• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2008.tde-07052008-175310
Documento
Autor
Nombre completo
Jaime Leonardo Orjuela Chamorro
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2008
Director
Tribunal
Gorodski, Claudio (Presidente)
Figueiredo Junior, Ruy Tojeiro de
Silva, Marcos Martins Alexandrino da
Título en portugués
Subvariedades isoparamétricas do espaço Euclidiano
Palabras clave en portugués
Curvaturas principais
Grupos de Coxeter
Normais de curvatura
Subvariedades isoparamétricas
Resumen en portugués
O presente trabalho tem por objeto fazer uma introdução ao estudo das subvariedades isoparamétricas do espaço Euclidiano. Começamos com uma introdução ao desenvolvimento histórico desses objetos. A seguir apresentamos os conceitos básicos da teoria de subvariedades de formas espaciais. Deduzimos as equações fundamentais de primeira e segunda ordem e demonstramos o teorema fundamental da teoria de subvariedades. Em seguida damos a definição de subvariedade isoparamétrica e desenvolvemos conceitos elementares para o caso do espaço Euclidiano como são normais de curvatura, grupo de Coxeter, câmera de Weyl e variedades paralelas e focais. Provamos dois teoremas referentes à decomposição de subvariedades isoparamétricas do espaço Euclidiano adaptando ferramentas usadas em [HL97] para ocaso de subvariedades isoparamétricas de espaços de Hilbert. Demonstramos o teorema da fatia e discutimos sobre subvariedades isoparamétricas desde o ponto de vista clássico, a saber, aplicações isoparamétricas. Concluímos com alguns exemplos: hipersuperfécies isoparamétricas da esfera e órbitas principais da ação adjunta de um grupo de Lie sobre a respectiva álgebra de Lie.
Título en inglés
Isoparametric submanifolds of Euclidian space
Palabras clave en inglés
Coxeter groups
Isoparametric submanifolds
Normal curvatures
Principal curvatures
Resumen en inglés
The goal of this dissertation is to present an introduction to the study of isoparametric submanifolds of Euclidean space. We begin with an introduction to the history of the subject. Then we present the basic results of submanifold theory of space forms. We compute the fundamental equations of first and second order, and we prove the fundamental theorem of submanifold theory. Next, we define isoparametric submanifolds and discuss some basic constructions, as curvature normals, Coxeter groups, Weyl chambers and parallel and focal submanifolds. We prove two decomposition theorems about isoprametric submanifolds using techniques that we learnt from [HL97], paper in which the case of submanifolds of Hilbert spaces is studied. Then we prove slice theorem. We also discuss those submanifold from the classical point of view, namely, isoparametric maps. We finish by explaining some examples: isoparametric hipersurfaces of spheres and principal orbits of the adjoint action of a Lie group on its Lie algebra.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Tesis.pdf (436.84 Kbytes)
Fecha de Publicación
2008-06-17
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.