• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Dimi Rocha Rangel
Knowledge Area
Date of Defense
São Paulo, 2018
Mariano, Hugo Luiz (President)
Brunner, Andreas Bernhard Michael
Freire, Rodrigo de Alvarenga
Luciano, Odilon Otavio
Venturi, Giorgio
Title in English
An algebraic framework to a theory of sets based on the surreal numbers
Keywords in English
Algebraic set theory
Surreal numbers
Abstract in English
The notion of surreal number was introduced by J.H. Conway in the mid 1970's: the surreal numbers constitute a linearly ordered (proper) class No containing the class of all ordinal numbers (On) that, working within the background set theory NBG, can be defined by a recursion on the class On. Since then, have appeared many constructions of this class and was isolated a full axiomatization of this notion that been subject of interest due to large number of interesting properties they have, including model-theoretic ones. Such constructions suggests strong connections between the class No of surreal numbers and the classes of all sets and all ordinal numbers. In an attempt to codify the universe of sets directly within the surreal number class, we have founded some clues that suggest that this class is not suitable for this purpose. The present work is an attempt to obtain an "algebraic (set) theory for surreal numbers" along the lines of the Algebraic Set Theory - a categorial set theory introduced in the 1990's: to establish abstract and general links between the class of all surreal numbers and a universe of "surreal sets" similar to the relations between the class of all ordinals (On) and the class of all sets (V), that also respects and expands the links between the linearly ordered class of all ordinals and of all surreal numbers. We have introduced the notion of (partial) surreal algebra (SUR-algebra) and we explore some of its category theoretic properties, including (relatively) free SUR-algebras (SA, ST). We have established links, in both directions, between SUR-algebras and ZF-algebras (the keystone of Algebraic Set Theory). We develop the first steps of a certain kind of set theory based (or ranked) on surreal numbers, that expands the relation between V and On.
Title in Portuguese
Um referencial algébrico para uma teoria de conjuntos baseada nos números surreais
Keywords in Portuguese
Números surreais
Teoria algébrica dos conjuntos
Abstract in Portuguese
A noção de número surreal foi introduzida por J.H. Conway em meados da década de 1970: os números surreais constituem uma classe (própria) linearmente ordenada No contendo a classe de todos os números ordinais (On) e que, trabalhando dentro da base conjuntista NBG, pode ser definida por uma recursão na classe On. Desde então, apareceram muitas construções desta classe e foi isolada uma axiomatização completa desta noção que tem sido objeto de estudo devido ao grande número de propriedades interessantes, incluindo entre elas resultados modelos-teóricos. Tais construções sugerem fortes conexões entre a classe No de números surreais e as classes de todos os conjuntos e todos os números ordinais. Na tentativa de codificar o universo dos conjuntos diretamente na classe de números surreais, encontramos algumas pistas que sugerem que esta classe não é adequada para esse fim. O presente trabalho é uma tentativa de se obter uma "teoria algébrica (de conjuntos) para números surreais" na linha da Teoria dos Algébrica dos Conjuntos - uma teoria categorial de conjuntos introduzida nos anos 1990: estabelecer links abstratos e gerais entre a classe de todos números surreais e um universo de "conjuntos surreais" emelhantes às relações entre a classe de todos os ordinais (On) e a classe de todos os conjuntos (V), que também respeite e expanda os links entre as classes linearmente ordenadas de todos ordinais e de todos os números surreais. Introduzimos a noção de álgebra surreal (parcial) (SUR-álgebra) e exploramos algumas das suas propriedades categoriais, incluindo SUR-álgebras (relativamente) livres (SA, ST). Nós estabelecemos links, em ambos os sentidos, entre SUR-álgebras e álgebras ZF (a pedra angular da Teoria Algébrica dos Conjuntos). Desenvolvemos os primeiros passos de um determinado tipo de teoria de conjuntos baseada (ou ranqueada) em números surreais, que expande a relação entre V e On.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese_dimi_2018_09_14.pdf (965.75 Kbytes)
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.