑖=1

∗ 𝛾(𝑋𝑖 , 𝑋0) + 𝜇 
(

(I) 

 

where 𝜆𝑖 is the weights obtained solving the kriging system; 𝛾(𝑋𝑖 , 𝑋0) is the spatial 

variance between the sample data (𝑋𝑖) and estimated point (𝑋0); 𝜇 is the Lagrange multiplier 

added to guarantee the constrain required by ordinary kriging, where the sum of weights shall 

be 1 (∑ 𝜆𝑖
𝑛
𝑖=1 = 1). 

The kriging variance is used as an objective function in the present paper as the sum of 

all kriged variance obtained in the domain to appoint a global indicator of areas with low 

sampling density. Kriging variance sum is presented in equation (II): 

 

𝐾𝑉𝑆 =  ∑𝜎𝑂𝐾
2 (𝑋𝑖)

𝑛

𝑖=1

 
(

(II) 

 

Each new infill sampling configuration provides actualized values of kriging variance 

to different estimated points; in that way, it is necessary to re-estimate the deposit to obtain 

the new value of kriging variance that then shall be summed. The objective is to minimize the 

kriging variance sum computed at each iteration to attain the optimal infill drillhole 

configurations. To formalize the kriging variance sum as an objective function the formula 

applied in the research is presented in equation (III): 

Minimize KVS(x) 

Subject to nZ(x), x = X, Y, Z; X ⊂ [Xmax, Xmin]; Y ⊂ [Ymax, Ymin]; Z = Zmax 
(III) 

 

where n is the number of new drillholes located by each optimization, it shall be the 

same at the origin and end of the search for the best infill configuration; Z(x) is the sample 

located, that shall be limited by the drillhole collar it is represented by; the collar value is 
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given by the X and Y coordinates, limited by any possible value between the maximum and 

minimum coordinate values defined by the user; the Z collar coordinate is fixed as the 

maximum Z value of the block model were estimative where made. 

After the possible infill location is considered a new estimation and its variance is 

computed, which is summed and compared to the objective function of the previous iteration 

value. If the new value is lower than the previously attained objective function value, the new 

infill configuration is considered the best, and the optimal value is actualized.  

6.2.3.5 Simulated block variance (SBV) 

 

Geostatistical simulation differs from kriging in different factors, some of those are the 

number of models computed, the statistics and geostatistics of those models, and others. The 

simulation shall provide l equiprobable realizations of the domain. As simulation results must 

reproduce original sampling data, not resulting in a smoothed distribution if compared with 

the original sampling distribution. For more details on geostatistical simulation please refer to: 

Deutsch & Journel (1998), Chilès & Delfiner (1999), Olea (1999), and Deutsch (2002). 

In the present paper sequential Gaussian simulation is applied in the objective 

function. To simulate each node of the block data shall be visited at random in the realization, 

the block is simulated by the function shown in equation (IV) (modified and adapted from 

Olea 1999 and Deutsch 2002) until all nodes are visited. This procedure is repeated l times 

utilizing a new random path for each realization (Deutsch & Journel 1998; Deutsch 2002). 

𝑍𝑆𝐺𝑆
𝑙 (𝑥0) =  𝑍𝑆𝐾

∗ (𝑥0) + 𝑅(𝑥0) (IV) 

 

𝑍𝐾𝑆
∗ (𝑥0) is the simple kriging estimator; the random residual (𝑅(𝑥0)) results from a 

Monte Carlo simulation of a distribution given by mean 0 and variance 𝜎𝑆𝐾
2 (𝑥0) (Deutsch 

2002); as the distribution is Gaussian, the simulated value is randomly drawn from the 

interval given by the know mean, 𝑍𝐾𝑆
∗ (𝑥0), and variance 𝜎𝑆𝐾

2 (𝑥0) (Deutsch 2002). 

As each node has l simulated values it is possible to calculate the mean and variance 

for them. The authors opted to use the node variance as local uncertainty of the simulation: 

Equation (V) is the node variance function: 
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𝜎𝑆𝐺𝑆
2 (𝑥0) =

1

𝑛
 ∑(𝑍𝑆𝐺𝑆

𝑙 (𝑥0) − 𝑍̅𝑆𝐺𝑆
𝑙 (𝑥0))

2

𝑛

𝑙=1

 
(V) 

 

𝑍̅𝑆𝐺𝑆
𝑙 (𝑥0)is the node distribution mean. 

To assess the global indication of uncertainty derived from the simulation model it is 

proposed the sum of all nodes variance, which is presented in equation (VI), the simulated 

block variance (SBV): 

𝑆𝐵𝑉 =  ∑𝜎𝑆𝐺𝑆
2 (𝑥𝑖)

𝑛

𝑖=1

 
(VI) 

 

The value of SBV is the proposed objective function that the search algorithm shall 

minimize, as formalized in equation (VII): 

Minimize SBV(x) 
(VII) 

Subject to nZ(x), x = X, Y, Z; X ⊂ [Xmax, Xmin]; Y ⊂ [Ymax, Ymin]; Z = Zmax 

 

6.2.3.6 Simulated block coefficient of variation (SBCV) 

 

Another proposed objective function based on the simulated model is the minimization 

of the simulated block coefficient of variation (SBCV). This objective function follows the 

same procedure as the SBV differing from that by utilizing the coefficient of variation. The 

coefficient of variation function applied to each simulated block is presented in equation 

(VIII). 

𝐶𝑉𝑆𝐺𝑆(𝑥0) =  
𝜎𝑆𝐺𝑆(𝑥0)

𝑍̅𝑆𝐺𝑆
𝑙 (𝑥0)

 
(VIII) 

 

𝜎𝑆𝐺𝑆(𝑥0) is the simulated node standard deviation value. 

The same proposed procedure is followed to apply the coefficient of variation as a 

global indicator of uncertainty, the sum of all simulated nodes' coefficient of variation. At 

equation (IX) is presented the proposed objective function, simulated block coefficient of 

variation (SBVC), and at equation (X) the formal objective function: 
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𝑆𝐵𝐶𝑉 =  ∑𝐶𝑉𝑆𝐺𝑆(𝑥0)

𝑛

𝑖=1

 
(IX) 

 

Minimize SBCV(x) 
(X) 

Subject to nZ(x), x = X, Y, Z; X ⊂ [Xmax, Xmin]; Y ⊂ [Ymax, Ymin]; Z = Zmax 

 

The objective function SBCV is formalized equally to the previous objective functions 

presented, but what sets it apart from both is the result of minimizing the SBCV. A 

remarkable aspect of utilizing the coefficient of variation and not the variance as an objective 

function is the consideration of the mean value of realizations at each simulated block. 

6.2.3.7 Simulated block variance and kriging variance (SBVKV) 

 

A proposed compost objective function minimizes the sum of the simulated block 

variance and kriging variance or SBVKV. To calculate this objective function value, the 

domain shall be kriged and simulated at each iteration, and each simulated block variance and 

kriging variance are calculated and summed to give the uncertainty index that guides the 

search for infill collars. The procedure follows what was previously presented, and the 

difference is how the objective function is computed. To better represent the problem, each 

portion of the function shall receive a weight. The weights represent the importance given by 

each factor over the final objective function value. The SBVKV is presented in equation (XI), 

while in equation (XII), the formal objective function is presented. 

𝑆𝐵𝑉𝐾𝑉 =  ∑𝑤𝑆 ∗ 𝜎𝑆𝐺𝑆
2 (𝑥𝑖) + 𝑤𝐾 ∗ 𝜎𝑂𝐾

2 (𝑋𝑖)

𝑛

𝑖=1

 
(XI) 

 

Minimize SBVKV(x) 

(XII) Subject to nZ(x), x = X, Y, Z; X ⊂ [Xmax, Xmin]; Y ⊂ [Ymax, Ymin]; Z = Zmax; 

 𝑤𝑆 + 𝑤𝐾 = 1 

 

𝑤𝑆 is the weight associated with simulation, and 𝑤𝐾 is the weight associated with 

kriging. The sum of weights shall be 1, as each weight is a representation of the proportion 

given to both simulation and kriging during the search for the optimal infill collar 

configuration. The user can assign which parameters are more important, or if both shall be 

considered with the same importance during the search. 



47 

 

6.2.3.8 Simulated block coefficient of variation and kriging variance 

(SBCVKV) 

 

The last objective function presented is another compost function, the sum of 

simulated block coefficient of variation and kriging variance (SBCVKV). This objective 

function follows the same procedure as SBVKV, but instead of simulation variance, it uses 

the simulation coefficient of variation. Equations (XIII) and (XIV) present the SBCVKV 

function and the formal objective function proposed: 

𝑆𝐵𝐶𝑉𝐾𝑉 =  ∑𝑤𝑆 ∗ 𝐶𝑉𝑆𝐺𝑆(𝑥0) + 𝑤𝐾 ∗ 𝜎𝑂𝐾
2 (𝑋𝑖)

𝑛

𝑖=1

 
(XIII) 

 

Minimize SBCVKV(x) 

(XIV) Subject to nZ(x), x = X, Y, Z; X ⊂ [Xmax, Xmin]; Y ⊂ [Ymax, Ymin]; Z = Zmax; 

 𝑤𝑆 + 𝑤𝐾 = 1 

 

The same approach is given to the SBCVKV and SBVKV, as they use the same idea, 

considering both simulation and estimate when quantifying uncertainty. The difference is the 

fact that, once again, the SBCVKV can consider not only uncertainty when minimized, but 

the mean value of the realizations, which can be maximized during the search, the same point 

made when the SBCV is considered.  

6.2.3.9 Optimization algorithm 

 

The search for the optimal infill collar is realized by an algorithm developed by the 

authors based on the simulated annealing optimization method. The simulated annealing was 

developed by Kirkpatrick et al. (1983) based on the work of Metropolis et al. in 1953. 

Metropolis et al. (1953) presented a methodology to compute equations of the state where the 

system molecules interact between themselves. Kirkpatrick et al. (1983) borrowed this 

concept to apply to optimization problems, using the concept of annealing to illustrate the 

methodology proposed. At the initial state of the annealing procedure, the temperature is the 

highest and is minimized during the procedure. The temperature controls the acceptance of 

the new configuration obtained by the search, in the sense of adding a probability of accepting 

a worse configuration than the previous optima regarded. This mechanism set apart the 
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simulated annealing from other known optimization methodologies, the controlled acceptance 

of worse scenarios that can be used to scape local optima that would hinder the search 

algorithm. At the start of the annealing, the probability of acceptance of worse optima is 

higher than at the end of the optimization, considering that system entropy is highest at the 

start and decreases along the search. Facing a configuration that resulted in a worse value, the 

control value is randomly drawn from an interval between [0,1] and compared with the 

temperature at the current iteration. If the temperature is higher than the control obtained, the 

worse result and its configuration are accepted as the new optima, and the search continues.  

The definition of the temperature is given by a cooling schedule that shall be 

considered by the algorithm. There are different applications and forms to define the cooling 

schedule to choose from, each one is dependent on the problem at hand. Implanted in the 

cooling schedule is the stop criteria, given by where the differences of each configuration tend 

to be constant and so to attain system stability. In the present work, this procedure was not 

considered in the cooling schedule or the optimization, with the minimum temperature, 

temperature equal to 0, obtained at the last iteration. For that purpose, the schedule is given by 

the equation (XV): 

[(niter+1)/(i+1)]/niter (XV) 

 

niter is the number of iterations to be made by the algorithm, and i is the iterations of 

the search. The definition of the schedule proposed is to minimize the temperature following 

an exponential approach, with a higher probability at the start, that rapidly decreases at the 

initial iterations. The temperature interval is not [0,1], equal to the control, but tends to those 

values the highest the number of iterations used. The implemented approach has the function 

of forcing the user to set a high number of iterations, which is interesting as a random 

approach to guarantee a better result. As simulated annealing is a heuristic optimization 

method, there are no guarantees that the best result overall is obtained, but a good enough 

result is attained in a relatively smaller time and computational demands. 

The algorithm utilized in this work has other random processes, besides the acceptance 

of worse configurations. The algorithm initiates by obtaining n collars with random X and Y 

coordinates, limited to the user-defined domain. The number of collars is maintained until the 

end of the optimization. The algorithm projects the drillholes based on the collar location with 

the total length given by the user. Each drillhole is then partitioned in the barrel length 
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desired, and each one of those is considered a sample that shall receive a value drawn from 

the closest block. If the block value was simulated, the sample value is the mean of the nearest 

block realizations. If kriging was made, the value is the kriging block value. With the infilled 

data defined, a new kriging/simulation (or both) is calculated to obtain the proposed 

configuration objective function value. After the sequence ends, the optimization initiates. 

After the temperature is calculated, the first random decision is made, which collar shall be 

moved in the present iteration. This guarantees the sequential procedure as the movement is 

not attaining completely random collar values at each iteration, with only one of those to be 

moved in the iteration. Selecting which collar, then the coordinate to be changed is randomly 

defined too, between X or Y value of the selected collar. The variation of each configuration 

is given in a one-dimension approach. The new coordinate value is drawn randomly inside the 

limits of the domain. Having the new collar position, the drillhole is produced in the way 

previously described, with a small change regarding the values assigned with each sample. If 

the new collar does not have at least one new sample with a value associated, a new collar is 

drawn randomly in the domain until a drillhole with at least one value is obtained. Once the 

new drillhole is obtained, the objective function is calculated in the same way previously 

explained. The objective function value is then compared to the optimum, being the new 

value smaller than the optimum, the new value and its configuration are defined as the new 

optima. If the new value is higher than the optima, the control is calculated and compared 

with the temperature. If the temperature is smaller than the control, the iteration ends. Being 

the control smaller than the temperature, the worse objective function value and its collar 

configuration are considered the new optima and the iteration ends. After there are no more 

iterations to be done, the optimization finalizes with the algorithm returning the optimal 

objective function value, the smallest overall value attained during the search, and the collar 

configuration that obtained that value. A flowchart of how the algorithm proceeds with the 

optimization is presented in Figure P02-12. 
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Figure P02-12 – Flowchart of the algorithm implemented to optimize the infill collar configuration. 

 

6.2.3.10 Imposed optimization constraints 

 

To guarantee that each objective function optimization is treated equally some 

constraints were imposed in the search for infilled collar configurations. The first one regards 

the direction of the drillholes fixed perpendicular to the synthetic data fault and vertical in the 

Capanema drillholes infill. The second one is to fix the z coordinate of the collar as the 

highest z value from the data set. All drillholes have the same total length, given as the 

domain direction total length, taken at each case, synthetic and Capanema, drillhole direction. 

Each new probable collar must have at least one non-empty sample composing it. The number 

of new collars located is maintained from the start till the end of the optimization. The 

variogram model is the same over the optimization iterations, and the domain data is 

considered stationary. All simulations and kriging were restricted to the boundaries of the 

convex hull computed on data sets. No changes are made in the block data parametrization, 

which shall be maintained during the search and be informed by the user. The random seed of 
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the simulation is maintained during the optimization and must be informed by the user. Data 

value limits must be respected, with the maximum and minimum values informed by the user.  

6.2.4 Results and discussion 

 

6.2.4.1 Synthetic data 

 

The first analysis considered objective function minimization assessed through the 

competence of the algorithm to optimize collar infill. To compare each objective function an 

interval of 1 to 15 new collars were located after 1000 iterations. Figure P02-13 is a graph 

presenting the minimal value obtained by each objective function at the end of the 

optimization procedure, the objective function value is a ratio given to the initial function 

value, taken directly from the original sampling with no infill done. The first remarkable 

difference is how a single new drillhole changes the objective function value, with the 

reduction of KVS to almost half the initial value. The objective functions that only depend on 

the simulation do not have a sudden drop in the objective function, with the SBV reducing 

10% of the initial value. The difference between the simulation and kriged-based functions 

affects the compost objective functions too, while in the case of SBVKV the original value 

was reduced to over 25% of the original sample value, and the SBCVKV function was the 

closest to the KVS over the objective function value, to the point the results are superposed to 

the KVS optimization for most of the analyzed interval. That can be explained by the fact that 

the SBCV produced the worst, i.e., highest minimization optimal, systematically. The 

superposition of KVS over the SBCV side of the SBCVKV objective function can be 

prejudicious to the results obtained by the optimization, but as the only comparisons made are 

between the objective function minimizations, it is not possible to assess the competence of 

either objective function over another. The only noticeable fact is that the KVS regardless of 

having a higher minimization its competence is not kept when more drillholes are located, 

decreasing less when compared with the SBCV. From the beginning to the end of the interval, 

the decrease of KVS was almost 15%, while in the case of the SBV objective function it was 

greater than 60%. Therefore, the degree of minimization of the SBV objective function is the 

highest, obtaining the smaller values systematically after locating 8 infill collars at the 

original sample data. The SBVKV presents an interesting result when compared to the SBV 

and KVS objective functions, which appear to approximate to the point of even superimpose 
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over the SBV, the addition of KVS decreases the degree of minimization of the compost 

function. The last comparison considering the minimization is over the optimization total 

processing elapsed time for each objective function, which is presented in Table P02-02. The 

KVS has a smaller processing time by far, however, the compost objective functions do not 

demand much more time to optimize.  

 
Figure P02-13 – Comparisons between each objective function optimization, obtained after 1000 iterations, 

under the same parametrizations. The objective function value is a ratio between the initial value, taken directly 

from the original sampling model (kriged and/or simulated), and the optimal value obtained with the number of 

collars. 

 

Table P02-03 – Mean elapsed processing time to optimize, after 1000 iterations, each objective function 

proposed. 

 SBV SBCV KVS SBVKV SBCVKV 

elapsed 

time 
00:26:05 00:25:46 00:08:25 00:32:25 00:32:34 

 

The second comparison considered the results of evaluating the optimized infilled 

samples. To better compare the results two scenarios were proposed: first 2 different numbers 

of infilled drillholes, 10 or 15 new drillholes; second, 3 iteration numbers to optimize the 

collar locations, respectively 1000, 10000, and 50000 iterations. Each objective function was 

optimized by both scenarios proposed 10 times. The use of more than one optimization for 

scenarios is important for the same reason as using a high iteration value, as the method is 

stochastic in nature, only one result per scenario could either provide a high array of possible 
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results, therefore the higher the number of procedures more reliable are the comparisons of 

the results.  

The first scenario applied to compare the results considered 10 infill collars optimized 

by 1000 iterations. In Figure P02-14 the comparisons considering the mean (A), standard 

deviation (B), and Kolmogorov-Smirnov distance (C) are presented. The comparisons are 

made between each objective function’s optimal infill collar configuration, the population, 

and the original sample values. In the Kolmogorov-Smirnov distance, the values were taken 

considering the population distribution. The population value on the graph is equal to zero 

because it is measuring the population to itself. The comparisons are presented in Table P02-

03 focusing on the whole interval of the 10 results obtained and the best overall value for each 

objective function. 

The objective function that obtained the closest value to the populational mean was the 

SBCV minimization. However, this objective function has a higher value of interval, as seen 

in Table P02-03. Therefore, the best function would be the SBV which has a smaller interval 

with a maximum value close to the best. The worse results regarding the mean were attained 

by minimizing KVS, which returned the smaller best mean value. Even if the KVS and SBV 

minimization have the same interval, which is small, the fact that SBV has a higher maximum 

proves that this objective function fared better in furthering the mean representability. 

The SBCVKV minimization obtained the closest standard deviation to the 

populational one. However, its interval is one of the highest, which shows that this function is 

not as accurate as the others in furthering the standard deviation representativity. This is the 

same occurrence that happens when minimizing the KVS function, which has a standard 

deviation higher than the populational but with the highest interval. The best function in 

furthering representing the populational standard deviation was the SBVKV, considering its 

best value and interval. 

Regarding the Kolmogorov-Smirnov distance, the SBCV minimization has the 

smallest value overall. However, it has the highest interval too. The best values were obtained 

by minimizing the SBV, with a small interval and minimum. The worse results were those of 

KVS minimization. 
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Figure P02-14 – Infill optimization results comparisons. The values compared are mean (A), standard deviation 

(B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 10 infill collars optimized by 

1000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing each distribution to the 

population, hence the population being zero at (C). 

 

Table P02-04 – Best parameter value, and its distribution spread, for each objective function applied to infill 10 

collars, optimized by 1000 iterations. The distribution spread was obtained by subtracting the minimum value 

from the maximum, considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 

0.026 0.045 0.026 0.032 0.025 

Distribution spread (std. 

dev.) 

0.135 0.131 0.269 0.139 0.171 

Distribution spread 

(Kolmo.-Smir. dist.) 

0.024 0.049 0.034 0.019 0.026 

Maximum mean 0.652 0.657 0.636 0.653 0.638 

Maximum std. dev. 0.331 0.327 0.468 0.355 0.382 

Minimum Kolmogorov-

Smirnov dist. 

0.046 0.042 0.084 0.066 0.074 

 

The second scenario infilled 10 new drillholes after 10000 iterations. The results of 

those optimizations are shown in Figure P02-15 and further resumed in Table P02-04. When 

the mean is considered (Figure P02-15 A), the minimization of SBV obtained the best mean 

representability regarding the population. However, that function is the one with the highest 

spread for the mean. Therefore, the SBVKV produced better optima when considering its 

maximum and spread. The worse function regarding the mean was the SBCVKV, with the 

smallest maximum. Regarding the standard deviation (Figure P02-15 B) the function with the 

best representability was the KVS, with a maximum equal to that of the SBV but in a smaller 
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spread. Even if the SBCV has a maximum value closer to the populational standard deviation, 

it has obtained the highest interval. The function with the worse results in terms of standard 

deviation representativity is the SBCVKV. The last comparison, the Kolmogorov-Smirnov 

distance (Figure P02-15 C), shows the SBCV has the closest distribution to the populational 

one, with the smallest distance and a feasible spread. Again, the SBCVKV has worse results 

to represent the population than the other functions.  
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Figure P02-15 – Infill optimization results comparisons. The values compared are mean (A), standard deviation 

(B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 10 infill collars optimized by 

10000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing each distribution to the 

population, hence the population being zero at (C). 

 

Table P02-05 – Best parameter value, and its distribution spread, for each objective function applied to infill 10 

collars, optimized by 10000 iterations. The distribution spread was obtained by subtracting the minimum value 

from the maximum, considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 

0.048 0.047 0.025 0.038 0.034 

Distribution spread (std. 

dev.) 

0.174 0.198 0.161 0.134 0.118 

Distribution spread 

(Kolmo.-Smir. dist.) 

0.030 0.026 0.030 0.021 0.054 

Maximum mean 0.667 0.664 0.643 0.655 0.636 

Maximum std. dev. 0.375 0.387 0.375 0.323 0.295 

Minimum Kolmogorov-

Smirnov dist. 

0.054 0.051 0.078 0.059 0.083 

 

The last tested infill scenario considers 10 new drillholes and is optimized after 50000 

iterations and is presented in Figure P02-16 and resumed in Table P02-05. The comparison 

considering the mean (Figure P02-16 A) shows that the SBV was the best function, where the 

mean is closer to the population mean. The SBV mean value spread is high, compared to the 

results of the other functions, however, the results are the closest to the population overall. 

The worse results regarding the mean are obtained by minimizing the KVS. Considering the 

standard deviation (Figure P02-16 B) the best results are obtained by the SBVKV function, 

but this is the function where the highest spread is found. The best result is attained by the 
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minimization of the SBCVKV. The worse result regarding similarity with populational 

standard deviation is obtained by the SBCV function. The Kolmogorov-Smirnov distance 

(Figure P02-16 C) with the smallest value to the population distribution is obtained by the 

SBV function. The highest distance and overall worse results are obtained by the KVS 

minimization. 
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Figure P02-16 – Infill optimization results comparisons. The values compared are mean (A), standard deviation 

(B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 10 infill collars optimized by 

50000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing each distribution to the 

population, hence the population being zero at (C). 

 

Table P02-06 – Best parameter value, and its distribution spread, for each objective function applied to infill 10 

collars, optimized by 50000 iterations. The distribution spread was obtained by subtracting the minimum value 

from the maximum, considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 

0.042 0.024 0.038 0.050 0.029 

Distribution spread (std. 

dev.) 

0.115 0.081 0.141 0.174 0.115 

Distribution spread 

(Kolmo.-Smir. dist.) 

0.045 0.044 0.039 0.037 0.016 

Maximum mean 0.666 0.644 0.643 0.666 0.649 

Maximum std. dev. 0.332 0.278 0.332 0.375 0.341 

Minimum Kolmogorov-

Smirnov dist. 

0.041 0.043 0.084 0.046 0.083 

 

The first scenario where the infill is done with 15 drillholes is optimized with 1000 

iterations and its results comparisons can be seen in Figure P02-17 and Table P02-06. 

Comparisons of the mean (Figure P02-17 A) show that the best value is obtained by the SBV 

minimization, and even the highest interval has the closest values to the population. The 

worse results are obtained by the KVS minimization. Regarding the standard deviation 

comparisons (Figure P02-17 B) the SBV has the closest value to the population one, even 

with the highest spread. The minimization of the SBCV obtained the worse standard deviation 

values regarding the population. The comparisons with the Kolmogorov-Smirnov distance 

(Figure P02-17 C) show that the SBV minimization obtained the best results. The worse 
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results, with a higher distance to the population distribution, are obtained by the SBCVKV 

function. 
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Figure P02-17 – Infill optimization results comparisons. The values compared are mean (A), standard deviation 

(B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 15 infill collars optimized by 

1000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing each distribution to the 

population, hence the population being zero at (C). 

 

Table P02-07 – Best parameter value, and its distribution spread, for each objective function applied to infill 15 

collars, optimized by 1000 iterations. The distribution spread was obtained by subtracting the minimum value 

from the maximum, considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 

0.049 0.027 0.023 0.036 0.043 

Distribution spread (std. 

dev.) 

0.192 0.098 0.224 0.145 0.142 

Distribution spread 

(Kolmo.-Smir. dist.) 

0.034 0.017 0.035 0.037 0.022 

Maximum mean 0.680 0.651 0.635 0.659 0.653 

Maximum std. dev. 0.394 0.285 0.426 0.361 0.335 

Minimum Kolmogorov-

Smirnov dist. 

0.039 0.049 0.065 0.043 0.078 

 

A second optimization is made considering 15 new drillholes, located after 10000 

iterations. The results of this set of optimizations are presented in Figure P02-18 and resumed 

in Table P02-07. Considering the mean (Figure P02-18 A) the minimization of SBV obtained 

the best representativity of the population. The worst results are obtained by the SBCVKV 

objective function. When the comparison is made regarding the standard deviation (Figure 

P02-18 B) the SBCVKV obtained the value closest to the populational one. However, this 

objective function has one of the highest distribution spreads. Therefore, the SBV fared better 

in furthering the representativity of the standard deviation regarding the population. The 

worse objective function is the KVS minimization. The last comparison using the 
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Kolmogorov-Smirnov distance (Figure P02-18 C) shows the SBV as the objective function 

and the results tend to be closer to the populational distribution.  And again, the KVS 

minimization has the worse overall results. 
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Figure P02-18 – Infill optimization results comparisons. The values compared are mean (A), standard deviation 

(B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 15 infill collars optimized by 

10000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing each distribution to the 

population, hence the population being zero at (C). 

 

Table P02-08 – Best parameter value, and its distribution spread, for each objective function applied to infill 15 

collars, optimized by 10000 iterations. The distribution spread was obtained by subtracting the minimum value 

from the maximum, considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 

0.044 0.046 0.020 0.041 0.027 

Distribution spread (std. 

dev.) 

0.180 0.147 0.103 0.242 0.212 

Distribution spread 

(Kolmo.-Smir. dist.) 

0.026 0.047 0.015 0.038 0.040 

Maximum mean 0.688 0.669 0.645 0.671 0.642 

Maximum std. dev. 0.426 0.371 0.341 0.456 0.416 

Minimum Kolmogorov-

Smirnov dist. 

0.035 0.039 0.078 0.049 0.065 

 

At last, 15 new drillhole optimized after 50000 iterations are presented in Figure P02-

19 and resumed in Table P02-08. Considering the mean (Figure P02-19A) the SBV fared 

better, albeit slightly than the SBCV regarding the mean representativity. The worse results 

considering the mean are obtained by the SBCVKV function. Regarding the standard 

deviation comparisons (Figure P02-19 B) the KVS has the best overall results. The worst 

results are related to the SBCV objective function. The last comparison, the Kolmogorov-

Smirnov distance (Figure P02-19 C), shows that the best function in furthering the population 

representativity is the SBV minimization. The worse function, regarding the distance, is the 

SBCVKV minimization. 
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Figure P02-19 – Infill optimization results comparisons. The values compared are mean (A), standard deviation 

(B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 15 infill collars optimized by 

50000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing each distribution to the 

population, hence the population being zero at (C). 
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Table P02-09 – Best parameter value, and its distribution spread, for each objective function applied to infill 15 

collars, optimized by 50000 iterations. The distribution spread was obtained by subtracting the minimum value 

from the maximum, considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 

0.033 0.033 0.024 0.030 0.014 

Distribution spread (std. 

dev.) 

0.100 0.093 0.147 0.112 0.135 

Distribution spread (K-S* 

distance) 

0.030 0.039 0.021 0.031 0.019 

Maximum mean 0.664 0.662 0.649 0.653 0.638 

Maximum std. dev. 0.322 0.315 0.380 0.324 0.344 

Minimum K-S distance 0.037 0.041 0.074 0.049 0.077 
* K-S is used as an abbreviation of Kolmogorov-Smirnov 

The results when dealing with synthetic data show that the objective function SBV 

fared better than the other functions in furthering the populational representativity. However, 

this is one of the functions that tend to have higher results distribution spreading. The 

functions present a clear tendency of separation in the Kolmogorov-Smirnov distance, with a 

difference in the KVS results, which tend more to the original sampling distance, and the SBV 

and SBCV functions, which tend to the population more. The SBVKV results tend to 

approximate more from the simulated functions. Meanwhile, the SBCVKV tends to the KVS 

results.  

The use of a higher number of iterations does not necessarily provide better results, or 

with smaller results distribution spreading. However, a higher number of drillholes tends to 

return better results for each parameter, when considering the same number of iterations. 

However, the same is not perceived when the spread is considered, as there is not a clear trend 

of either rising or fall of the values when 15 new drillholes were made compared with the 

infill with 10 collars.  

6.2.4.2 Real data set 

 

The optimized infill made at the Capanema drilling data set contains 21 new drillholes 

optimized after 10000 iterations, this scenario was repeated 10 times for each objective 

function and the results were sampled using the rockdrill data. The comparisons made are the 

same used in the synthetic data, considering mean, standard deviation, and Kolmogorov-
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Smirnov distance. In Figure P02-20 the comparisons are presented, with the values of mean 

and standard deviation being proportional to the populational values. The intervals and best 

values for each objective function are presented in Table P02-09. Considering the 

populational mean, the best value was obtained by the KVS minimization, and the second-

best results are those of SBCVKV minimization. Both objective functions attained overall 

better results regarding the mean. Considering the spread of the results interval regarding the 

mean, SBV and KVS obtained the highest, with the smallest spread obtained by the SBCV. 

Although the KVS has the highest spread the maximum value was interpreted as the best 

objective function to represent the populational mean. The standard deviation results once 

again present a distinction, with the SBCVKV and KVS minimization with the best overall 

results, with the SBCVKV objective function being interpreted as the best result. The standard 

deviation results tend to be closer to the original sampling data when compared to the mean 

results. The SBCVKV minimization has the highest interval, indicating high uncertainty, 

while the smallest interval was presented by the SBV objective function. Even with the 

smallest spread of standard deviation, the best values obtained by the SBV minimization were 

worse than the best standard deviation obtained by the KVS minimization, in which the 

interval of results is rather small compared to the other objective functions. Therefore, the 

KVS has the best results regarding the population standard deviation. The last comparison 

made regards the Kolmogorov-Smirnov distance, which once again presents a distinction 

between the results, with both KVS and SBCVKV objective function, having the smallest 

overall results. The best result was obtained by the SBCVKV objective function, with the best 

KVS minimization result close. Although the KVS and SBCVKV objective functions 

obtained the best result, the interval for both is the highest among the objective functions 

considered. Regardless of that, worse results are mostly higher than the ones obtained by KVS 

and SBCVKV objective functions. Therefore, the best objective function regarding the 

Kolmogorov-Smirnov distance was the minimization of the KVS. 
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Figure P02-20 – Infill optimization of Capanema drillholes results comparisons. The values compared are mean 

(A), standard deviation (B), and Kolmogorov-Smirnov distance (C). The scenario considered is to locate 21 

infill collars optimized by 10000 iterations. The Kolmogorov-Smirnov distance value is obtained by comparing 

each distribution to the population, hence the population being zero at (C). Each mean and standard deviation 

value are taken proportionally to the rockdrill data, hence the reason for the population values being equal to 1. 
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Table P02-10 – Collar infill distribution spread and best results for each objective function applied. The 

distribution spread was obtained considering the 10 optimizations applied with each objective function. 

 SBV SBCV KVS SBVKV SBCVKV 

Distribution spread 

(mean) 0.015 0.006 0.014 0.007 0.012 

Distribution spread (std. 

dev.) 0.049 0.081 0.059 0.056 0.113 

Distribution spread (K-S 

Distance) 
0.041 0.017 0.043 0.039 0.046 

Maximum mean 0.955 0.950 0.970 0.951 0.967 

Minimum std. dev. 1.343 1.345 1.300 1.350 1.270 

Minimum K-S distance 0.178 0.193 0.133 0.179 0.132 

 

Those results differ from those obtained in synthetic dataset comparisons, considering 

the objective function competence. In the synthetic dataset comparisons, the overall best 

objective function was the SBV, while the KVS obtained the best results to infill the 

Capanema sampling, regarding the representativity. To better compare the Capanema and 

synthetic dataset infill it is important to consider the differences between variables. In Table 

P02-10 one can see the variance coefficient of the synthetic dataset initial sampling, the 

synthetic dataset population, sampling by drillholes of Capanema mining, and the assumed 

population of Capanema, a sampling made with rockdrill. Considering the coefficient of 

variation of data, it is remarkable that the synthetic dataset sampling has a higher variability, 

compared to the Capanema information. That is to be expected as the synthetic dataset data is 

a copper occurrence and the Capanema is an iron deposit. The fact that the Capanema data 

have lower variability can explain the reason that the KVS objective function obtained the 

best responses. Lower variability indicates that the data do not necessarily need a more 

complex approach to indicate the regions with lower sampling density. The fact that the 

model has a small degree of uncertainty would indicate that the simplest approach fared 

better.  

Table P02-11 – Comparisons between the coefficient of variation of each data considered. The original sampling 

of synthetic dataset and Capanema that was infilled and the population data for each sampling. 

Data Coefficient of variation 

Synthetic dataset original drillhole sampling 0.308 

Synthetic dataset population 0.583 

Capanema original drillhole sampling 0.137 

Capanema rockdrill sampling (population) 0.088 
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The last consideration between the Capanema and synthetic dataset infill is with the 

computational time. In Table P02-11 the infilled data processing time is compared, 

considering the same number of iterations for both optimizations, 10000, and with 10 collars 

infilled at the synthetic dataset data. The average processing time to optimize the synthetic 

dataset sampling is lower than the Capanema infill. The reason for this difference is the size 

of each domain. To the synthetic dataset data, the North and East size are, respectively, equal 

to 600 and 300 meters, meanwhile, the same sizes to the Capanema are equal to 2850 and 

2150 meters. The domain size is used to define the number of iterations, meaning that the 

higher its size is the more iterations are recommended. However, KVS tends to be the faster 

objective function, as kriging uses less computational time. The compost objective function 

considering the synthetic dataset infill has not changed the processing time in the case of the 

SBCVKV. The SBVKV objective function to infill the synthetic dataset data has returned a 

higher elapsed processing time because some of the optimizations have demanded more time, 

which indicates a computational problem. Considering Capanema at least one day is 

demanded to process an infill optimization, with at least more than 9 hours when using a 

compost objective function. However, KVS minimization requires lesser processing time 

even when infilling the Capanema sampling. The processing time is longer if the model size is 

higher, therefore, Capanema infill will demand more time. 

Table P02-12 – Processing time of each objective function considering both sampling data to be infilled, 

synthetic dataset, and Capanema drillhole. The synthetic dataset infill was considered with 10 infilled collars and 

10000 iterations. 

 SBCV SBV KVS SBCVKV SBVKV 

Synthetic dataset 

infill time 
04:07:36 04:06:11 01:33:10 05:28:43 09:19:00 

Capanema infill 

time 
24:13:24 24:08:58 08:57:27 33:05:15 33:02:12 

 

6.2.5 Final considerations and conclusions 

 

The optimization of the infill collar is not trivial and easily applicable. The new 

proposed compost approach does not fare better than objective functions considering only the 

simulated or estimated models. Although, all function tends to obtain better results to 

represent the population distribution when applied. The best objective function to infill the 

synthetic data was minimizing the SBV, and obtaining the closest distribution to the 

populational data. The KVS minimization obtained the best result to optimize the infill 
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drillhole location of Capanema mining.  A high number of infilled collars and iterations tends 

to obtain better results; however, this does not mean that a smaller number of both cannot 

return satisfactory infill locations. Therefore, it is interesting to apply the proposed objective 

functions, specifically the non-compost type that fared better overall.  

The better representativity achieved by the optimizations proposed does not mean the 

study and application of infill drillhole location should only be made utilizing the proposed 

methodology. The use of the proposed objective functions and optimization algorithm as a 

guide with other infill localization methodologies is interesting. The methodology should be 

integrated and applied with the exploratory team’s expertise to indicate high-interest areas, 

considering the lithology limits and directions and different limitations imposed by the 

domain. As a new tool to guide further knowledge and representativity of the sampling data, 

the proposed methodology can be applied with a low computational and personal cost. 

 

6.3 The effect of sample values while optimizing infill drillhole 

locations 

 

The first comparison made was between the optimization of both objective functions, 

SBV and SBCV, by the same algorithm, SA with fast cooling, with the different values 

associated with the infill samples while searching for the optimum. The values chosen for this 

test are 4, mean, median, 10Th percentile (P10), and 90Th (P90) percentile of the nearest 

simulated node, to the infill sample to be considered. The results of the optimizations are 

shown in Figure P03-21. The first noticeable point is the fact that, systematically, the worse 

optimum objective function value found, for the same function, was obtained by associating 

the P90 to the infill samples. This could be explained by the fact that the P90 probably being 

an outliner in this distribution, therefore, when its value is considered as the value of the new 

sample there is a rise in the variance value over the domain, which affects the objective 

functions and rises then as well. Another systematic behavior is the fact that both the P10 and 

median obtained smaller optimum values when compared with the mean, with the P10 

obtaining 11 of the 15 smallest objective function values when minimizing the SBV function, 

and 8 when minimizing the SBCV function. 
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Figure P03-21 – Comparisons between each objective function optimization, obtained after 1000 iterations, 

under the same parametrizations while using different values associated with the infill in the searching for the 

optimum. 

 

To fully assess the effect of each value in locating infill samples 10 optimizations 

were made with each possible value and under different parameterizations. The number of 

new drillholes to be located by the optimization were 10 and 15, while the number of 

iterations to complete the optimization were 1000, 5000, and 10000. With those six 

parametrizations, and with both SBV and SBCV objective functions, the optimum collar 

location obtained by each optimization was sampled in the synthetic body to compare the 

results, to then assess which sample value would return the infill that best represents the 

population distribution. To analyze the results the choice made was to use 3 parameters that 

would be compared with the population, being the mean, standard deviation, and 

Kolmogorov-Smirnov distance.  

The results presented in Figure P03-22 are the comparison by the mean value for the 4 

utilized values associated with the samples while minimizing the SBV function. The infill 

utilizing the median as the value of the samples while optimizing its location returned the 

values closest to the populational mean. The results considering the mean as the value are 

more erratic, with values almost equal to the population value while obtaining values close to 

the original sampling mean. The infill optimized while utilizing the P10 as a value is less 

erratic overall, with most of the values concentrating in the 0.64-0.65 interval. The 

optimizations considering the P90 as the sample values show a shift when compared to the 

others, where the means tend to the original sampling values, with one optimum collar 

configuration being different from even the original sampling. This outlier mean value could 

be related to the populational distribution, in the fact that 0.5 is the value with the most 
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repetitions (and being the minimum), therefore the P90 in that optimization obtained most of 

the data with values with the minimum value of the population.  
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Figure P03-22 – Comparisons between the mean of 10 optimums infill locations for each search 

parametrization, number of new collars, and number of iterations, while minimizing the SBV function, and the 

populational and original sampling mean. The values associated with the infill samples while searching for the 

optimum were: mean (A); median (B); P10 (C); and P90 (D). 

 

The same comparisons to the mean were made while minimizing the SBCV function 

and are presented in Figure P03-23. The use of the median as the value of the infill samples 

while minimizing the SBCV obtained the infilled data closer to the populational mean, the 

same as seen in the SBV minimization. The infill utilizing the mean and the P10 as sample 

values while optimizing obtained the infill with mean values around the same interval, with 

the P10 results once again occurring in a smaller interval, less erratic. The optimization 

considering the P90 as sample values once again obtained values closest to the original 

sampling, similar to the result obtained while minimizing SBV. 
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Figure P03-23 – Comparisons between the mean of 10 optimums infill locations for each search 

parametrization, number of new collars, and number of iterations, while minimizing the SBCV function, and the 

populational and original sampling mean. The values associated with the infill samples while searching for the 

optimum were: mean (A); median (B); P10 (C); and P90 (D). 

 

In Table P03-12 the comparisons of the mean are presented focusing on the maximum 

and minimum, the interval, and median value of each parametrization. The minimization of 

SBV with 15 new collars and after 5000 iterations while utilizing the mean as the infill 

samples values obtained the mean value of the infilled distribution closest to the populational 

mean. The parametrization with the median of the 10 optimizations that came closer to the 

populational mean was the minimization of SBV with 15 new collars and 10000 iterations 

while utilizing the median as the infill samples. Both the utilization of P10 and P90 obtained 

the smallest intervals, considering the SBV and SBCV minimizations. The minimization of 

SBCV obtained the overall smaller intervals, but the maximum and median of the infilled 

distributions mean are, overall, closer to the populational mean when the SBV was 

minimized.  
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Table P03-13 – Values of minimum, maximum, interval, and median, of the infill sample distribution mean, 

obtained by the 10 optimizations for each different parametrizations considering the 4 sample values utilized 

while searching for the optimum, mean, median, P10, and P90. 

SBV  
 collars 10 10 10 15 15 15  
 iterations 1000 5000 10000 1000 5000 10000  

Mean 
maximum 0.672 0.682 0.666 0.682 0.684 0.679  

interval 0.058 0.063 0.051 0.054 0.057 0.051  

Median 
maximum 0.679 0.681 0.678 0.677 0.683 0.683  

interval 0.049 0.053 0.042 0.073 0.049 0.041  

P10 
maximum 0.673 0.675 0.683 0.680 0.660 0.656  

interval 0.063 0.055 0.056 0.047 0.027 0.022  

P90 
maximum 0.633 0.616 0.610 0.612 0.620 0.641  

interval 0.045 0.032 0.026 0.026 0.035 0.131  
SBCV  

 collars 10 10 10 15 15 15  
 iterations 1000 5000 10000 1000 5000 10000  

Mean 
maximum 0.657 0.664 0.644 0.651 0.669 0.662  

interval 0.045 0.047 0.024 0.027 0.046 0.033  

Median 
maximum 0.678 0.664 0.670 0.690 0.672 0.673  

interval 0.063 0.039 0.038 0.069 0.052 0.040  

P10 
maximum 0.655 0.650 0.659 0.665 0.660 0.682  

interval 0.022 0.024 0.038 0.033 0.033 0.058  

P90 
maximum 0.620 0.617 0.599 0.626 0.622 0.613  

interval 0.036 0.032 0.012 0.032 0.034 0.025  

Populational mean 0.686 

 

The second comparison was made regarding the standard deviation of the population 

data. In Figure P03-24 the infill optimization by minimizing the SBV for each of the 4 values 

associated with the samples is presented. The standard deviation of the optimum infill 

presents a more erratic behavior than the mean, but there are some similarities, such as the 

fact that the optimizations considering the P10 and P90 are less erratic than the ones utilizing 

the mean and median. The fact that the utilization of P90 as the sample values tends to shift 

the standard deviation of the optimums to the original sampling occurs in the comparisons 

considering the standard deviation too, likewise with the comparisons considering the mean. 

It is not clear as in the comparisons considering the mean, but in the case of the standard 

deviation, the median has a slightly better, i.e., standard deviation values of the infill samples 

distribution closer to the populational value. Although the optimums located by utilizing the 
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P10 return a less erratic standard deviation, the results are worse than those obtained by 

utilizing the mean or median as the sample values while searching for the optimum.  
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Figure P03-24 – Comparisons between the standard deviation of 10 optimums infill locations for each search 

parametrization, number of new collars, and number of iterations, while minimizing the SBV function, and the 

populational and original sampling standard deviation. The values associated with the infill samples while 

searching for the optimum were: mean (A); median (B); P10 (C); and P90 (D). 

 

The comparisons made considering the optimum obtained while minimizing the 

SBCV are presented in Figure P03-25. The minimization of SBCV obtained a result less 

erratic than those of the SBV minimization, similar to that seen when comparing the mean. 

The optimizations utilizing the median as sample values while locating the infill obtained the 

results closer to the populational standard deviation. The optimizations utilizing the mean and 

the P10 obtained results around the same interval, with the mean being more erratic, as 

expected from the previous results. The results utilizing the P90 as sample value have shifted 

the results to the original sampling standard deviation again.  
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Figure P03-25 – Comparisons between the standard deviation of 10 optimums infill locations for each search 

parametrization, number of new collars, and number of iterations, while minimizing the SBCV function, and the 

populational and original sampling standard deviation. The values associated with the infill samples while 

searching for the optimum were: mean (A); median (B); P10 (C); and P90 (D). 
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In Table P03-13 the comparisons of the standard deviation are presented focusing on 

the maximum and minimum, the interval, and median value of each parametrization. The 

configuration that obtained the best standard deviation value, i.e., closest to the population 

value, was the minimization of the SBV locating 15 new drillholes with 1000 iterations and 

that used the median as the sample value while searching for the optimum. The optimizations 

utilizing the P90 as the sample value obtained the smaller intervals overall, but those results 

are the worse compared with the other values adopted. When considering the maximum value, 

the optimization minimizing SBV obtained the values closest to the populational standard 

deviation. The optimizations utilizing the median as the sample value obtained the closest 

values to the population standard deviation when considering the maximum and median 

values obtained by the overall optimization parameters adopted.  

 

Table P03-14 – Values of minimum, maximum, interval, and median, of the infill sample distribution standard 

deviation, obtained by the 10 optimizations for each different parametrizations considering the 4 sample values 

utilized while searching for the optimum, mean, median, P10, and P90. 

SBV  
 collars 10 10 10 15 15 15  
 iterations 1000 5000 10000 1000 5000 10000  

Mean 
maximum 0.393 0.483 0.422 0.427 0.388 0.412  

interval 0.194 0.238 0.231 0.229 0.184 0.186  

Median 
maximum 0.414 0.407 0.450 0.397 0.389 0.444  

interval 0.198 0.196 0.222 0.215 0.177 0.203  

P10 
maximum 0.407 0.457 0.451 0.364 0.330 0.373  

interval 0.223 0.256 0.252 0.144 0.106 0.147  

P90 
maximum 0.302 0.232 0.214 0.240 0.284 0.303  

interval 0.130 0.067 0.048 0.079 0.127 0.130  
SBCV  

 collars 10 10 10 15 15 15  
 iterations 1000 5000 10000 1000 5000 10000  

Mean 
maximum 0.327 0.387 0.278 0.285 0.371 0.315  

interval 0.131 0.198 0.081 0.098 0.147 0.093  

Median 
maximum 0.365 0.361 0.422 0.432 0.349 0.394  

interval 0.173 0.137 0.173 0.251 0.162 0.132  

P10 
maximum 0.386 0.373 0.329 0.435 0.328 0.418  

interval 0.141 0.153 0.139 0.197 0.108 0.202  

P90 
maximum 0.252 0.249 0.195 0.302 0.273 0.241  

interval 0.087 0.086 0.031 0.114 0.111 0.072  

Population standard 
deviation 

0.400 
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The last comparison made is regarding the Kolmogorov-Smirnov distance between the 

sample data infilled and the population, which returns the minimal distance between the two 

distributions. In Figure P03-26 the Kolmogorov-Smirnov distance of the infill optimization 

for each parametrization while minimizing the SBV function is presented. The results of the 

Kolmogorov-Smirnov distance are less erratic than the previous two comparisons, regarding 

the mean and standard deviation. The optimization utilizing the median as the sample values 

while searching for the optimum obtained the closer overall distributions to the population 

and are the ones with less erratic behavior. The distance results of the optimizations utilizing 

the P90 as sample values mostly rise the distance between the sampling and the population, 

with only 4 optimizations that minimized the original sampling distance to the population 

distribution.  
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Figure P03-26 – Comparisons between the Kolmogorov-Smirnov distance of 10 optimums infill locations for 

each search parametrization, number of new collars, and number of iterations, while minimizing the SBV 

function, and the populational and original sampling standard deviation. The values associated with the infill 

samples while searching for the optimum were: mean (A); median (B); P10 (C); and P90 (D). 

 

Figure P03-27 compares the Kolmogorov-Smirnov distance between the optimizations 

minimizing the SBCV function and the population distribution. The minimization of the 

SBCV returned worse distance values than the ones obtained by minimizing SBV, overall. 

Both the optimizations utilizing P10 and median fared better concerning the distance, with the 

median faring slightly better. The optimization considering P90 as sample values once again 

worsened the original sampling distance to the population, even worse than when the SBV 

was minimized.  
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Figure P03-27 – Comparisons between the Kolmogorov-Smirnov distance of 10 optimums infill locations for 

each search parametrization, number of new collars, and number of iterations, while minimizing the SBCV 

function, and the populational and original sampling standard deviation. The values associated with the infill 

samples while searching for the optimum were: mean (A); median (B); P10 (C); and P90 (D). 

 

Table P03-14 presents the comparisons of the Kolmogorov-Smirnov distance to the 

populational distribution focusing on the maximum and minimum, the interval, and median 

value of each parametrization. The parametrization with the smallest distance was obtained 

minimizing the SBV while infilling with 15 new drillholes and 5000 iterations that used the 

mean as sample values while optimizing. The intervals obtained by minimizing the SBV were 

higher, but the minimum tends to be smaller, therefore more similar to the population 

distribution. When considering the interval, minimum, and median, the optimizations that 

utilized the median as sample values fared better with both objective functions than utilizing 

the other values. 
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Table P03-15 – Values of minimum, maximum, interval, and median, of the infill sample distribution 

Kolmogorov-Smirnov distance, obtained by the 10 optimizations for each different parametrizations considering 

the 4 sample values utilized while searching for the optimum, mean, median, P10, and P90. 

SBV  
 collars 10 10 10 15 15 15  
 iterations 1000 5000 10000 1000 5000 10000  

Mean 
minimum 0.040 0.045 0.058 0.043 0.032 0.043  
interval 0.061 0.059 0.037 0.036 0.035 0.032  

Median 
minimum 0.041 0.039 0.037 0.037 0.040 0.039  
interval 0.032 0.024 0.033 0.067 0.017 0.015  

P10 
minimum 0.047 0.048 0.039 0.039 0.043 0.044  
interval 0.037 0.031 0.033 0.029 0.031 0.028  

P90 
minimum 0.077 0.128 0.127 0.120 0.129 0.115  
interval 0.090 0.049 0.042 0.054 0.031 0.230  

SBCV  
 collars 10 10 10 15 15 15  
 iterations 1000 5000 10000 1000 5000 10000  

Mean 
minimum 0.042 0.051 0.043 0.049 0.039 0.041  
interval 0.049 0.026 0.044 0.017 0.047 0.039  

Media
n 

minimum 0.047 0.049 0.046 0.034 0.039 0.039  
interval 0.032 0.020 0.029 0.038 0.033 0.034  

P10 
minimum 0.050 0.050 0.051 0.037 0.043 0.045  
interval 0.038 0.028 0.023 0.033 0.033 0.034  

P90 
minimum 0.111 0.111 0.130 0.108 0.102 0.125  
interval 0.054 0.049 0.049 0.058 0.063 0.043  

 

The optimizations utilizing the median as sample values while searching for the 

optimum obtained the best representation of the population when considering all the 

comparisons to the different parametrizations applied. Even in the case that the median has 

not obtained the smallest interval, the results tend to be closer to the populational values. The 

utilization of the mean as sample values while optimizing tends to return values close to the 

populational, but those results were the most erratic, with a higher interval overall, especially 

when the objective function is the SBV minimization. The explication of the worse results 

systematically obtained when utilizing the P90 as sample values while optimizing comes from 

the objective function. The original sampling has a negative skewness, with most of the 

values tending to the minimal of the distribution, 0.5; when the objective function deals with 

the minimization of the variance of the simulated node, if a higher value is obtained, there is a 

higher probability that the node variance would rise, not fall as the objective function pretends 

to do. Therefore, the new samples will tend to the locations with smaller variability possible, 
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i.e., areas of the domain with smaller ore values. This does not occur when the mean or 

median are utilized as sample values, as these values could rise the overall variance. When an 

outlier occurs, the mean is affected by its value, but not the median, therefore the median is 

more robust and obtained better results overall. Regarding the parametrizations, the location 

of 15 new drillholes fared better than when utilizing 10, but not always the highest number of 

iterations returned the overall best results, nor the ones with less interval. 

 

6.4 Optimization of infill drillhole while variating the azimuth and 

dip direction 

 

The variation of direction, contemplating azimuth, and dip was implemented in the 

algorithm to observe the impact of the direction on the competence in locating infill and to 

better the population representability of the data. The variation of the azimuth and dip was 

implemented in the SA-based algorithm in the same procedure as the coordinate variation 

while searching for optimums. When either the azimuth or the dip is randomly picked to 

variate in the iterations it shall be obtained in the interval, between a maximum and minimum 

that the user defines. Therefore, the SA algorithm now can variate 4 collar parameters in the 

iteration, furthering the possible outcomes of the optimization and possible results poll. To 

compare both methods, fixed or variate directions, the same parametrization was applied 

while searching for the optimum infill localization while minimizing the SBV and SBCV 

functions. Figure P04-28 has presented the comparisons for each objective function and 

considerations of the direction, with each new drillhole infill optimum being obtained after 

1000 iterations. Considering the same objective function, the optimum obtained when 

variating the drillhole direction systematically obtained the smaller objective function value. 

This result is expected, as there is a higher possibility that while variating the direction of the 

drillhole, some of the new drillholes could have more information than only maintaining the 

drillholes perpendicular to the orebody, then further raising the number of samples. The 

possibility of a new drillhole economy is visible when one compares the results of the SBV 

minimization by both procedures, in the instance of 6 drillholes located while variating the 

drillhole direction fared almost equally as 10 drillholes with fixed direction were located. 
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Figure P04-28 – Comparisons between each objective function optimization, obtained after 1000 iterations, 

under the same parametrizations while utilizing fixed and variable directions of the drillhole while searching for 

the optimum infill location. 

 

6.5 Final considerations 

 

The synthetic and the real data sets are different, in the sense of the statistical 

distribution, and also sampling representativity. Therefore, a unique parametrization could not 

return the best results for both data. Considering the synthetic data set, the SBV objective 

function was the best of all functions in obtaining more representativity with the optimized 

infill. For the Capanema data set, the KVS objective function performed best in terms of 

representativity. This could be explained by the fact that both data sets have different 

statistical distributions, with the synthetic one having a higher variability. In terms of the 

composed objective function, neither of the two obtained a better representativity when 

compared to the other functions. 

The value associated with the samples while optimizing changes the results 

representativity. The tests made in the synthetic data set show that the best value to use was 

the median of the nearest simulated block. The use of the mean and P10 have satisfactory 

results too, but with less representativity than the results that utilized the median. The 

optimizations utilizing the P90 as a value show that in some cases this methodology tends to 

worsen the original sampling representativity, with most cases of the Kolmogorov-Smirnov 

distance values being higher than the original sampling. The other statistics compared to show 

that most optimization results tend to the original sampling value, therefore, do not further the 

representativity. This could be explained by the fact that the P90 is an outlier on the data set, 

utilizing it as a sample value would return a higher variance, as opposed to the desired result, 
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and the minimization of the SBV objective function would minimize the variance. There were 

no tests made in the real data. 

Lastly, the optimization considering the collar direction while searching for the 

optimum shows that the results tend to obtain a higher minimization of the objective function 

than utilizing a fixed direction while performing the optimization. The optimization test was 

not made to appoint the competence of this parametrization in furthering the representativity. 

7 CONCLUSIONS 

 

The optimization of infill location by the methodologies presented is functional. The 

SBV minimization is the best at furthering the representativity of the synthetic data while the 

KBV fared better with the Capanema Mine information. This is probably related to the type of 

distribution each of those bodies has, the synthetic being a high variability, positive skewness 

copper ore, and the Capanema iron ore that has a smaller variability, with negative skewness. 

More tests must be made to check if a distribution with lower variability can be better infilled 

with the KBV minimization than the others, with the help of synthetic data with the 

populational value at hand. The compost objective function, which considers the kriged and 

simulated models to locate the infill fared worse regarding population representativity than 

the direct functions under the same constraints.  

The use of different values associated with the samples while searching for the 

optimum infill location demonstrates that the median fared better compared to the other 

values, for the synthetic data. Meanwhile, the P90 systematically fared worse in all 

comparisons made. The mean as sample value is functional but tends to show more chaotic 

results, with a higher uncertainty of better representing the populational distribution than the 

median. Optimization that variates the direction of the drillholes tends to better minimize the 

objective function, as more data could be found if different directions are made. But further 

tests must be made to assess the competence of the direction variation while locating infill. 

The optimization methods proposed are functional in furthering the representativity 

regarding the population, but this does not mean that should be used alone. The consideration 

of different information must be taken while the infill is located. One point of contempt to the 

methods presented is the economic factor of making new drillholes, i.e., the cost of the new 
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information compensates when considering the profitability that said information returns. This 

and other information, such as geological information of the ore body, tonnage of ore, and 

others, should be considered with the methods proposed to better assess the locations that 

would return the information of more interest to the mining. Therefore, this work proves that 

the proposed methods are competent in at least helping find the portions of the domain that 

would provide more representation to the population, and less uncertainty, while the infill 

location is considered. 
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