• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2017.tde-05122017-200848
Documento
Autor
Nombre completo
Felipe Albino dos Santos
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Futorny, Vyacheslav (Presidente)
Bekkert, Viktor
Ramirez, Luis Enrique
Título en portugués
Módulos irredutíveis para subálgebras de Heisenberg de álgebras de Krichever-Novikov
Palabras clave en portugués
Álgebras de Heisenberg
Álgebras de Krichever-Novikov
Módulos phi-Verma
Resumen en portugués
Esta dissertação oferece uma introdução às já conhecidas álgebras de Krichever-Novikov se restringindo aos exemplos abordados previamente em Bremner (1995), Cox (2013), Cox e Jurisich (2013), Cox, Futorny e Martins (2014), Bueno, Cox e Furtony (2009), e as definições de estruturas que podem auxiliar a estudar estes espaços, incluindo álgebras de Lie afins, álgebras de loop e módulos de Verma. Considerando K uma álgebra de Krichever-Novikov do tipo 4-ponto, 3-ponto, elíptica ou DJKM e suas respectivas subálgebras de Heisenberg K' = K hK , onde hK é a subálgebra de Cartan de K , nos Teoremas 3.2.3, 3.4.3, 3.6.3 e 3.8.3 são apresentados critérios explícitos de irredutibilidade para K'-módulos do tipo -Verma.
Título en inglés
Representations of Heisenberg subalgebras of Krichever-Novikov algebras
Palabras clave en inglés
Heisenberg algebras
Krichever-Novikov algebras
Phi-Verma modules
Resumen en inglés
This work gives an introduction to the already known Krichever-Novikov algebras limited only to the examples approached before in Bremner (1995), Cox (2013), Cox e Jurisich (2013), Cox, Futorny and Martins (2014), Bueno, Cox and Furtony (2009), and the structures definitions that could help us to study these spaces, including affine Lie algebras, loop algebras and Verma modules. Let K be a 4-point, 3-point, elliptic or DJKM Krichever-Novikov algebra and its respective Heisenberg subalgebras K' = K hK , where hK is the K Cartan subalgebra. In the Theorems 3.2.3, 3.4.3, 3.6.3 and 3.8.3 we will give a explicit irreducibility criteria for -Verma K'-modules.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-12-07
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.