• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2016.tde-04092016-203116
Document
Auteur
Nom complet
Wilson Albeiro Cuellar Carrera
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2015
Directeur
Jury
Ferenczi, Valentin Raphael Henri (Président)
Abad, Jorge Lopez
Galego, Eloi Medina
Ortiz, Manuel González
Salguero, Yolanda Moreno
Titre en portugais
Espaços de Banach com várias estruturas complexas
Mots-clés en portugais
Bases subsimétricas
Espaço de Kalton-Peck
Espaços com `poucos operadores'
Estruturas complexas
Somas torcidas
Resumé en portugais
No presente trabalho, estudamos alguns aspectos da teoria de estruturas complexas em espaços de Banach. Demonstramos que se um espaço de Banach real $X$ tem a propriedade $P$, então todas as estruturas complexas em $X$ também satisfazem $P$, quando $P$ é qualquer uma das seguintes propriedades: propriedade de aproximação limitada, \emph{G.L-l.u.st}, ser injetivo e ser complementado num espaço dual. Abordamos o problema da unicidade de estruturas complexas em espaços de Banach com base subsimétrica, provando que um espaço de Banach real $E$ com base subsimétrica e isomorfo ao espaço de sequências $E[E]$ admite estrutura complexa única. Por outro lado, apresentamos um exemplo de espaço de Banach com exatamente $\omega$ estruturas complexas distintas. Também usamos a teoria de estruturas complexas para estudar o clássico problema dos hiperplanos no espaço $Z_2$ de Kalton-Peck. Com o propósito de distinguir $Z_2$ de seus hiperplanos nos perguntamos se os hiperplanos admitem estrutura complexa. Nesse sentido, provamos que os hiperplanos de $Z_2$ contendo a cópia canônica de $\ell_2$ não admitem estruturas complexas que sejam extensões de estruturas complexas em $\ell_2$. Também construímos uma estrutura complexa em $\ell_2$ que não pode-se estender a nenhum operador em $Z_2$.
Titre en anglais
Banach spaces with various complex structures
Mots-clés en anglais
Complex structures
Kalton-Peck space
Spaces with `few operators'
Subsymmetric basis
Twisted sums
Resumé en anglais
In this work, we study some aspects of the theory of complex structures in Banach spaces. We show that if a real Banach space $X$ has the property $P$, then all its complex structures also satisfy $P$, where $P$ is any of the following properties: bounded approximation property, \emph{G.L-l.u.st}, being injective and being complemented in a dual space. We address the problem of uniqueness of complex structures in Banach spaces with subsymmetric basis by proving that a real Banach space $E$ with subsymmetric basis and isomorphic to the space of sequences $E [E]$ admits a unique complex structure. On the other hand, we show an example of Banach space with exactly $\omega$ different complex structures. We also use the theory of complex structures to study the classical problem of hyperplanes in the Kalton-Peck space $Z_2$. In order to distinguish between $Z_2$ and its hyperplanes we wonder whether the hyperplanes admit complex structures. In this sense we prove that no complex structure on $\ell_2$ can be extended to a complex structure on the hyperplanes of $Z_2$ containing the canonical copy $l_2$. We also constructed a complex structure on $l_2$ that can not be extended to any operator in $Z_2$.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TeseWilsonUsp.pdf (913.28 Kbytes)
Date de Publication
2016-09-09
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.