Intensive (P-T-\textit{f}O_2) crystallization parameters of Alto Paranaíba kimberlites and diamond instability: Três Ranchos IV and Limeira I intrusions
Parâmetros intensivos de cristalização (P-T-fO$_2$) para rochas kimberlíticas da Província Alcalina Alto Paranaíba e a instabilidade de diamantes: kimberlitos Três Ranchos IV e Limeira I

BRUNA COLDEBELLA

Dissertação apresentada ao Programa de Geociências da Universidade de São Paulo para obtenção do título de Mestre em Ciências.

Área de Concentração: Petrologia Ígnea e Metamórfica

Orientador: Prof. Dr. Rogério Guitarrari Azzone

São Paulo
2019
To my mother, Sandra.
ACKNOWLEDGMENTS

I would like to express my special thanks to the São Paulo Research Foundation (FAPESP) for financially supporting the analytical costs (grants 2012/06082-6 and 2017/03768-8) and scholarship (grant 2016/12627-6) involved in this study.

To my advisor, Rogério Guitarrari Azzone, I have no words to express how grateful I am for all your support and for everything that you have taught me since the very first time I walked into your office. Thank you for always being available for help and discussions, and for your patience during my learning process.

I would also like to extend my gratitude to all of the IGc staff who helped me during this study: Vinicius, Zé Paulo, Samuca, Roger, Vasco, Audrey, Isaac, Sônia, and Angélica. In particular, I’d like to thank Marcos and Leandro, who have helped me innumerable times with the mineral chemistry analyses—thank you for all your support and consideration.

Thanks to the wonderful people who welcomed me so dearly at the IGc–USP: professors Renato, Frederico, Excelso, Gergely, Maria Irene, and Gaston; my friends Thereza, Melina, Fabiola, Júlio, Nicholas, Camila, and Dina. Special thanks to Mariana, who was always willing to help and to respond to my emails whenever I had any question.

I would like to dedicate this work to my family, for their unconditional support in every stage of my academic life. To my brother Eduardo, who was the first one to come up with the “why not geology?” idea. Thank you for giving me the best advice that I could ever have received. To my little brother Vitor, who brings so much light and love to my life. And to my mom, thank you for every single thing that you have done for me, thank you for being so understanding whenever I could not come back home: you walked me in every single step of this work and never left me alone. I love you with all my heart.

Finally, I want to express my sincere appreciation to my husband, Isaac, for encouraging me to be better every day. Without you, nothing of this would be possible. Thank you for the happiness you bring to my life, and for being so patient and understanding in my many moments of anxiety. Love you to the moon and back.
“We are all time travelers, traveling together into the future.

But let us make that future a place we want to visit.

Be brave.

Be determined.

Overcome the odds.

It can be done.”

(Stephen Hawking)
RESUMO

Foram estabelecidas as condições de fugacidade de temperatura (T), pressão (P) e fugacidade de oxigênio (fO2) para os kimberlitos Três Ranchos IV (diamantífero) e Limeira I (LM-I, estéril) do supercampo kimberlítico Coromandel-Três Ranchos (Minas Gerais e Goiás, Brasil), da província alcalina Alto Paranaíba (APAP), com o intuito de determinar uma possível correlação entre tais parâmetros intensivos de cristalização e a instabilidade de diamante daqueles magmas. As intrusões Três Ranchos IV e Limeira I foram classificados como kimberlitos macrocrísticos coerentes, com textura inequigranular evidenciada por megacrístais de olivina de até 1 cm parcialmente alterados, macrocristais de flogopita (0.5-10 mm) e xenólitos crustais dispostos em uma matriz muito fina composta principalmente por perovskita, olivina, flogopita, espinélio, serpentina e carbonatos em ambas as intrusões, com adição de apatita, ilmenita e monticelita apenas em LM-I. Macrocristais de granada e xenocristais centimétricos de piroxênio e também são fases minerais presentes em Três Ranchos IV e Limeira I, respectivamente. As amostras são todas ricas em MgO, com alto teor de Mg# e são fortemente enriquecidas em elementos incompatíveis.

Concentrações de elementos maiores, menores e traços das principais fases minerais foram obtidas por análises de Microssonda Eletrônica e LA-ICP-MS, com o objetivo de aplicar diferentes geotermo-e-oxibarômetros no cálculo das condições de P-T-fO2 e caracterizar a variação composicional dos kimberlitos TR-IV e LM-I. Núcleos de olivina de Limeira I apresentam maiores teores de NiO, CaO e menores teores de Cr2O3 que os dos cristais de olivina de Três Ranchos IV. O Mg# [(Mg/Mg+FeT), em prop.mol.] calculado a partir das olivinas analisadas varia de 87 a 92 mol.% para TR-IV e de 83 a 92 mol.% para LM-I. O conteúdo de elementos-traço da olivina é semelhante para ambos os kimberlitos, sendo que as concentrações de Li, Zn e Mn parecem ser maiores nas bordas dos cristais de olivina. Nas olivinas das duas intrusões, foram observados tanto um padrão de enriquecimento em Zr, Ga, Nb, Sc, V, P, Al, Ti, Cr, Ca e Mn nas porções de borda, característico do “melt trend”, quanto um enriquecimento em Zn, Co, Ni e possivelmente Na nas porções de núcleo, notável no “mantle trend”. Os cristais de monticelita de LM-I apresentam Mg # variando de 72 a 93.8 mol.% com o índice Ca/(Ca + Mg) variando entre 35-58 mol%. A composição dos cristais de perovskita de LM-I e TR-IV analisados permanece próxima do ideal CaTiO3, mas é notável uma variação dos membros finais dos núcleos (Lop16 e Prv78 médios) às bordas (Lop13 e Prv81 médios) nas amostras de TR-IV. As maiores concentrações de elementos terras raras leves (ETRL), Nb e Fe3+ também são observadas nas perovskitas de TR-IV. Os macrocristais de espinélios em amostras de TR-IV
são ricos em Al, enquanto os cristais da matriz variam de magnesiocromita a cromita. Cristais de ilmenita são identificados somente em LM-I, sendo caracterizados pelo alto teor de MgO, com grande variação nas concentrações de Cr₂O₃. As granadas são tipo piropto (62 a 73 mol.%) e estão presentes apenas em TR-IV, com Mg# variando de 72 a 79 mol.%, classificadas como lherzolíticas (G9) e piroxeníticas (G4, G5). O diopsídio ocorre como xenocrstais em LM-I e como microfenocristais em TR-IV, com Mg# variando de 85 a 91 mol.% e de 87 a 92 mol.%, respectivamente. Os xenocrstais de diopsídio presentes em LM-I apresentam maior concentração de MgO e FeO e são envoltos por coroa de monticelita.

As estimativas de temperatura do kimberlito LM-I foram obtidas utilizando as composições dos xenocrstais de diopsídio e as concentrações de Al presentes em cristais de olivina, resultando em um intervalo entre 718 e 985 °C. Enquanto que a pressão varia de 34 a 47 Kbar e foi calculada utilizando uma curva empírica de uma geoterma de 37 mW/m² proposta na literatura para magmas da Província Alcalina do Alto Paranaíba. Para TR-IV foram obtidas temperaturas a partir das concentrações de Al em olivina e de Ni em granada, variando de 975 a 1270 °C. O intervalo de pressão de 18 a 34 Kbar foi obtido a partir da composição dos principais elementos em granada amostrada de TR-IV. A fugacidade de oxigênio registrada em perovskitas (fase cognata de kimberlito) de TR-IV varia de NNO-7 a NNO + 4, e de NNO + 6 a NNO-4 em LM-I. A monticelita, outra fase cognata, também foi utilizada como oxibarômetro, resultando em um intervalo de NNO-4 a NNO + 2 para a intrusão LM-I, onde está presente. Também é notável uma mudança na fugacidade de oxigênio dos núcleos para a borda em perovskitas e em cristais de monticelita. As estimativas de fO₂ obtidas neste trabalho foram as primeiras calculadas para magmas da província alcalina do Alto Paranaíba. Todos os resultados de P-T-fO₂ obtidos são consistentes com dados da APAP reportados na literatura.

Os xenocrstais de clinopiroxênio em LM-I foram classificados como clinopiroxênio de fácie granada de acordo com as composições obtidas neste trabalho. Essa informação, juntamente com os dados de pressão e temperatura, além da presença de Mg-ilmenita em LM-I (conhecido por ser estéril), indica que este magma kimberlítico pode ter ao menos cruzado o campo de estabilidade do diamante, e que é possível que a variação na fugacidade de oxigênio observada em ambos TR-IV e LM-I pode ter-se refletido na instabilidade destes xenocrstais nestes magmas, uma vez que Limeira I apresenta condições de oxidação levemente mais altas.

Palavras-chave: Kimberlitos; província alcalina Alto Paranaíba; Parâmetros intensivos de cristalização; Fugacidade de Oxigênio.
ABSTRACT

Temperature (T), Pressure (P) and Oxygen fugacity (fO_2) conditions were established for the Três Ranchos IV (diamond-bearing) and Limeira I (sterile) kimberlites of the Coromandel-Três Ranchos kimberlite field (Minas Gerais and Goiás, Brazil), Alto Paranaíba Alkaline Province (APAP), in order to draw a possible correlation between these intensive crystallization parameters and diamond instability. Both Três Ranchos IV and Limeira I are classified as coherent macrocrystic kimberlites, with an inequigranular texture formed by partially-to-fully altered olivine, phlogopite megacrysts up to 1 cm wide, macrocrysts (0.5-10 mm-sized), and crustal xenoliths set in a very fine groundmass composed mainly by perovskite, olivine, phlogopite, spinel, serpentinite and carbonates identified in both intrusions. Apatite, ilmenite and monticellite are also present, but only in LM-I. Garnet macrocrysts and centimetric pyroxene xenocrysts phases are also present in Três Ranchos IV and Limeira I, respectively. The samples, strongly enriched in incompatible elements, are all MgO-rich, with high Mg# content.

In order to apply different geotherm-and-oxybarometers in the calculation of P-T-fO_2 conditions and to characterize the compositional variation of TR-IV and LM-I kimberlites, major, minor and trace-element concentrations of the main mineral phases were obtained by electron microprobe and LA-ICP-MS. Olivine cores of Limeira I present higher NiO, CaO and lower Cr$_2$O$_3$ contents than those from Três Ranchos IV. Mg# ($\text{Mg}/(\text{Mg}+\text{FeT}), \text{mol.\%}$) ranges from 87 to 92 mol.% in TR-IV and from 83 to 92 mol.% in LM-I. The trace-element contents of olivine are similar in both kimberlites, the concentrations of Li, Zn and Mn appearing to be higher at olivine rims. In olivines from both intrusions, a pattern of enrichment in Zr, Ga, Nb, Sc, V, P, Al, Ti, Cr, Ca, and Mn in rims regions, is observed in the “melt trend” whereas enrichment in Zn, Co, Ni and possibly Na in cores regions, is found in the “mantle trend.” In monticellite specimens from Limeira I, Mg# ranges from 72 to 93.8, while Ca/(Ca+Mg) ratios range from 35 to 58 mol.%. The perovskite composition in both LM-I and TR-IV remains close to the ideal CaTiO$_3$, perovskite, but a variation from core endmembers (average Lop$_{16}$ and Prv$_{78}$) towards the rims (average Lop$_{13}$ and Prv$_{81}$) can be noticed in TR-IV samples. The highest concentrations of light rare earth elements (LREE), Nb, and Fe$^{3+}$ are also observed in perovskites from the TR-IV kimberlite. Macrocrystic spinels of TR-IV kimberlite are Al-rich, whereas the groundmass crystals range from magnesiochromite to chromite. Ilmenites from LM-I are characterized by high MgO values at a given TiO$_2$, with a large variation in Cr$_2$O$_3$. Pyrope garnets (62 to 73 mol.%) are present only in TR-IV, with Mg# ranging from 72 to 79
mol.%, being classified as lherzolitic (G9) and pyroxenitic (G4, G5). Diopside occurs as xenocrysts in LM-I and as microphenocrysts in TR-IV, with Mg\# ranging from 85 to 91 and from 87 to 92, respectively. Xenocrystic diopsides from LM-I present higher MgO and FeO concentrations with monticellite grains along crystal rims and fractures.

Temperature estimates for the LM-I kimberlite, obtained from the composition of diopside xenocrysts and Al-in olivine concentrations, ranging from 718 to 985 °C. Pressure ranges from 34 to 47 Kbar, as calculated using an empirical curve from a 37-mW/m² geotherm proposed in the literature for Alto Paranaíba magmas. For TR-IV, temperature values ranging from 975 to 1270°C were obtained from Al-in olivine and Ni-in garnet concentrations. Pressures in the range from 18 to 34 Kbar were obtained from major element composition of garnet samples from TR-IV kimberlite. The fO_2 of the TR-IV constrained by perovskite (kimberlite cognate phase) oxygen barometry ranges from NNO-7 to NNO+4, while for LM-I values range from NNO+6 to NNO-4. For the LM-I intrusion, monticellite, another cognate phase used as an oxybarometer, yielded a value range of NNO-4 to NNO+2. A change in the oxygen fugacity from cores towards rim recorded in the perovskites and the monticellite crystals is also noticed. The oxygen fugacity estimates of this work are the first ever calculated for magmas of the Alto Paranaíba Alkaline Province. All P-T-fO_2 values obtained are consistent with literature data on the APAP.

Clinopyroxene xenocrysts from LM-I were classified as garnet-facies clinopyroxene, according to the compositions obtained in this work. Such results, along with pressure, and temperature data from and the presence of Mg-ilmenite in LM-I (known to be sterile), indicate that the kimberlite magma might have at least crossed the diamond stability field. The variation in oxygen fugacity observed in both kimberlites possibly reflects the instability of diamonds in these magmas since LM-I presents slightly higher oxidation conditions.

Keywords: Kimberlites; Alto Paranaiba Province; Intensive parameters of crystallization, Oxygen Fugacity.
TABLE OF CONTENTS

RESUMO.. v

ABSTRACT... vii

TABLE OF CONTENTS .. ix

LIST OF FIGURES ... xi

LIST OF TABLES AND EQUATIONS ... xv

LIST OF APPENDICES .. xvi

CHAPTER 1 - INTRODUCTION.. 1

 1.1 Theme Presentation ... 1

 1.2 Overview of Kimberlites .. 3
 1.2.1 Mineralogy .. 6
 1.2.2 Geochemistry .. 8
 1.2.3 Magma generation ... 10
 1.2.4 Pipe formation and models ... 14
 1.2.5 Volatile contents .. 17

 1.3 Research Aims .. 17

 1.4 Study Area Location and Access .. 18

CHAPTER 2 - MATERIALS AND METHODS .. 19

 2.1 Literature Review ... 19

 2.2 Petrographic Analyses and Imaging .. 19

 2.3 Mineral Chemistry ... 20
 2.3.1 Major and minor element analysis ... 20
 2.3.2 Trace element and rare earth element (REE) analysis ... 20

 2.4 Whole Rock Geochemistry .. 22
 2.4.1 Major element analyses ... 22
 2.4.2 Trace and rare earth element (REE) analyses ... 22

CHAPTER 3 - BRAZILIAN ALKALINE MAGMATISM ... 23
3.1 Alto Paranaíba Alkaline Province ... 23
3.2 Coromandel-Três Ranchos Kimberlitic Field ... 25
 3.2.1 Três Ranchos IV kimberlite ... 25
 3.2.2 Limeira I kimberlite .. 28

CHAPTER 4 - PETROGRAPHY .. 29
 4.1 Três Ranchos IV ... 29
 4.2 Limeira I .. 33
 4.3 Perovskites from Três Ranchos IV and Limeira I 36

CHAPTER 5 - MINERAL CHEMISTRY AND GEOCHEMISTRY 42
 5.1 Olivine ... 42
 5.2 Monticellite ... 46
 5.3 Perovskite .. 46
 5.4 Spinel ... 48
 5.5 Ilmenite .. 48
 5.6 Clinopyroxene .. 53
 5.7 Garnet .. 53
 5.8 Bulk Rock Compositions .. 53
 5.8.1 Bulk rock composition and mineral chemistry 58

CHAPTER 6 - DISCUSSION ... 61
 6.1 Estimation of Intensive Parameters of Crystallization for the Alto Paranaiba
 Alkaline Province ... 61
 6.2 Thermobarometry Results for Limeira I and Três Ranchos IV kimberlites... 62
 6.3 Oxygen Fugacity (fO₂) .. 66
 6.3.1 Possible relations between oxygen fugacity and diamond instability...... 70

CHAPTER 7 - SUMMARY AND CONCLUSIONS 74

CHAPTER 8 - REFERENCES ... 76
LIST OF FIGURES

Figure 1 - Global distribution of diamond bearing Kimberlites after Kjarsgaard (2007)05

Figure 2 – Schematic model of CO₂ solubilities in silicic to carbonatitic melts (Brooker et al., 2011; Russell et al., 2012) ...12

Figure 3 – Mechanism model of kimberlite ascent..13

Figure 4 - Comparison of the three conventional kimberlite pipe models and the preexisting terminology associated with the in-filling deposits (modified from Field and Scott Smith, 1999)..16

Figure 5 - Components and textural aspects of coherent and fragmental volcanic and high-level intrusive rocks after Cas et al. (2008b) ..16

Figure 6 – Alkaline provinces in central-southeastern Brazilian platform and their relationships with major structural features after (Riccomini et al., 2005) ..24

Figure 7 – Geological Map of the Alto Paranaíba Alkaline Province after Barbosa et al. (2012)26

Figure 8 – Geological Map of the Coromandel-Três Ranchos kimberlitic field after Cabral Neto et al. (2017) ...27

Figure 9 – Hand sample aspects of Três Ranchos IV intrusion ..30

Figure 10 – Petrographic aspects of TRIV olivine crystals. (a) Olivine megacryst with alteration films of serpentine at the boundaries and fractures; (b) recrystallized olivine, preserving the shape of the crystal ...30

Figure 11 – Petrographic aspects of TRIV phlogopite crystals (a) pale brown phlogopite macrocryst; (b) phlogopite macrocryst exhibiting “kink-band” deformation and with a reaction rim30

Figure 12 – BSE images of TRIV spinel crystals. (a) spinel macrocryst with reaction rim of chromite; (b) spinel crystal filling the rims of an olivine macrocryst ..32

Figure 13 – Photomicrography of TRIV garnet crystal with a keliphitic rim32

Figure 14 – Photomicrography of TRIV xenoliths composed mainly by pyroxene and carbonates ...32
Figure 15 – Hand sample aspects of LM-I kimberlite (a) General view of a scanned thin section of inequigranular macrocrystic kimberlite texture; (b) autolith in hand sample34

Figure 16 – Petrographic aspects of LM-I olivine crystals. (a) olivine macrocryst displaying undulose extinction; (b) mega-, macro-, and microcrysts of olivine set in a fine-grained groundmass34

Figure 17 – Petrographic aspects of LM-I phlogopite crystals (a) phlogopite macrocrysts and phenocrysts; (b) phlogopite macrocryst with intensive alteration ...35

Figure 18 – BSE images of LM-I monticellite crystals: (a) subhedral to euhedral monticellite crystals; (b) monticellite crystals in the autolith as a “garland” around olivine macrocrysts35

Figure 19 - BSE images of LM-I pyroxene crystals (a) pyroxene xenocryst with serpentine rim; (b) monticellite crystals at the boundaries of a pyroxene xenocryst ..37

Figure 20 - BSE images of LM-I ilmenite crystals (a) ilmenite macrocryst with reaction rim; (b) ilmenite crystal as inclusion in olivine macrocryst ...37

Figure 21 – Petrographic aspects of Limeira I perovskite crystals – (a) photomicrography of zoned perovskite; (b) perovskite as reaction rim in ilmenite crystal ..37

Figure 22 – BSE images of TR-IV and LM-I perovskite assemblage ..38

Figure 23 - BSE images of TR-IV and LM-I perovskites petrographic aspects40

Figure 24 – BSE images of TR-IV and LM-I perovskite assemblage ..41

Figure 25 – Variation of trace element concentrations in Três Ranchos IV and Limeira I olivines43

Figure 26 – Binary plots of EPMA data by mega- and macrocryst olivines ...44

Figure 27 – Median values for minor and trace element of rim and core analyses in olivine from Três Ranchos IV and Limeira I with the mantle and melt trend from Bussweiler et al. (2015)45

Figure 28 – Olivine diagram showing predominant forsterite (Mg₂SiO₄) and calcic/monticellite (CaMgSiO₄) phases for both Três Ranchos IV and Limeira I kimberlites ..47

Figure 29 – Perovskite composition in Três Ranchos IV, Limeira I and Alto Paranaíba Alkaline Province (APAP) plotted in the tausonite – perovskite – loparite ternary system ..47
Figure 30 – Variation of major and trace element in perovskites from Três Ranchos IV and Limeira I.

Figure 31 – Trace-element distribution patterns for perovskites from TR-IV and LM-1

Figure 32 – Composition of Spinel specimens from the Três Ranchos IV kimberlite (this work, red circle - macrocrysts; red diamonds - microcrysts) and Alto Paranaiba Alkaline Province

Figure 33 – Cr/(Cr+Al) vs. Mg/(Mg+Fe²⁺) diagram for Três Ranchos IV (red - this work) spinels macro-, (circle) and microcrysts (diamond) and APAP (gray) data

Figure 34 – APAP (data from Guarino et al., 2013) and Limeira I ilmenite diagram, with recommended divisions by Wyatt et al. (2004)

Figure 35 – Dashed “parabolic” curves representing compositional trends of kimberlite ilmenite

Figure 36 – Clinopyroxenes xenocrysts and microphenocrysts of Limeira I (light blue) and Três Ranchos IV (coral), respectively, plotted in the Morimoto (1990) pyroxene classification diagram

Figure 37 – Três Ranchos IV rim (diamond) and core (circle) pyrope analyses plotted in the G-number nomenclature classification scheme (after Grütter et al., 2004)

Figure 38 – Major elements (mass%) vs. MgO (mass%) variation diagrams for Três Ranchos IV, Limeira I (analyzed here) and APIP data from literature

Figure 39 – Trace element vs. MgO (wt.%) variation diagrams for Limeira I, Três Ranchos IV and APAP rocks (after Guarino et al., 2013; and references therein)

Figure 40 – Primitive mantle-normalized (Sun and McDonough, 1989) element and chondrite-normalized rare earth element (Boynton, 1984) pattern for whole-rock data from TR-IV, LM-I, and literature APAP kimberlites

Figure 41 – Whole-rock, liquid and mineral phase major element composition: WR - whole rock; Ol - olivine; Pv - perovskite; Mtc - monticellite; Ilm - ilmenite; Spl - spinel; Liq – liquid

Figure 42 – Lithospheric geothermal evolution (with APAP samples from Read et al., 2004) P-T conditions and compositions of Limeira I clinopyroxenes with garnet and spinel- facies clinopyroxene samples from Read et al. (2004)
Figure 43 – Al versus V concentration of olivine rims and cores from Três Ranchos IV (TR-IV) and Limeira I (LM-I) ...65

Figure 44 – Limeira I ilmenite samples plotted in a FeO vs MgO discrimination diagram. Fields proposed by Gurney and Zweistra (1995) ..65

Figure 45 – Calculated oxygen fugacities (ΔNNO) for perovskite grains from different samples of Três Ranchos IV and Limeira I, with varying Fe/Nb ratios ..68

Figure 46 – XFe of monticellite and bulk composition and ΔNNO estimates for Limeira I kimberlite..71
LIST OF TABLES AND EQUATIONS

Table 1 - Summary of Group I and Group II mineralogical characteristics after Howarth et al. (2011)..07

Table 2 - Calibration routines and patterns for each electron microprobed element and mineral21

Table 3 - Mass spectrometer operating conditions coupled with the laser used for in-situ trace element analysis of olivine, perovskite, pyroxene, and garnet ...21

Equation 1 - C.I = [(SiO2 + Al2O3 + Na2O) / (MgO + 2K2O)] ..9

Equation 2 - ΔNNO = {[0.50 ± (0.021) * Nb−Fe (±0.031) +0.030 (±0.001)] / 0.004 (±0.0002)}66

Equation 3 - ΔNNO = {log [0.858 (±0.021) XFeLiq/XFeMte − 1] -0.139 (±0.022)} /0.193(±0.004)69

Equation 4 - CiWR = CiMht (1-Σ v) + Σ (CiMg * v) ...69

Equation 5 - CiMht = {(CiWR − CiPht * vPht − CiOlt * vOl) / (1 - vPht − vOl)} ...70
LIST OF APPENDICES

APPENDIX A – PETROGRAPHIC DESCRIPTIONS ...90

Table A01 - Petrographic descriptions of Três Ranchos IV and Limeira I samples.91

APPENDIX B – EPMA DATA ...96

Table B01 - Major element concentration of olivine from all samples. Structural formula calculated on the basis of 4 oxygens ...98
Table B02 - Major element concentration of monticellite from all samples. Structural formula calculated on the basis of 4 oxygens ...108
Table B03 - Major element compositions and endmembers for perovskite from all samples. Structural formula calculated on the basis of 3 oxygens ..114
Table B04 - Major element compositions for spinel from TRIV. Structural formula calculated on the basis of 32 oxygens ...139
Table B05 - Major element compositions of ilmenite from LMI all samples. Structural formula calculated on the basis of 6 oxygens ...145
Table B06 - Major element compositions of clinopyroxene from TRIV and LMI all samples. Structural formula calculated on the basis of 6 oxygens ..148
Table B07 - Major element compositions of garnet from TRIV all samples. Structural formula calculated on the basis of 24 oxygens ...151

APPENDIX C – LA-ICP-MS DATA ..154

Table C01 - Standards concentrations from LA-ICP-MS analyses155
Table C02 - Trace element concentration, limit of detection and uncertainties (2-sigma error) of olivine megacrysts from all samples ...177
Table C03 - Trace element concentration, limit of detection and uncertainties (2-sigma error) of perovskite from all samples ...185
Table C04 - Trace element concentration, limit of detection and uncertainties (2-sigma error) of clinopyroxene from all samples ...191
Table C05 - Trace element concentration, limit of detection and uncertainties (2-sigma error) of garnet from all samples. ...192

APPENDIX D – XRF AND ICP-MS DATA ..193

Table D01 - Whole rock major element concentration in mass.% for Três Ranchos IV and Limeira I kimberlite. ...194
Table D02 - Whole rock trace element concentration in ppm for Três Ranchos IV and Limeira I kimberlite. ...195

APPENDIX E – THERMOBAROMETRY DATA ..196

Table E01 - Thermobarometry data obtained in this work from Três Ranchos IV and Limeira I kimberlite and compiled from APAP. ...197
CHAPTER 1 - INTRODUCTION

1.1 Theme Presentation

Kimberlites are ultramafic rocks formed from low-grade partial melting of deep (>150 km) mantle portions under high volatile pressure (Mitchell, 1986). Kimberlites are of remarkable scientific and economic relevance for providing a better understanding about the genesis and evolution of primitive magmas, and for being able to carry diamonds as they are emplaced into the upper crust (Mitchell, 1995).

Kimberlites record the highest known oxygen fugacity values of terrestrial magmas, a phenomenon related to the presence of deep oxidized sources and to the interaction of ferrous iron and carbon-fluid equilibrium during ascent (Canil & Bellis, 2007). The \(f_{\text{O}_2} \) of this type of magma mainly reflects the conditions of their source regions (Carmichael, 1991). Thus, kimberlites provide environmental information from depths greater than 200 km, as evidenced by the xenocrysts they bear. Moreover, in some cases the oxygen fugacity of kimberlite magmas can partially control the quality and the presence of diamonds in these rocks (Canil and Fedortchouk, 2001; Fedortchouk et al., 2005).

It is also known that other intensive variables (e.g., P-T) may have an important role in the presence of diamonds in kimberlites. During the ascent of kimberlite magmas, several processes such as decompression (Carmichael and Ghiorso, 1986), cooling, degassing, assimilation of crustal and mantle minerals (Sparks, 2013), crystallization (Carmichael and Nicholls, 1967) and interaction with crustal fluids (Ogilvie-Harris et al., 2009) can cause significant variations in pressure, temperature, volatile content, and oxygen fugacity (Ballhaus and Frost, 1994). Such processes can lead these magmas to experiment changes in mineral assemblages, mineral and melt compositions and physical properties (Ogilvie-Harris et al., 2009).

This research aims to calculate intensive crystallization parameters (pressure, temperature, and \(f_{\text{O}_2} \)) in Cretaceous kimberlites of the Alto Paranaíba Alkaline Province (APAP) in eastern Brazil separated as either diamond-bearing or sterile occurrences. The APAP is one of the largest potassic-ultrapotassic provinces in the world (>15.000 km\(^3\); Gibson et al., 1995; Brod et al., 2000; Araujo et al., 2001; Comin-Chiaramonti and Gomes, 2005), consisting of a diversity of ultrapotassic rock types such as kimberlites, lamproites and large volumes of kamafugite fields, and several plutonic alkaline complexes with associated carbonatites (Brod et al., 2000). The rocks of the province have also been largely studied due to their economic
potential for industrial minerals and elements (e.g. diamonds from the Canastra 1 kimberlite, phosphorus, niobium, titanium and rare earth elements – REE) found as either residual phases or supergene enrichment over Catalão I e II, Salitre and Tapira carbonatite intrusions (Biondi, 2005; Cabral Neto et al., 2017; Comin-Chiaramonti et al., 2005; Guarino et al., 2013).

The ultrabasic potassic rocks generated by the Cretaceous alkaline magmatism that took place in the central and southeastern portions of the Brazilian platform are important in the understanding of the composition and evolution of the lithospheric and sublithospheric mantle in the region, from the study of xenoliths and xenocrysts samples from these magmas (e.g., Araujo et al., 2001; Bizzi et al., 1994; Brod et al., 2000; Carlson et al., 1996; Gonzaga and Tompkins, 1991; Junqueira-Brod et al., 2004, 2002; Leonardos and Meyer, 1991; Meyer et al., 1994; Meyer and Svisero, 1980). Many intrusions exhibit mineralogical and petrographic features of kimberlite or kamafugite but, due to new schemes and the reviewed classification and identification of different crystal populations (Araujo et al., 2001), a reevaluation of these rocks is necessary. Even considering the above-mentioned references, different levels of information correspond to well-known occurrences, especially in the Alto Paranaíba Alkaline Province, where mantle xenoliths and xenocrysts are abundant.

The Alto Paranaíba region is the second largest source of diamonds in Minas Gerais (Karfunkel et al., 2014; Svisero et al., 2017 and references therein). Among its hundreds of known kimberlite intrusions, 18 are estimated to be diamond-bearing occurrences. Examples are Alpha-9, Delta-18, Douradinho-11, Japecanga-6, Limpeza-5, Limpeza-19, Omega-1, Omega-9, Santa Clara-1, Três Ranchos-4, Três Ranchos-101, Três Ranchos-102, Três Ranchos-104 e Vargem-3 (Cabral Neto et al., 2017). Among the reasons that could explain the presence of diamonds only in a few bodies are: i) the depths at which magmas form; ii) variations in oxygen fugacity conditions, which would lead to greater unstabilization of the diamonds carried by these magmas; and (iii) local mantle heterogeneities that would allow sampling of certain minerals (such as diamond) possibly absent in other portions.

As detail study targets, we selected the Três Ranchos IV (TR-IV) intrusion, which is known to be a microdiamond-bearing intrusion, and the sterile Limeira I (LM-I) intrusion. In addition, contrasting the data acquired in this study with those from the literature, we can estimate the variation of the intensive parameters of crystallization for the whole Province. This research aims at understanding the behavior of such parameters in kimberlitic magmas and the reactions of these magmas with mantle xenocrysts (crystal-liquid reactions). Also, we discuss some possible implications associated with the diamond potential of these intrusions. In these
magnas, diamonds are considered xenocrysts that can be preserved in metastable conditions by the rapid ascent and crystallization of kimberlitic liquids (Mitchell, 1986). However, as demonstrated in experimental works, change of certain intensive parameters can lead to greater destabilization and reaction between xenocrysts and the magma (Canil and Bellis, 2007). This is a pioneering study of APAP rocks and the first approach to quantify especially the oxygen fugacity from cognate phases and to discuss the implications of the variation of this intensive parameter.

1.2 Overview of Kimberlites

Kimberlites are ultrabasic hybrid igneous rocks of potassic and ultra-potassic affinity (Mitchell, 1986). These lithotypes are extremely enriched in incompatible elements, occurring mainly in the interior of cratonic regions as undeformed dikes, sills, and pipes (Sparks et al. 2013). However, some aspects of kimberlite petrogenesis, such as the nature of the source, depth of melting, and their relationships with subcontinental-lithospheric mantle (SCLM) remain partially unsolved. This is mostly due to the presence of mantle/crustal xenocrysts and xenoliths that modify the primary composition of kimberlitic magmas, and also because of extensive post-emplacement alteration. (Berg and Allsopp, 1972; Mitchell, 1986; Paton et al., 2007; Kamenetsky et al., 2014). Knowledge of kimberlitic rocks has changed over the past decades. Several authors have attempted to define emplacement models based on petrological, mineralogical, textural and compositional studies (Arndt et al., 2010; Bussweiler et al., 2015; Cas et al., 2008a; Cas et al., 2008b; Clement and Reid, 1989; Jelsma et al., 2009; Kavanagh and Sparks, 2009; Mitchell, 1995; Russell et al., 2012; Scott Smith et al., 2013; Smith, 2017; Sparks et al., 2006; Wilson and Head, 2007). This topic presents a full overview of kimberlite evolution. Classifications, magma generation, and emplacement models are reviewed, and the evolution of their understanding by different authors is discussed.

The term "Kimberlite" was adopted as a reference to porphyritic mica-bearing peridotites first found in Kimberley, South Africa (Mitchell, 1986). Nonetheless, kimberlites from other regions have been more recently studied in an effort to improve the understanding of their genesis on a global scale. Detailed studies of the worldwide distribution of kimberlites demonstrated that they occur in cratonic regions within Archean basements (Dawson, 1989; Janse and Sheahan, 1995), but are also present in off-craton regions in all continents, in different emplacement settings. Diamondiferous members only occur in cratons, mobile belts or shields, underlain by thick subcontinental lithosphere mantle - SCLM (Jelsma et al., 2009). A
A compilation of worldwide occurrences of diamond-bearing kimberlites is presented in Figure 1.

Mineralogically, geochemically, isotopically and petrographically, kimberlites can be divided into two main groups, Group I and Group II (Mitchell, 1995; Le Maitre, 2002; Becker and Le Roex, 2006). The first classification of kimberlites recognized two distinct petrographic facies in occurrences in South Africa: the basaltic (Group I) and the micaceous (Group II) types (Wagner, 1914). This classification was first revised by Mitchell (1970), who excluded the term “basaltic kimberlite” on the basis that kimberlites neither contain feldspar nor bear any genetic or mineralogical resemblance with basalts. The current reclassification of kimberlites was proposed by Smith (1983) contrasting two specific patterns of initial Sr, Pr and Nd isotopic compositions, named Group I e Group II Kimberlite.

Group I kimberlites comprise ultrabasic, volatile-rich (CO₂) and potassic rocks whose frequent macrocrysts (0.5-10 mm) and megaerysts (around 1-20 cm) set in a fine-grained matrix constitute a distinctive inequigranular texture (Mitchell, 1995; Le Maitre, 2002; Becker and Le Roex, 2006). In contrast, Group II kimberlites show closer affinity to lamproites and are rarer than Group I ones. They consist in ultrapotassic, peralkaline, and volatile-rich (H₂O) rocks with phlogopite macro- and microphenocrysts, with groundmass micas that vary in composition from “tetraferriphlogopite” to phlogopite (Le Maitre, 2002). Nevertheless, due to the lack of further studies, the definition of Group II kimberlites is not well established yet. Rocks of this clan were also named “orangeites” by Mitchell (1995, 1986) as they might not be classified as kimberlites due to their unique character and occurrence in the Orange Free State, South Africa.

Group II kimberlites are thought to derive from the metasomatized lithospheric mantle, which is unique to each continent, while Group I ones, originated from the asthenospheric mantle, show similar isotopic signature in each occurrence (Mitchell, 2006). Likewise, another difference between the two groups is the composition of the xenoliths and xenocrysts that they include. Group I kimberlites usually contain a broad range of mantle xenoliths (peridotites, metasomatized and shared peridotites), eclogites, MARID (Mica-Amphibole-Rutile-Ilmenite-Diopside) rocks, wherlites and a suite of megacryst minerals. Group II kimberlites incorporate sheared peridotites and metasomatized xenoliths, with rare or absent megacrysts (Field et al., 2008).

In general, the classification used for deposits is not consistent with the volcanology and genetic terminology. Most of it is not descriptive and is difficult to understand, yet kimberlites are volcanic deposits (Cas et al., 2008c). Nowadays, efforts have been made toward a new
Figure 1 – Global distribution of diamond bearing kimberlites Kjarsgaard (2007).
approach to kimberlite classification (Cas et al., 2008b, 2008c). These terminologies will be described in the “Pipe formation and models” section.

1.2.1 Mineralogy

The broad mineralogical variation of kimberlites is caused by differentiation processes whereby minerals form from three distinct sources: (i) crustal/mantle xenocrysts and xenoliths (e.g. olivine, garnet, spinel, Cr-diopside, phlogopite, and diamond), that may be carried along with the arising magma; (ii) discrete nodule or megacryst suite; and (iii) phases crystallized from the kimberlite (Mitchell, 1986, Le Maitre, 2002). Although the term xenocrysts may offer an excellent understanding of mantle processes, most authors do not recommend it to be used in the definition of a kimberlite. The main mineral phases in kimberlitic rocks are olivine, phlogopite, monticellite, calcite, serpentine, ilmenite, diopside, spinels, perovskite, phlogopite, and apatite.

Olivine, volumetrically the most important constituent of kimberlites, is ubiquitous, deriving mainly from disaggregated mantle-derived peridotite or dunite (Clement, 1982; Mitchell, 1986; Arndt et al., 2010). Authors such as Mitchell (1970, 1986, 1995), and Clement et al. (1983) agree that olivine can occur as xenocrysts and ‘primary’ or phenocrysts. As the larger olivine crystals might have evolved from either xenocrysts (i.e. mantle-derived) or phenocrysts (i.e. melt-derived), Clement et al. (1984) proposed the use of the non-genetic term ‘macrocrysts’ for the larger crystal suite (Kjarsgaard et al., 2010; Bussweiler et al., 2015). ‘Macrocrysts’ is used to describe large, sub-angular to rounded, single crystals or crystal aggregates with habit, undulose extinction and recrystallized grains that suggest a different origin to the kimberlite magma (Arndt et al., 2010). Another descriptive term is ‘phenocrystic’ olivine, which refers to smaller grains identified as sub to the euhedral strain-free crystals with planar faces (Arndt et al., 2010). Crystallized olivine corresponds to around 5 vol.% of kimberlites and originates from heterogeneous crystallization (Brett et al., 2009). It occurs mainly as rims on xenocrystic derived olivine. Fine-grained euhedral olivine crystals occur as a minor, up to 0.5% component, being related to homogeneous crystallization (Brett et al., 2009).

In general, both Group I and Group II kimberlites exhibit large rounded-to-anhedral crystals (e.g., olivine, phlogopite) set in a fine-grained matrix composed of several phase minerals (Table 1). The macrocryst and megacryst (some of which possibly xenocrysts) assemblage of Group I kimberlites is composed by anhedral crystals of olivine, diopside,
<table>
<thead>
<tr>
<th></th>
<th>Group I</th>
<th>Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine</td>
<td>Abundant</td>
<td>Common in unevolved kimberlite</td>
</tr>
<tr>
<td>Macrocryst</td>
<td></td>
<td>Rare in evolved kimberlite</td>
</tr>
<tr>
<td>Phenocryst</td>
<td>Common-sub/euhedral</td>
<td>Common – minor – sub/euhedral</td>
</tr>
<tr>
<td>Mica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrocrysts</td>
<td>Minor phlogopite</td>
<td>Common phlogopite</td>
</tr>
<tr>
<td>Microphenocrysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Groundmass</td>
<td>Common phlogopite-kinoshitalite laths</td>
<td>Common phlogopite-tetraferriphlogopite (poikilitic plates)</td>
</tr>
<tr>
<td>Spinel</td>
<td>Abundant, large</td>
<td>Minor to rare.</td>
</tr>
<tr>
<td>Monticellite</td>
<td>Typically, Mg-chromite zoned to Mg-ulvöspinel</td>
<td>Mg-chromite rarely zoned to Ti-magnetite</td>
</tr>
<tr>
<td>Diopside</td>
<td>Primary diopside absent may occur in contaminated groundmass</td>
<td>Microphenocrysts. Common to rare</td>
</tr>
<tr>
<td>Perovskite</td>
<td>Common, rounded-euhedral</td>
<td>Rare, subhedral to poikilitic</td>
</tr>
<tr>
<td>Apatite</td>
<td>Common to rare, euhedral prisms or acicular radiating aggregates</td>
<td>Common euhedral prisms and poikilitic plates</td>
</tr>
<tr>
<td>Mellilite</td>
<td>Common - always pseudomorphed</td>
<td>Common — always pseudomorphed</td>
</tr>
<tr>
<td>Carbonates</td>
<td>Simple assemblages, common calcite, minor dolomite</td>
<td>Common calcite, common Sr–Mn–Fe dolomites, minor wetherite, ancylite, and strontianite</td>
</tr>
<tr>
<td>Serpentine</td>
<td>Abundant secondary and primary in segregations</td>
<td>Common secondary</td>
</tr>
<tr>
<td>Sanidine</td>
<td>Absent</td>
<td>Groundmass in evolved kimberlite</td>
</tr>
<tr>
<td>K-richsterite</td>
<td></td>
<td>Groundmass in evolved kimberlite</td>
</tr>
<tr>
<td>Aegirine</td>
<td>Absent</td>
<td>Groundmass in evolved kimberlite</td>
</tr>
<tr>
<td>Leucite</td>
<td>Absent</td>
<td>Groundmass in evolved kimberlite</td>
</tr>
<tr>
<td>K–Ba hollandite</td>
<td></td>
<td>Common</td>
</tr>
<tr>
<td>Mn ilmenite</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Zr-silicates</td>
<td>Very rare</td>
<td>Common</td>
</tr>
<tr>
<td>Barite</td>
<td>Rare</td>
<td>Common</td>
</tr>
<tr>
<td>Megacrysts</td>
<td>Characteristic</td>
<td>Rare to absent</td>
</tr>
</tbody>
</table>
magnesian ilmenite, phlogopite, pyrope, Ti-poor chromite and enstatite, that is normally believed to have disaggregated from mantle-derived eclogite, lherzolite, harzburgite or metasomatized peridotite xenoliths (Table 1). Most diamonds are also found in this suite, but less commonly. Olivine macrocrysts are present in all but fractionated kimberlites (Mitchell, 1995; Le Maitre, 2002). Phases like magnesian ilmenite, diopside, olivine, Ti-pyrope, relatively poor Cr-enstatite (<2% Cr2O3) are classified as megacrysts. The fine-grained matrix contains primary euhedral-to-subhedral olivine, together with one or more of following phases: monticellite, phlogopite, perovskite, spinel, carbonate, apatite, and serpentine. Late-stage poikilitic micas of the barian phlogopite kinoshitalite series is also common in this clan of kimberlites. Serpentine and calcite are the most abundant alteration minerals, replacing earlier-formed olivine, monticellite, apatite and phlogopite (Mitchell, 1995; Le Maitre, 2002).

The primary mineralogical difference between Group I and Group II kimberlites is the amount of phlogopite, which is more abundant in Group II ones. This phase occurs as macrocrysts, microphenocrysts, and groundmass, composing around 50% of the assemblage (Mitchell, 1995). The chemical composition of the phlogopites is also distinctive between both types. Group II phlogopite is lower in Al2O3 (4-11 mass%) and higher in FeO (10-15 mass%) than Group I phlogopite (Mitchell, 1995).

1.2.2 Geochemistry

Kimberlites are MgO (20-38%) and CaO (5-14%) rich, Al2O3 (<3%) and Na2O (<0.3%) poor ultrabasic rocks (SiO2 <35%) with high LOI and mg# and potassic to ultrapotassic in character. Their K2O ratio can reach about 7% in Group II kimberlites due to the increase in the amount of phlogopite (Clement, 1982; Mitchell, 1986, 1995). In general, Group I kimberlites also contain higher TiO2, CaO, and CO2, and lower SiO2 and K2O contents than Group II ones (Figure 2). Kimberlites also show lower Al2O3 and Na2O amounts than other basic and alkaline rocks (Becker and Le Roex, 2006).

Because of their hybrid nature, the geochemistry of kimberlites is complex. Their primary character is often modified by secondary post-emplacement alteration and by the presence of upper mantle and/or crustal xenoliths (Mitchell, 1986; Le Roex et al., 2003). Thus, whole rock geochemistry results do not represent the rock’s primary composition, but that of a mixture with xenoliths (olivine) and alteration phases (serpentine, carbonate). Clement, (1982) proposed a contamination index (C.I) to estimate these combined effects in kimberlites. C.I. is the contamination index expressed by (Equation 1).
It is known that crustal contamination raises SiO$_2$, Al$_2$O$_3$ and Na$_2$O contents relative to MgO, and that emplacement alteration extracts MgO from the rock to form clay deposits and hydrous phases with SiO$_2$ and Al$_2$O$_3$ (Mitchell, 1986). Likewise, higher contamination ratios lead to a much larger SiO$_2$ + Al$_2$O$_3$ + Na$_2$O than MgO + K$_2$O, resulting in higher C.I. When C.I. is close to 1, the sample is completely devoid of crustal contamination or alteration (Clement, 1982). Kjarsgaard et al. (2009) also suggested a C.I. = 1.5 as a contamination/alteration brink: samples with C.I.>1.5 will have enough crustal fragments and will have undergone substantial alteration, which compromises the bulk rock geochemical signature (Kjarsgaard et al., 2009).

Both Group I and Group II kimberlites are characterized by extreme incompatible element and light rare element (LREE) enrichment, moderate to heavy rare earth element (HREE) values, which indicates very low degree of partial melting of source, and simple linear (normalized) REE distribution and depletion (Mitchell, 1986; Le Roex et al., 2003; Davies et al., 2004; Harris et al., 2004; Chalapathi Rao et al., 2005; Becker and Le Roex, 2006; Coe et al., 2008; Felgate, 2014). Group II kimberlites are enriched in Pb, Rb, Ba, and LREE and show Cr and Nb depletion compared with Group I ones. As for Group I kimberlite, they are characterized by lower Ba/Nb (<12), Th/Nb (<1.1) and higher Ce/Pb (>22) ratios than the former (Felgate, 2014). The ratios of some trace elements in Group I (e.g. Ce/Pb, Nb/U, La/Nb, Ba/Nb, Th/Nb) indicates affinity to ocean island basalts (OIB). The ratios of some trace elements of Group I kimberlites (e.g. Ce/Pb, Nb/U, La/Nb, Ba/Nb, Th/Nb) indicates affinity to ocean island basalts (OIB). Based on these ratios, Smith (1983) proposed that these rocks and OIB's share the same asthenospheric source in their genesis. Group I kimberlites also show refractory Mg numbers and Ni content akin to SCLM ones, which makes it difficult to attribute them to a simple convecting asthenospheric source (Becker and Le Roex, 2006).

The distinction between both groups of kimberlites in terms of isotope geochemistry is very difficult (Smith, 1983). Sr and Nd isotopic signature of Group I Kimberlites are sometimes slightly depleted, but very similar to the bulk earth, being the most indicative for isotopic studies in both groups (Sarkar, 2011). Group I kimberlites are less radiogenic in Sr (~0.703) and more radiogenic in Nd (~0.51260) as compared to the current Bulk Earth composition, showing OIB affinity. Group II kimberlites, on the other hand, are highly radiogenic in Sr (~0.707-0.712) and...
Nd (~0.5124-0.5120) compared to the Bulk Earth composition, being associated with SCLM sources (Smith, 1983; Becker and Le Roex, 2006; Felgate, 2014).

Hf isotope geochemistry is an alternative method for differentiating between Group I and Group II kimberlites. Group I εHf1 values vary from 5 to -10. In εHf1 vs εNd1 diagrams, Group I kimberlites plot well below the mantle array. In Group II kimberlites, εHf1 values range from -5 to -25, falling along the mantle array as their εNd1 values are more negative (-6 to -12) compared with those of Group I kimberlites. Negative Hf isotope signatures are evidence for sublithospheric kimberlitic source. Along with its megacrysts, the isotopic characteristics of Group I kimberlites require a source with low time-integrated Lu/Hf relative to Sm/Nd, which suggests an ancient source component (>1Ga) represented by deeply subducted oceanic basalts that became incorporated into the convecting mantle source region (Nowell et al., 2004).

On-craton and off-craton tectonic settings exert ambiguous control over the geochemistry of kimberlites. Group II kimberlites are characterized by small systematic differences in major and trace element and Nd-Sr isotope ratios between on-craton and off-craton settings, which suggests that both sources share similar evolutionary trends. Off-craton Group I kimberlites, on the other hand, show lower SiO$_2$ and MgO, but higher FeO, TiO$_2$, CaO, and CO$_2$ values than on-craton occurrences, possibly implying a derivation from more fertile mantle sources (Becker and Le Roex, 2006). Also, authors of experimental studies have proposed that partial melting at lower pressure decreases SiO$_2$ and MgO while increasing FeO, Al$_2$O$_3$, CaO and CO$_2$ contents (Herzberg, 1992; Dalton and Presnall, 1998; Gudfinnsson and Presnall, 2005; Becker and Le Roex, 2006). Such changes in major element composition are supported by the absence of diamonds in off-craton Group I kimberlites (Clifford, 1966; Becker and Le Roex, 2006), even when both types derive from within the garnet stability field, given similar fractionated HREE patterns.

1.2.3 Magma generation

The mantle conditions under which kimberlites are generated can be determined from experimental studies, geochemistry, xenolith, and xenocryst content, and also from the characterization of mineral inclusions. There are, however, some limitations. Kimberlitic magmas are most likely to undergo compositional changes as they arise, erupt or intrude the upper crust, being also commonly altered in near-surface (Sparks, 2013). Nevertheless, despite these ambiguities, a few concepts are well-established. Given their silica depletion and high incompatible trace elements contents, kimberlites may derive from very low-grade mantle
melts. These rocks form at depths that are great enough (~150 km) for diamond stability conditions to be present, at temperatures higher than the volatile-enriched mantle solidus i.e., 1.350 to 1.450°C at the base of the lithosphere (Priestley et al., 2006; Sparks, 2013).

High pressures and temperatures in simplified mantle systems restrict kimberlite petrogenesis (Gudfinnsson and Presnall, 2005; Dasgupta and Hirschmann, 2006; Sparks, 2013). At high pressures, carbonated mantle (CMAS-CO₂, Carbonatitic Melts Along with Solidus) initially forms carbonatites as very low-degree melts at the solidus curve (Figure 2). Temperature increases while the accumulation of magma remains very low. From 200°C to 300°C above the solidus curve, magmas of kimberlitic affinity are generated, with the presence of a significant amount of silica (Sparks, 2013). However, kimberlitic magmas require generation temperatures of 1,500°C or higher in simplified experimental systems (Figure 2). Other components added to the experimental systems, such as Fe, alkalis, and water, can reduce the solidus to at least 100°C below the temperatures at which kimberlitic melts are generated. Such conditions are more consistent with temperatures estimated for the base of continental lithosphere (Sparks, 2013). An unresolved issue is that transitional kimberlitic melts with silica contents between those of carbonatites and basalts originate in narrow temperature ranges during the progressive partial melting of similar CMAS mantles. Other components, such as water, K and P may be responsible for the temperature ranges in which kimberlitic melts appear to form (Sparks, 2013).

Russell et al. (2012) suggested that kimberlites are generated by orthopyroxene assimilation during the ascent of the carbonate melts that represent their primary sources (Figure 3). Exsolution of CO₂ “depletes” the magma as it becomes enriched in silica and magnesium. This model explains the common absence of orthopyroxene xenocrysts in kimberlites. Olivine xenocrysts are typically found in kimberlites, being usually interpreted as originated from disaggregation of depleted mantle xenocrysts (harzburgites). Orthopyroxene crystals exhibiting dissolution textures related to reaction with carbonatitic kimberlites may occur (White et al., 2012; Sparks, 2013). Alternative reasons for the absence of orthopyroxene in kimberlites are that olivine xenocrysts originate from rupture of dunite rather than harzburgitic xenoliths and that orthopyroxene is unstable in water-rich kimberlitic melts (Mitchell, 2008; Arndt et al., 2010a; Sparks, 2013).

Carbonatite melts are common products of partial melting in carbonate-rich sources at pressures higher than 2.5 GPa (Russell et al., 2012). A few experimental studies have shown
Figure 2 - Schematic model of CO2 solubilities in silicic to carbonatitic melts (Brooker et al., 2011; Russell et al., 2012): (a) CO2 solubility limits for silica-saturated and silica-undersaturated melts and hypothetical solubilities of carbonatite and kimberlite melts; (b) Pressure and composition dependence of CO2 solubility across the carbonate-silicate transition. The effect of pressure (numbers on lines, MPa) on CO2 solubility is limited compared with the effect of composition (SiO2 and Al2O3). (c) Schematic model (Russell et al. 2012) of assimilation-induced fluid exsolution of carbonatite and proto-kimberlite melts. Orthopyroxene (Opx) assimilation drives non-silicate melts (left-hand side) to more silicic compositions (right-hand side), after Sparks (2013).
Figure 3 - Mechanism model of kimberlite ascent, showing: (a) Diverse ascent paths through cratonic mantle lithosphere (CML) shown as dashed arrows. Also shown is the line below which diamond is stable relative to graphite; (b) Melts produced by melting of carbonated peridotite transit mantle lithosphere as dykes by crack-tip propagation, liberating dense (sinking) xenoliths to the CO$_2$-rich silica undersaturated melt, causing effervescence of buoyant (rising) CO$_2$-fluid; (c) Xenoliths disaggregate and release individual mineral grains (for example, ol) to carbonatitic melt; opx grains are assimilated, preferentially promoting volatile exsolution. Deep-seated volatile production supports continued, crack-propagation-limited magma ascent; (d) Chemical evolution of melt during ascent. After Russel et al. (2012).
that the carbonated peridotite solidus melts at 2.5 GPa, and that it will be enriched in CO$_2$ but poor in SiO$_2$ as carbonate is stable in mantle assemblages. Such melts, that have been experimentally produced, contain over 40% dissolved CO$_2$ and are able to accommodate a large amount of H$_2$O (Russell et al., 2012). Likewise, Russell et al. (2012), suggested that the onset of kimberlites is marked by the asthenospheric production of such melts, (Figure 2a, b; (Canil and Bellis, 2008). Figure 3 presents a mechanistic ascent model that considers a carbonate-rich-melt and the diversity of kimberlite compositions as the mechanical mixing of mantle olivine (70–80%) (Patterson et al., 2009; Russell et al., 2012). Modeling of the ascending melt chemical evolution is presented in Figure 3, it was interpreted that the amount of orthopyroxene assimilated is linearly related to the distance traveled in the mantle lithosphere, with assimilation and decarbonization essentially instantaneous (Russell et al., 2012). The interpretation of this ascension model is that there is a linear correlation between the amount of orthopyroxene assimilated and the upward displacement of the magma in the mantle lithosphere.

Recent advances in the study of kimberlite (Kavanagh and Sparks, 2009; Lensky et al., 2006; Russell et al., 2012; Sparks et al., 2009, 2007; Wilson and Head, 2007) have focused on the variety of the magma properties and the influence of volatile exsolution on magma ascent. Kimberlites are clustered in space and time (Field et al., 2008), which configures a set of clusters controlled by major structural features (e.g., southern African kimberlites have Jurassic and Cretaceous ages). Such features are unleashed by tectonic triggering mechanisms (Sparks, 2013). Two different approaches explain the spatial/temporal kimberlite clustering: a) kimberlites are generated in pulses as a response to mantle dynamics, the ascent of a deep mantle plume; and/or b) they are generated continuously, and special conditions such as craton deformation provide the trigger for the ascent. Torsvik et al. (2010) proposed that kimberlites are primarily related to old continental craton areas that overlie stable mantle plume sources at the core-mantle boundary (Sparks, 2013).

1.2.4 Pipe formation and models

Kimberlite intrusions are shaped and structurally controlled by the competency of the country rock. Because of their morphological appearance, they are generally referred to as pipes (Mitchell, 1986). The different zones that form a kimberlite pipe vary considerably in texture and mineralogy. Clement (1982) and Clement and Reid (1989) provided the basis for a first textural classification of kimberlites. They proposed that a typical kimberlitic pipe is composed
of three distinct zones: crater, diatreme (or pipe), and root. Textural and compositional characteristics specific to each zone separate a given intrusion into crater-facies, diatreme-facies, and hypabyssal-facies kimberlite, respectively. A simple, non-genetic terminology was suggested by Kjarsgaard (2007): volcanoclastic (VK, fragmental rock) kimberlites and hypabyssal (HK, non-fragmental rock) kimberlites (Figure 4). Volcanoclastic kimberlitic rocks, in turn, can be subdivided into pyroclastic kimberlites (PK), resedimented volcanoclastic kimberlites (RVK), and massive volcanoclastic kimberlites (MVK) (Figure 5).

Coherent kimberlites can be either extrusive or intrusive, and their differentiation requires knowledge of their context. Extrusive examples include kimberlite lavas, which are far less abundant than their intrusive counterparts. Intrusive coherent kimberlites are usually restricted to root zones and diatreme facies, being represented by uniform homogeneous rocks, non-fragmental textures. They encompass hypabyssal (Clement and Reid, 1989) and magmatic kimberlites (Sparks et al., 2006). These rocks result of direct crystallization from kimberlitic magmas prior to degassing and fluidization (Clement and Reid, 1989), being well qualified to determine primary kimberlite compositions. Compelling evidence indicates that many examples intrusive coherent kimberlites are pyroclastic in origin and may have formed via welding processes (Brown et al., 2008b, 2008a; Crawford et al., 2009; Buse et al., 2011; Hayman and Cas, 2011; van Straaten et al., 2011).

Volcanoclastic kimberlites subdivide into pyroclastic kimberlites (PK), resedimented volcanoclastic kimberlites (RVK) and epiclastic kimberlites (EVK). These forms are restricted to crater facies and upper diatreme facies of pipes (Cas et al., 2008b; Felgate, 2014; Sparks et al., 2006). Pyroclastic kimberlites originate from explosive volcanic eruptions and are deposited by primary pyroclastic processes, displaying no indication of resedimentation. Generally deposited as tuff rings, they are very unconsolidated and limited in terms of preservation potential (Sparks et al., 2006). Resedimented volcanoclastic kimberlites contain eroded/abraded pyroclastic materials mixed with an-kimberlitic materials eroded from their country rocks. Such kimberlites are located in the peripheral portions of pipes within the crater facies. Epiclastic volcanic kimberlites are the final kimberlite type and the rarest. This type is commonly ascribed to kimberlitic materials (either volcanic or coherent) affected by surface processes, typically formed at the top of pipes within crater facies (Cas et al., 2008a; Felgate, 2014; Sparks et al., 2006).

The formation of a kimberlite pipe is destructive and results in a cavity that connects the upper crust and the Earth’s surface. Such conducts usually consist of downward-tapering
Figure 4 - Comparison of the three conventional kimberlite pipe models and the preexisting terminology associated with the in-filling deposits (modified from Field and Scott Smith, 1999): (a) Narrow, tapering, steep-sided southern African kimberlite model (Class 1). (b) Open bowl-shaped Canadian Prairies kimberlite body (Class 2). (c) Dual tapering to flaring Lac de Gras type kimberlite pipe model (Class 3). After Cas et al. (2008a).

Figure 5 - Components and textural aspects of coherent and fragmental volcanic and high-level intrusive rocks after Cas et al. (2008b).
structures that reach hundreds to thousands square meters in cross sections (Field et al. 2008). Sparks et al. (2006) proposed that kimberlites have an early waxing stage of eruption and that as the erupting magma is initially overpressured at Earth’s surface, the cratering explodes. As the kimberlite pipe widens and deepens, the supply rate of explosively erupting magma remains high enough to any rock fragments that reach it from wall rock collapse to be removed by the high-speed magma flows (Sparks, 2013). Therefore, the space that corresponds to the pipe is mostly created before rock fragments are removed from it. Nevertheless, pipe enlargement and infilling may be contemporaneous during the eruptive magma activity (Sparks, 2013).

1.2.5 Volatile contents

Kimberlite magmas are usually assumed to be volatile-rich (Sparks, 2013), and some evidence may help constrain their actual volatile composition. Methods used to define the primary volatile composition of other magmas (e.g., directly from gas emissions from active volcanoes, melt inclusions, mineral assemblages) cannot be applied to kimberlites (Sparks, 2013). Direct evidence for CO₂ comes from the occurrence of igneous carbonate in some kimberlite intrusions and rare lavas, and from phlogopite indicating the presence of water (literature reviewed in Sparks et al. 2006). Kimberlites commonly contain high water and CO₂ contents, but these cannot be taken as primary magmatic volatile contents as they may be of secondary origin (Sparks, 2013). Experimental studies of possible kimberlite compositions at a variety of water, CO₂, and mixed water-CO₂ mixtures at moderate pressures give poor results in terms of reproducing primary mineral assemblages in order to help constrain volatile contents (Sparks et al., 2009; Brooker et al., 2011; Sparks, 2013).

1.3 Research Aims

The main question of this study regards the influence that intensive parameters such as pressure, temperature, and oxygen fugacity (T, P, and O₂) might have on the greater instability of carried (or possibly carried) diamond xenocrysts when sterile and diamond-bearing kimberlite magmas from Alto Paranaiba Alkaline Province are compared with one other. A few specific goals established to support this discussion are: (1) the petrographical characterization of Três Ranchos IV (diamond-bearing) and Limeira I (sterile) kimberlites by focusing on mineral instability textures suggestive of intensive parameters changes during crystallization; (2) the characterization of major, minor and trace elements of TR-IV and LM-I kimberlites (bulk compositions) and their minerals in terms of compositional variation; (3) the
determination of temperature, pressure (through xenocrysts assemblage) and oxygen fugacity (through cognate assemblage) conditions of the kimberlite magmas based on the chemical composition of the main mineral phases of both intrusions; (4) calculation of the same intensive parameters for other intrusions of the province from available chemical data; (5) comparison of textures and reactions with new and available data in order to interpret the petrogenesis of the kimberlite magmas, by comparing them in terms of diamond preservation.

1.4 Study Area Location and Access

Três Ranchos IV and Limeira I intrusions are located in Goiás (GO) and Minas Gerais (MG) states in southeastern Brazil, respectively. TR-IV kimberlite occurs at the former Alagoinha farm, 8 km from Três Ranchos City (GO). From São Paulo (SP) Três Ranchos is mainly accessed through Bandeirantes (SP-348), BR-050 or Gustavo Capanema (GO-030) highways and secondary roads that lead to the intrusion (UTM: W 201787/ S 7972758). LM-I intrusion is located 28 km north of Monte Carmelo City MG. From São Paulo, Monte Carmelo is reached through Bandeirantes (SP-348), BR-050 and MG-190 highways and secondary roads that led to the kimberlite (UTM: W 239626/ S 7946091).
CHAPTER 7 - SUMMARY AND CONCLUSIONS

In the Alto Paranaiba Alkaline Province, especially regarding relations between P-T-fO₂ conditions, the main mineral phases chemistry and bulk rock geochemistry allowed for the differentiation of two kimberlite intrusions, one sterile and the other a diamond-bearing one (Limeira I and Três Ranchos IV, respectively). Several geothermobarometers were used in the calculation of these intensive parameters of crystallization, resulting in temperatures ranging from 718 to 985°C for Limeira I and from 975 to 1270°C for Três Ranchos IV. Pressure ranges in intervals of 34 to 47 Kbar and 18 to 34 Kbar for the kimberlites, respectively. In Três Ranchos IV, fO₂ constrained by the perovskite oxygen barometry ranges from NNO-7 to NN+4, while in Limeira I it ranges from NNO+6 to NNO-4. The results are compatible with those available of APAP in literature.

The Três Ranchos IV and Limeira I are coherent macrocrystic kimberlites, with an inequigranular texture formed by partially-to-fully altered olivine, phlogopite megacrysts up to 1 cm wide, macrocrysts (0.5-10 mm-sized), and crustal xenoliths set in a very fine groundmass composed mainly of perovskite, olivine, phlogopite, spinel, serpentine and carbonates, and also apatite, ilmenite and monticellite in LM-I. Garnet macrocrysts and centimetric pyroxene xenocrysts are also bearing phases in Três Ranchos IV and Limeira I, respectively.

Both Limeira I and Três Ranchos IV kimberlites are ultrabasic rocks that are MgO-rich, high Mg#, CaO-rich, Al₂O₃-poor, Na₂O-poor and potassic to ultrapotassic in composition (K₂O= 0.9–1.6 mass% and 0.7-1.2 mass% respectively). The high LOI is largely due to the abundant presence of volatile-bearing phases such as carbonates, serpentine, and phlogopite. All major element values are supported by literature data. The relatively low K₂O is a typical characteristic of uncontaminated kimberlites worldwide. The kimberlites are strongly enriched in incompatible elements.

The olivine Mg# values, which range from 87 to 92 mol.% in Três Ranchos IV and from 83 to 92 mol.% in Limeira I, are consistent with the olivine compositions from APAP kimberlites (82-92 mol.%). Olivine cores of Limeira I present higher NiO, CaO and lower Cr₂O₃ contents than those of Três Ranchos IV. Most cores fall within the “mantle trend”. Although rim compositions are representative from “melt trends”, this trend is only identified in a few olivines of TR-IV and LM-I, that show extensive serpentinization around crystals, with rims that may not be preserved. The “melt trend” shows enrichment in Zr, Ga, Nb, Sc, V, P, Al, Ti, Cr, Ca, and Mn, whereas enrichment in Zn, Co, Ni and possibly Na in the “mantle trend” is
observed in both kimberlites. In Limeira I, monticellite Mg# ranges from 72 to 93.8 mol.%, while Ca/(Ca+Mg) ratios range between 0.35-0.58 mol.%.

Perovskite compositions in both Limeira I and Três Ranchos IV remain close to ideal CaTiO$_3$, yet a variation in endmember compositions from cores is noticeable (TR-IV: average Lop$_{16}$ and Prv$_{78}$; LM-I: average Lop$_{5}$ and Prv$_{91}$) towards the rims (TR-IV: average Lop$_{13}$ and Prv$_{81}$; LM-I: average Lop$_{4}$ and Prv$_{92}$). In TR-IV and LM-I, perovskite compositions are characterized by relatively high concentrations of Sr, Nb, Zr, and REE and a strong positive correlation between Nb and Ta; Nb and Zr; Mn and Fe. The primitive mantle-normalized REE patterns of the perovskite from both kimberlites have smooth, highly fractionated trends, with extreme LREE enrichment and no Eu anomalies.

The macrocrystic spinels of the Três Ranchos IV kimberlite are Al-rich, whereas groundmass crystals range from magnesiochromite to chromite. The ilmenite from Limeira I is characterized by its high MgO content at a given TiO$_2$, with a large variation in Cr$_2$O$_3$. Garnet is present only in Três Ranchos IV, identified as pyrope (62 to 73 mol.%) with Mg# ranging from 72 to 79 mol.%. The crystals correspond to lherzolitic (G9) and pyroxenitic (G4, G5) garnets according to the Cr$_2$O$_3$ and CaO contents. Clinopyroxene occurs as xenocrysts in Limeira I and as microphenocrysts in Três Ranchos IV, and are identified as diopside with Mg# ranging from 85 to 91 and from 87 to 92, respectively. The xenocrystic clinopyroxene from Limeira I presents higher MgO and FeO concentrations.

The Limeira I clinopyroxene xenocrysts analyzed in this work are identified as garnet-facies ones (Mg-rich chromium diopsides with moderate Al and low tschermacks contents), which can be interpreted as mantle xenocrysts derived from disaggregated garnet-facies lherzolite xenoliths.

This indicates that the magma that originated the intrusion, which is known to be sterile, must at least have crossed the diamond stability field. It is possible that the variation in oxygen fugacity observed in Limeira I and Três Ranchos IV kimberlites may have reflected in the instability of diamonds in these magmas since LM-I presents slightly higher oxidation conditions, thus not being diamondiferous. However, diamond oxidation during groundmass crystallization may have been too slow due to the lower T and the short time for kimberlite emplacement to have notable effects on diamond preservation.
CHAPTER 8 - REFERENCES

Almeida, V.V. de, 2009, Mineralogia e Petrologia de Xenólitos Mantélicos das Regiões de Ubatuba (SP) e Monte Carmelo (MG): Evidências de Fusão Parcial e Metassomatismo no Manto Superior do Sudeste do Brasil: , p. 112.

Brazilian Platform, São Paulo, Edusp/Fapesp, p. 651–682.

Felgate, M.R., 2014, Improved Geochemical and Geochronological Constraints on Magmatism in Rondonia and The Alto Paranaiba Igneous Province: The University of Melbourne, 275

Gudfinnsson, G.H., and Presnall, D.C., 2005, Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa: Journal of Petrology, v. 46, p. 1645–1659,

Mori, P.E., Shane, R., Correia, C.T., and Haukka, M., 1999, Development of a fused glass disc XRF Facility and comparison with the pressed powder pellet technique at Instituto de:

Nannini, F., 2011b, Petrografia e química mineral de xenólitos mantélicos de região de Indaiá, Monte Carmelo, MG.: Universidade de São Paulo.

Sarkar, C., 2011, Trace Element and Isotope Geochemistry of Perovskite From Kimberlites of Southern: University of Bristol, 360 p.

van Straaten, B.I., Kopylova, M.G., Russell, J.K., and Smith, B.H.S., 2011, A rare occurrence of a crater-filling clastogenic extrusive coherent kimberlite, Victor Northwest (Ontario,
Zhang, Z., 2016, Diamond resorption morphology as a fluid proxy in diamond- bearing environments: constraints from empirical and experimental studies: Dalhousie University.
Zhang, Z., Fedortchouk, Y., and Hanley, J.J., 2015, Evolution of diamond resorption in a silicic aqueous fluid at 1 – 3 GPa: Application to kimberlite emplacement and mantle