• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
Documento
Autor
Nome completo
Clayton Suguio Hida
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2019
Orientador
Banca examinadora
Brech, Christina (Presidente)
Aurichi, Leandro Fiorini
Batista, Leandro Candido
Bianconi, Ricardo
Royer, Danilo
Título em inglês
Uncountable irredundant sets in nonseparable scattered C*-algebras
Palavras-chave em inglês
Forcing
Irredundant sets
Scattered C*-algebras
Resumo em inglês
Given a C*-algebra $\A$, an irredundant set in $\A$ is a subset $\mathcal$ of $\A$ such that no $a\in \mathcal$ belongs to the C*-subalgebra generated by $\mathcal\setminus\{a\}$. Every separable C*-algebra has only countable irredundant sets and we ask if every nonseparable C*-algebra has an uncountable irredundant set. For commutative C*-algebras, if $K$ is the Kunen line then $C(K)$ is a consistent example of a nonseparable commutative C*-algebra without uncountable irredundant sets. On the other hand, a result due to S. Todorcevic establishes that it is consistent with ZFC that every nonseparable C*-algebra of the form $C(K)$, for a compact 0-dimensional space $K$, has an uncountable irredundant set. By the method of forcing, we construct a nonseparable and noncommutative scattered C*-algebra $\A$ without uncountable irredundant sets and with no nonseparable abelian subalgebras. On the other hand, we prove that it is consistent that every C*-subalgebra of $\B(\ell_2)$ of density continuum has an irredundant set of size continuum.
Título em inglês
Uncountable irredundant sets in nonseparable scattered C*-algebras
Palavras-chave em inglês
Forcing
Irredundant sets
Scattered C*-algebras
Resumo em inglês
Given a C*-algebra $\A$, an irredundant set in $\A$ is a subset $\mathcal$ of $\A$ such that no $a\in \mathcal$ belongs to the C*-subalgebra generated by $\mathcal\setminus\{a\}$. Every separable C*-algebra has only countable irredundant sets and we ask if every nonseparable C*-algebra has an uncountable irredundant set. For commutative C*-algebras, if $K$ is the Kunen line then $C(K)$ is a consistent example of a nonseparable commutative C*-algebra without uncountable irredundant sets. On the other hand, a result due to S. Todorcevic establishes that it is consistent with ZFC that every nonseparable C*-algebra of the form $C(K)$, for a compact 0-dimensional space $K$, has an uncountable irredundant set. By the method of forcing, we construct a nonseparable and noncommutative scattered C*-algebra $\A$ without uncountable irredundant sets and with no nonseparable abelian subalgebras. On the other hand, we prove that it is consistent that every C*-subalgebra of $\B(\ell_2)$ of density continuum has an irredundant set of size continuum.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese.pdf (764.82 Kbytes)
Data de Publicação
2019-08-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.