• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
Document
Auteur
Nom complet
Lucas de Faccio Nunes
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2019
Directeur
Jury
Valério, Barbara Corominas (Président)
Sousa Junior, Luiz Amancio Machado de
Vilhena, José Antônio Moraes
Titre en portugais
Um estudo sobre incompletude de geodésicas semi-Riemannianas
Mots-clés en portugais
Completude de geodésicas
Geodésicas
Métricas de Lorentz
Resumé en portugais
Nesse trabalho apresentaremos alguns exemplos clássicos que evidenciam as diferenças entre a geometria Riemanniana e a semi-Riemanniana (Lorentziana) quanto à completude de geodésicas. Para isso, revisitaremos conceitos básicos de Geometria, seguido de uma introdução aos espaços vetoriais de Lorentz e um estudo inicial sobre o grupo de Lorentz. Nos capítulos finais discutiremos sobre completude de geodésicas e como se distanciam do caso Riemanniano.
Titre en anglais
A study on uncompleteness of semi-Riemannian geodesics
Mots-clés en anglais
Completeness of geodesics
Geodesic
Lorentz metrics
Resumé en anglais
In this work we intend to present some classical examples that display the differences between Riemannian and semi-Riemannian (Lorentzian) geometry in relation to the completeness of geodesics. For this, we will revisit basic Geometry concepts followed by an introduction to the vector spaces of Lorentz and a simple study on the Lorentz group. In the final chapters we will discuss about the completeness of geodesics and how it distances itself from the Riemannian case.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-09-09
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.