• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2007.tde-01082007-115014
Document
Author
Full name
Debora Cristina Brandt Costa
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2007
Supervisor
Committee
Lourenco, Mary Lilian (President)
Hallack, André Arbex
Rodrigues, Leonardo Pellegrini
Title in Portuguese
Operadores hipercíclicos em espaços vetoriais topológicos
Keywords in Portuguese
Espaços Vetoriais Topológicos
hiperciclicidade.
Operadores Hipercíclicos
Teoria de Operadores
Abstract in Portuguese
Dado E um espaço vetorial topológico e T um operador linear contínuo em E, diremos que T é hipercíclico se, para algum elemento x pertencente a E, a órbita de x sob T, Orb(x,T)={x, Tx, T^2 x,...}, for densa em E. Nosso objetivo será apresentar alguns resultados sobre hiperciclicidade e observar como alguns espaços comportam-se diante dessa classe de operadores. \\
Title in English
Hypercyclic operators on topological vector spaces
Keywords in English
Hypercyclic Operators
Hypercyclicity
Operator Theory
Topological Vector Spaces
Abstract in English
Let E be a topological vector space and T a continuous linear operator on E. We say that T is hypercyclic if, for some x in E, the orbit of x on T, Orb(x,T)={x, Tx, T^2 x,...}, is dense in E. Our aim will be to study some results about hypercyclicity and to observe how some spaces behave regarding this class of operators.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese.pdf (453.63 Kbytes)
Publishing Date
2007-10-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.