• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2010.tde-12012011-204505
Documento
Autor
Nome completo
Paulo Augusto Ribeiro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2010
Orientador
Banca examinadora
Borsari, Lucilia Daruiz (Presidente)
Cardona, Fernanda Soares Pinto
Manzoli Neto, Oziride
Título em português
Campos de caminhos em variedades topológicas
Palavras-chave em português
campos de caminhos
característica de Euler
variedades topológicas
Resumo em português
Esta dissertação expõe o estudo realizado sobre o artigo de R. Brown, citado na bibliografia, e sobre os conceitos necessários para a compreensão deste material. Entre os principais conceitos e resultados preliminares discutidos, podemos citar: topologia de espaços de funções, teoria de homotopia, espaços compactos ANR, característica de Euler de um compacto ANR, teorema de Lefschetz, espaços fibrados, e campos de caminhos. Os principais resultados discutidos na dissertação são os teoremas centrais do artigo de Brown: toda n-variedade topológica compacta admite um campo de caminhos com no máximo uma singularidade; e, uma n-variedade topológica compacta orientável admite um campo de caminhos sem singularidades se, e somente se, sua característica de Euler é zero. Discutimos também, suas respectivas consequências em teoria de ponto fixo
Título em inglês
Path fields on topological manifolds
Palavras-chave em inglês
Euler characteristic
path fields
topological manifolds
Resumo em inglês
This essay has the purpose of exposing the studies on the paper by R. Brown, quoted on the references, and on the concepts necessary to the comprehension of it. Among the main concepts and preliminary results discussed, we can cite: topology of function spaces, homotopy theory, ANR compact spaces, Euler characteristic of a compact ANR, Lefschetz theorem, fiber spaces, and field paths. The main results discussed in the text are the central theorems presented on Brown's paper: every compact topological n-manifold admits a path field with at most one singularity, and a compact orientable topological n-manifold M admits a nonsingular path field if and only if the Euler characteristic of M is zero. We also discussed their consequences on fixed point theory
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2011-05-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.