• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Cesar Augusto Rodriguez Duque
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Grichkov, Alexandre (Presidente)
Ananin, Alexandre
Iusenko, Kostiantyn
Kornev, Alexandr
Lopatin, Artem
Título em português
Representações irredutíveis de grau dois da primeira álgebra de Weyl
Palavras-chave em português
Álgebras de Weyl
Domínios de ideais principais
Ext 1
Localização de anéis
Módulos irredutíveis de grau n
Polinômios irredutíveis
Resumo em português
Sejam K um corpo comutativo de caraterística zero. Definimos a álgebras associativa sobre K com dois geradores p, q onde pq qp = 1, como a primeira álgebra de Weyl, denotaremos esta por A 1 . As representações irredutíveis de grau um de dimensão infinita de A 1 , foram descritos por R. Block em (Block , 1981). Baseados nesta ideia, são descritas as represen- tações irredutíveis de grau dois de dimensão infinita de A 1 . No capítulo 1 são estudadas a representações da localização S 1 A 1 = B onde S = K[ q ] , ver (Block , 1981). Também apresentamos algumas definições e resultados relevantes para A 1 , os quais estabelecem uma relação entre as representações de álgebras de Lie nilpotente e as representações da enésima álgebra de Weyl A n , ver (Dixmier , 1959). No segundo capítulo é abordado o estudo da estrutura para A 1 -módulos de grau dois de dimensão infinita, obtendo uma descrição completa destes módulos. Usando esta estrutura é dada uma relação entre uma classe de Sl 2 -módulos de dimensão infinita e os A 1 -módulos de grau dois. Finalmente, no capítulo 3 são dados alguns fatos importares sobre a estrutura do Ext 1 (M, N ), onde M e N são A 1 -módulos irredutíveis de dimensão infinita com graus n 1 e n 2 repectivemente.
Título em inglês
Irreducible representations the two deg of the first Weyl algebra
Palavras-chave em inglês
Ext 1
Irreducibles modules of the degree n
Localization rings and principal ideal domain
Weyl algebras
Resumo em inglês
Let K be a commutative field such of zero characteristic. The associtive algebras from K whit two geradors p, q shuch that pq qp = 1 is the first Weyl algebra and it algebra going to denoted for A 1 . The structure of irreducible representations of degree one of infinite dimen- sional of A 1 , studied by R.Block (Block , 1981) on 1981. Based in this paper, we characterize the structure of degree two of irreducible representations of infinite dimensional of A 1 . In the first chapter, we speak of localization rings and defined B, we also give tools and definitions needed over Weyl algebras and nilpotent Lie algebras. In the second chapter we give the review for to the problem of A 1 -modules of degree two of infinite dimensional. At the end of the thesis we calculate the Ext 1 (M, N ), by M e N irreducibles A 1 -modules of degree n.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-06-04
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.