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Resumo

Henrique de Oliveira Rocha. Representações de álgebras de Lie de campos vetoriais
em variedades e supervariedades algébricas. Tese (Doutorado). Instituto de Matemá-

tica e Estatística, Universidade de São Paulo [e] Faculty of Graduate and Postdoctoral

Affairs, Carleton University, São Paulo, 2024.

Esta tese é dedicada a um estudo sobre a estrutura e a teoria de representação de algumas álgebras de

Lie e superálgebras de Lie de dimensão infinita.

A primeira família estudada é a álgebra de Lie de campos vetoriais em uma variedade algébrica afim

suave. Após uma exposição sobre a estrutura dessas álgebras de Lie, consideramos representações que

admitem uma ação compatível do anel de coordenadas da variedade algébrica e são geradas finitamente

como módulos sobre essa álgebra comutativa. Provamos que essas representações podem ser associadas a

um feixe coerente que admite uma ação compatível do feixe tangente. Também provamos que a ação do

feixe tangente é dada por um operador diferencial.

A segunda família considerada é a versão em supergeometria da anterior. Após uma investigação

sobre a suavidade de supervariedades algébricas, provamos que as seções globais do feixe tangente de

uma supervariedade afim integral suave é uma superálgebra de Lie simples. Em seguida, consideramos as

representações dessa superálgebra de Lie que admitem uma ação compatível das seções globais do feixe

estrutural da supervariedade afim. De forma análoga ao caso não-super, mostramos que o feixe de módulos

associado admite uma ação compatível do feixe tangente quando é coerente. Além disso, mostramos que

essa ação é definida por um operador diferencial.

Por fim, estudamos módulos de peso com multiplicidades finitas sobre a superálgebra de aplicações

associada a uma superálgebra de Lie básica. Provamos que essas representações são cuspidais ou parabólicas

induzidas de um módulo cuspidal limitado sobre uma subálgebra da superálgebra de aplicações. Mostramos

também que módulos cuspidal limitados são módulos de avaliação.

Palavras-chave: (Super)álgebras de Lie de campos vetoriais. Representações de álgebras de Lie. Feixes de

operadores diferenciais.





Abstract

Henrique de Oliveira Rocha. Representations of Lie algebras of vector fields on
algebraic varieties and supervarieties. Thesis (Doctorate). Institute of Mathematics

and Statistics, University of São Paulo [and] Faculty of Graduate and Postdoctoral Affairs,

Carleton University, São Paulo, 2024.

This thesis is devoted to a study of the structure and representation theory of some infinite-dimensional

Lie algebras and Lie superalgebras.

The first family studied is the Lie algebras of vector fields on smooth affine algebraic varieties. After an

exposition of the structure of such Lie algebras, we consider representations that admit a compatible action

of the coordinate ring of the algebraic variety and are finitely generated as modules over this commutative

algebra. We prove that these representations can be associated with a vector bundle that admits a compatible

action of the tangent sheaf. We also prove that the action of the tangent sheaf is given by a differential

operator. These results allow us to solve a conjecture made in the first papers of this theory.

The second family considered is a supergeometry version of the previous. After an investigation of the

smoothness of algebraic supervarieties, we prove that the global sections of the tangent sheaf of a smooth

integral affine supervariety form a simple Lie superalgebra. Subsequently, we consider representations of

this Lie superalgebra that admit a compatible action of global sections of the structure sheaf of the affine

supervariety. Analogously to the non-super case, we show that the associated sheaf of modules admits a

compatible action of the tangent sheaf when it is coherent. We also prove that this action is defined by a

differential operator.

Lastly, we study the weight modules with finite multiplicities over the map superalgebra associated with

a basic Lie superalgebra. We prove that these representations are either cuspidal or parabolically induced

from a cuspidal bounded module over a subalgebra of the map superalgebra. We also show that cuspidal

bounded modules are evaluation modules.

Keywords: Lie (super)algebras of vector fields. Representations of Lie algebras. Sheaves of differential

operators.
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1

Introduction

Throughout the whole thesis, k is an algebraically closed field of characteristic 0. Unless

otherwise stated, vector spaces, linear maps and algebras are assumed to be over k.

While aiming to establish a method for solving differential equations analogous to

the Galois theory of algebraic equations, Sophus Lie discovered that continuous groups

of transformations related to differential equations could be better understood by ana-

lyzing their infinitesimal counterpart. These continuous groups of transformations and

infinitesimal transformations are known today as Lie groups and Lie algebras, respectively.

Although Lie was the first, Killing also discovered Lie algebras independently around ten

years later and classified all simple finite-dimensional complex Lie algebras (see [Kil90]) in

a paper considered to be the greatest mathematical paper of all time [Col89]. In his thesis,

Élie Cartan reviewed Killing’s paper, gave a better exposition of this classification, fixed

some mistakes he found and moved the theory forward providing new and important

results. Cartan is also broadly regarded as the creator of the modern Lie theory, who better

formulated the necessary tools to study the structure, representations and applications of

the theory [Haw96].

Some examples of infinite-dimensional Lie algebras were considered by Lie, but this

subject was difficult to tackle not only because of the lack of a well-defined theory de-

scribing the structure of infinite-dimensional Lie algebras at the time but also because

there were too many of them. Cartan started a series of papers answering questions

about Lie algebras and groups, culminating with a description of families of simple Lie

algebras that he called primitive infinite groups with 𝑛 variables [Car09]. These are divided

into four infinite classes denoted by W (general vectorial algebras), S (divergence-free

algebras), H (Hamiltonian algebras), and K (contact algebras). About sixty years later,

Guillemin, Singer and Sternberg constructed an algebraic framework for filtered and

graded Lie algebras [GS64; SS65]. An algebraic proof for Cartan’s classification was found

by Weisfeiler using this framework [GQS66; Wei68]. Later, Kac considered a larger class of

Lie algebras called graded Lie algebras of polynomial growth. He managed to classify them

under certain conditions adding the loop algebras to the four classes W, S, H and K [Kac68].

However, it was Mathieu who finalized the classification of infinite-dimensional graded Lie

algebras of polynomial growth in 1992 [Mat92b], adding the centerless Virasoro algebra

as the last Lie algebra of this family.

Kac [Kac68] and Moody [Moo68] discovered another class of infinite-dimensional

Lie algebras, which is called today Kac-Moody algebras. These algebras are defined by

generators and relations through a generalized Cartan matrix, and they can be seen as
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generalizations of semisimple Lie algebras. The importance of Kac-Moody algebras was

quickly recognized, as well as their applications to both mathematics and physics. The

most important class of Kac-Moody algebras is the affine Lie algebras. These can be realized

as the central extensions of loop algebras associated with simple finite-dimensional Lie

algebras together with a degree derivation.

Different generalizations of affine Lie algebras were considered by many authors. One of

them is the map algebras or current algebras. For a finitely generated commutative algebra

𝑆 and a Lie algebra g, there is a natural way to define the structure of a Lie algebra on the

tensor product  = g ⊗ 𝑆. Map algebras can be seen as Lie algebras defined on the set of

regular maps from 𝑋 = Spec (𝑆) to g (seen as an affine space). If there is a group Γ that acts

on both g and 𝑆 by automorphisms, then it is even possible to consider the equivariant map

algebra Γ
, where only regular maps equivariant for the action of Γ are included. Building

on earlier works for some specific examples of equivariant map algebras, Neher, Savage

and Senesi showed that irreducible finite-dimensional representations of equivariant map

algebras are evaluation representations, see [NSS12] and references therein. If g is a simple

Lie algebra, a classification of weight modules with finite-dimensional weight spaces over

 was achieved by Britten, Lemire and Lau in [BLL15; Lau18].

Savage classified finite-dimensional modules over map superalgebras when g is a basic

classical Lie superalgebra. Additionally, in joint work with Calixto and Futorny, we gave a

classification for weight -modules with finite-dimensional weight spaces assuming that

g is a basic classical Lie algebra, generalizing the results of [BLL15; Lau18] to the super

case. Chapter 4 of this thesis will be about this paper. After proving several results on

the representation theory of -modules and introducing the needed machinery, we prove

the parabolic induction theorem and establish a classification of simple bounded weight

modules (weight modules with dimensions of weight spaces bounded by some number) in

terms of simple g-modules and maximal ideals of 𝑆. The main result of Chapter 4 can be

summarized in the following theorem.

Theorem. Let g be a basic classical Lie superalgebra, 𝑆 a finitely generated commutative
algebra, and 𝑉 a weight  = g ⊗ 𝑆-module with finite-dimensional weight spaces.

1. 𝑉 is either a cuspidal bounded -module or a parabolically induced module from a
simple cuspidal bounded module over a subalgebra of .

2. If 𝑉 is a cuspidal bounded -module, then 𝑉 is isomorphic to an evaluation module.

However, the main focus of this thesis will be on a different class of infinite-dimensional

Lie algebras — Lie algebras of vector fields on smooth irreducible affine algebraic varieties.

One family of them already appeared in Cartan’s classification, the general vectorial algebra.

Another example that we already mentioned is the graded Lie algebras of polynomial

growth — the centerless Virasoro algebra. Although graded examples of these algebras

were already well-studied, there was no general theory of the Lie algebras of vector fields

on arbitrary smooth affine varieties. Thus, after classifying weight modules with finite-

dimensional weight spaces over the Lie algebra of vector fields on the torus [BF14], Billig

and Futorny started to study the structure of the Lie algebras of vector fields on any

algebraic variety [BF18]. Jordan [Jor86] and Siebert [Sie96] proved that, for an irreducible

affine algebraic variety 𝑋 , the Lie algebra 𝑋 = Der(𝐴𝑋 ) of derivations of the coordinate
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ring 𝐴𝑋 of 𝑋 is simple if and only if 𝑋 is smooth.

Billig and Futorny initiated the study of the representation theory of these algebras.

Traditional techniques of Lie algebra theory, such as root systems, Cartan subalgebras,

or weight decomposition, are not applicable in general for Lie algebras of vector fields.

Their structure can vary greatly depending on the underlying algebraic variety. Some of

them do have a Cartan subalgebra which decomposes it in root spaces, while others do

not even have semisimple nor nilpotent elements. It was necessary to consider a different

kind of representation that could work in the general setting of these Lie algebras. Billig

and Futorny focused on modules over both 𝐴𝑋 and 𝑋 that satisfy the Leibniz rule, called

𝐴𝑋𝑋 -modules. These are equivalent to modules over the smash product 𝐴𝑋#𝑈 (𝑋 ).
𝐴𝑋𝑋 -modules can be seen as a generalization of the well-researched 𝐷𝑋 -modules over 𝑋 ,

since every 𝐷𝑋 -module is an 𝐴𝑋𝑋 -module. However, it is not required for the associated

representation of𝑋 to be𝐴𝑋 -linear. Hence, there are plenty of examples of𝐴𝑋𝑋 -modules

that are not 𝐷𝑋 -modules, e.g.  itself, as well as the space of differential 𝑘-forms Ω𝑘𝑋 .

𝐴𝑋𝑋 -modules appeared in the classification of weight modules over the Lie algebra

of vector fields on the 𝑛-dimensional torus and affine space. Therefore, their importance

is already recognized. Billig, Futorny and Nilsson constructed two families of simple

𝐴𝑋𝑋 -modules in [BFN19]: gauge modules and Rudakov modules. Rudakov modules are

the generalizations of modules constructed by Rudakov for the affine space [Rud74]. On

the other hand, gauge modules were inspired by tensor modules, which were crucial in

the papers [BF14; GS22]. It was conjectured in [BFN19] that every 𝐴𝑋𝑋 -module that is

finitely generated as an 𝐴𝑋 -module is a gauge module, hence results on the simplicity of

gauge modules were obtained in [BNZ21] by Billig, Nilson and Zaidan. The conjecture

was proven when 𝑋 = 𝔸𝑛
is the affine space by Billig, Ingalls and Nasr in [BIN23], but we

will prove it for a general algebraic variety.

So far we talked about objects of a geometric nature, however we did not associate

them with an algebraic geometric object. The affine algebraic variety 𝑋 relates naturally

to a scheme on Spec (𝐴𝑋 ) and the structure sheaf 𝑋 , while the Lie algebra 𝑋 associates

with the tangent sheaf Θ𝑋 on 𝑋 . If 𝑀 is an 𝐴𝑋𝑋 -module, then localization gives a quasi-

coherent sheaf �̃� of𝑋 -modules. Then the question is whether it is possible to make �̃� into

a sheaf of representations of Θ𝑋 in a way that for each affine open subset 𝑈 ⊂ 𝑋 we have

that the sections Γ(𝑈, �̃�) is an 𝐴𝑈𝑈 -module. Guided by their earlier paper [BIN23], Billig

and Ingalls studied a quasi-coherent sheaf that would govern these representations [BI23].

Moreover, they expanded the notions studied so far to quasi-projective varieties. Motivated

by their work, in a joint paper with Bouaziz, we showed in [BR23] that the quasi-coherent

sheaf �̃� admits a compatible action of Θ𝑋 if 𝑀 is a finitely generated module over 𝐴
(i.e. �̃� is coherent). We also showed that the associated representation 𝑋 → Endk(𝑀)
is a differential operator, which means that the map Θ𝑋 → Endk(�̃�) is also a differential

operator. These results will be presented in Chapter 2, with the main accomplishment

summarized in the following theorem.

Theorem. Let 𝑋 be a smooth affine algebraic variety with a coordinate ring 𝐴𝑋 and Lie
algebra of vector fields 𝑋 = Der(𝐴𝑋 ). Denote by 𝑋 the structure sheaf of 𝑋 and Θ𝑋 the
tangent sheaf. If 𝑀 is an 𝐴𝑋𝑋 -module finitely generated as an 𝐴𝑋 -module, then

1. The coherent sheaf �̃� of 𝑋 -modules is a vector bundle and Γ(𝑈, 𝑋) is a 𝐵Der(𝐵)-
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module for each affine open subset 𝑈 = Spec (𝐵) ⊂ 𝑋 .

2. Both the representation 𝑋 → Endk(𝑀) and Θ𝑋 → EndSpec (k)(�̃�) are differential
operators.

The supergeometric version of the theory of Lie algebras of vector fields will be

investigated in this thesis as well. The above theorem can be generalized in this context,

and we will prove it in Chapter 3. The existence of odd elements will be the main difficulty

to handle, however, proofs follow a similar path to the non-super case. We will also prove

that if an affine supervariety is smooth then the Lie superalgebra of vector fields on it

is simple. Finally, we will study the 𝐴-module theory for the supervariety with only

non-zero finite odd dimensions. The interesting fact here is that the Lie superalgebra of

vector fields is finite-dimensional and it is one of the Cartan-type simple Lie superalgebras

that appears on the classification of simple finite-dimensional Lie superalgebras [Kac77].

For this case, we first prove an isomorphism of associative superalgebras similar to the

one that holds for the affine space [BIN23], and we will show that there is an equivalence

of categories between the category of 𝐴𝑋𝑋 -modules and the category of vector fields

that vanish at the single point of the supervariety.

This thesis is organized as follows. In Chapter 1, we will present the preliminary results,

fix our notations and review the basics of the structure of affine varieties and the Lie algebra

of vector fields associated with it. Then, we move to the representation theory and prove

our results about 𝐴𝑋𝑋 -modules in Chapter 2. In Chapter 3, we give the preliminaries

on supergeometry, prove the simplicity of the Lie superalgebra of vector fields and study

its 𝐴𝑋𝑋 -module theory. Finally, we present our results on weight modules with finite-

dimensional weight spaces over the map algebra associated with basic Lie superalgebras

in Chapter 4.
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Chapter 1

Algebraic varieties and the Lie
algebra of vector fields

This chapter presents an overview of the background results needed for this the-

sis.

In Section 1.1 we define the basics of Lie algebra theory and their representations. Then

we present the affine algebraic varieties in Section 1.2 and talk about their dimensions and

tangent spaces in Section 1.3. The Lie algebra of vector fields is introduced in Section 1.4, we

give examples and a couple of results about their structure. In Section 1.5 we introduce the

module of Kähler differentials and relate it to the Lie algebra of vector fields. In Section 1.6,

the local theory of the Lie algebra of vector fields is investigated. We finish this chapter by

introducing power series for functions and derivations in Section 1.7.

1.1 Lie algebras and representations

Definition 1.1.1. A Lie algebra g (over k) is a vector space with a binary operation

[⋅, ⋅] ∶ g × g → g, called Lie bracket, that satisfies the following conditions:

1. [⋅, ⋅] is bilinear,

2. [𝑥, 𝑥] = 0 for every 𝑥 ∈ g,

3. [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0 for every 𝑥, 𝑦, 𝑧 ∈ g (Jacobi identity).

If g1, g2 are Lie algebras and 𝜑 ∶ g1 → g2 is a linear map, then 𝜑 is a homomorphism of Lie
algebras if 𝜑([𝑥, 𝑦]) = [𝜑(𝑥), 𝜑(𝑦)] for every 𝑥, 𝑦 ∈ g1.

A subspace l of Lie algebra g is a (Lie) subalgebra if [𝑥, 𝑦] ∈ l for every 𝑥, 𝑦 ∈ l. Similarly,

a subspace l of g is an ideal if [𝑥, 𝑦] ∈ l for every 𝑥 ∈ l and 𝑦 ∈ g. We say that Lie algebra g
is simple if [g, g] ≠ 0 and the only ideals of g are 0 and itself.

For the details on the structure theory of simple finite-dimensional Lie algebras and

their representations, we refer to the book of Humphreys [Hum78].
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Example 1.1.2. The commutator defines a Lie algebra structure on every associative

algebra. Let 𝐴 be an associative algebra, then the commutator

[𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥, 𝑥, 𝑦 ∈ 𝐴

defines a Lie bracket on 𝐴.

Example 1.1.3. Let 𝑉 be a vector space and consider the set Endk(𝑉 ) of linear endomor-

phisms of 𝑉 . The composition of maps makes Endk(𝑉 ) an associative algebra. The Lie

algebra defined by its commutator will be denoted by glk(𝑉 ) or simply gl(𝑉 ).

Example 1.1.4. Let 𝐴 be an algebra. Define the set of derivations as

Der(𝐴) = {𝐷 ∈ gl(𝐴) ∣ 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏 + 𝑎𝐷(𝑏) for each 𝑎, 𝑏 ∈ 𝐴} .

Since

[𝐷1, 𝐷2](𝑎𝑏)
=𝐷1(𝐷2(𝑎)𝑏 + 𝑎𝐷2(𝑏)) − 𝐷2(𝐷1(𝑎)𝑏 + 𝑎𝐷1(𝑏))
=[𝐷1, 𝐷2](𝑎)𝑏 + 𝐷2(𝑎)𝐷1(𝑏) + 𝐷1(𝑎)𝐷2(𝑏) + 𝑎[𝐷1, 𝐷2](𝑏) − 𝐷1(𝑎)𝐷2(𝑏) − 𝐷2(𝑎)𝐷1(𝑏)
=[𝐷1, 𝐷2](𝑎)𝑏 + +𝑎[𝐷1, 𝐷2](𝑏)

for each 𝑎, 𝑏 ∈ 𝐴 and 𝐷1, 𝐷2 ∈ Der(𝐴), we have that Der(𝐴) is a Lie subalgebra of gl(𝐴).

The above example will be the most important one for us in this thesis.

The structure of finite-dimensional Lie algebras is very well understood. There is

a complete classification of simple finite-dimensional Lie algebras, which is covered in

almost every introduction book including the one we referenced above. On the other hand,

the structure of infinite-dimensional Lie algebras can vary greatly depending on which

type is being studied.

Regardless of which Lie algebra is in the spotlight, its representations theory is always

an essential subject to investigate. It often gives insights on the structure of the Lie algebra,

since this theory can be used to translate problems in the Lie algebra theory to problems in

linear algebra. Representation theory also studies how the Lie algebra could interact with

other spaces, thus it is a great source of applications. Therefore, representation theory

is both a tool and subject of study necessary for a better understating of Lie algebra

characteristics, applications and impact.

Definition 1.1.5. Let g be a Lie algebra and 𝑉 be a vector space. A representation of g is a

map 𝜑 ∶ g → gl(𝑉 ) that is a homomorphism of Lie algebras. When 𝑉 is equipped with a

representation 𝜑 ∶ g → gl(𝑉 ), we say that 𝑉 is a module over g or a g-module.

If 𝑉 is a g-module, then a subspace 𝑊 ⊂ 𝑉 is a g-submodule if 𝑥𝑤 ∈ 𝑊 for every

𝑥 ∈ g and 𝑤 ∈ 𝑊 . We say that 𝑉 is irreducible or simple if it only has two submodules:

𝑉 and 0; the trivial ones. If 𝑉 and 𝑊 are two g-modules, a linear map 𝜓 ∶ 𝑉 → 𝑊 is a

homomorphism of g-modules if 𝜓(𝑥𝑣) = 𝑥𝜓(𝑣).

Example 1.1.6. The Lie bracket defines a representation of a Lie algebra g over itself,
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called the adjoint representation. Let ad ∶ g → gl(g) be the map defined by

ad(𝑥)(𝑦) = [𝑥, 𝑦].

By the Jacobi identity, ad is a representation.

For each Lie algebra g, there is an unital associative algebra whose modules correspond

exactly to the representations of the Lie algebra g. This is the universal enveloping algebra.

An enveloping algebra of g is a pair (𝑈, 𝜑) where 𝑈 is an unital associative algebra and

𝜑 ∶ g → 𝑈 is a homomorphism of Lie algebras (the bracket on 𝑈 is the commutator). The

universal enveloping algebra (𝑈 (g), 𝜋) is an enveloping algebra that satisfies the following

universal property: for every enveloping algebra (𝑈, 𝜑), there exists a unique homomor-

phism of associative algebras �̃� ∶ 𝑈 (g) → 𝑈 such that the following diagram

g 𝑈

𝑈 (g)

𝜑

𝜋
�̃�

commutes. Below we will present a construction of 𝑈 (g). The universal property above

shows the universal enveloping algebra is unique up to an isomorphism.

The universal enveloping algebra of g can be realized using the tensor algebra of g.

Define

𝑇 0(g) = k,
𝑇 1(g) = g,
𝑇𝑚(g) = g ⊗⋯ ⊗ g (𝑚 times), 𝑚 > 1.

The tensor algebra  (g) of g is the associative algebra

 (g) =
∞

⨁
𝑖=0
𝑇 𝑖(g),

where the product is given by concatenation

(𝑣1 ⊗⋯ ⊗ 𝑣𝑟)(𝑤1 ⊗⋯ ⊗ 𝑤𝑠) = 𝑣1 ⊗⋯ ⊗ 𝑣𝑟 ⊗ 𝑤1 ⊗⋯ ⊗ 𝑤𝑠.

Let 𝐼 be the two-sided ideal of  (g) generated by elements of the form

𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 − [𝑥, 𝑦], 𝑥, 𝑦 ∈ g.

Denote by �̃� (g) the quotient  (g)/𝐼 .

Theorem 1.1.7 (Poincaré–Birkhoff–Witt theorem). Let g be a Lie algebra, then the universal
enveloping algebra (𝑈 (g), 𝜋) exists and it is isomorphic to �̃� (g). Furthermore, if {𝑥𝑖 ∣ 𝑖 ∈ 𝐽 } is
a basis of g indexed by an ordered set 𝐽 , then the image of the set

{1} ∪
{
𝑥𝑛1𝑖1 ⊗ 𝑥

𝑛2
𝑖2 ⊗⋯ ⊗ 𝑥𝑛𝑟𝑖𝑟 ∣ 𝑟 ≥ 1, 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑟 , 𝑛1,… , 𝑛𝑟 ≥ 1

}
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forms a basis of �̃� (g). In particular, g is a Lie subalgebra of 𝑈 (g).

Proof. See [Hum78, Section 17.3].

A module 𝑉 over the universal enveloping algebra 𝑈 (g) defines a representation

𝜌 ∶ g → Endk(𝑉 ) of g by taking 𝜌(𝑥)𝑣 = 𝑥𝑣. Similarly, a representation 𝜌 ∶ g → Endk(𝑉 )
of g gives an enveloping algebra (Endk(𝑉 ), 𝜌), thus there exists a map �̃� ∶ 𝑈 (g) → Endk(𝑉 )
that defines an action of𝑈 (g) on𝑉 . Hence, the category of representations of g is equivalent

to the category of modules over 𝑈 (g). This equivalence provides us with numerous

additional tools derived from associative algebra theory and allows us to use the structure

of 𝑈 (g) to infer theorems of the representation theory of g.

1.2 Affine algebraic varieties
Recall that k is an algebraically closed field with characteristic 0. The affine space 𝔸𝑛

k
of dimension 𝑛 over k is the set k𝑛. When k is fixed, we will denote 𝔸𝑛

k simply by 𝔸𝑛
. The

affine space comes with a topology, called Zariski topology, where its closed subsets are

given by the affine algebraic sets

𝑍(𝑆) = {(𝑎1,… , 𝑎𝑛) ∈ k𝑛 ∣ 𝑓 (𝑎1,… , 𝑎𝑛) = 0 ∀𝑓 ∈ 𝑆}

with 𝑆 ⊂ k[𝑥1,… , 𝑥𝑛] being a subset of the polynomial algebra k[𝑥1,… , 𝑥𝑛]. Note that if a
is the ideal of k[𝑥1,… , 𝑥𝑛] generated by 𝑆, then 𝑍(a) = 𝑍(𝑆). Thus, every algebraic affine

set is given by a finite set of equations, because ideals of k[𝑥1,… , 𝑥𝑛] are finitely generated.

The basis of Zariski topology is given by the basic open sets

𝐷(𝑓 ) = {(𝑎1,… , 𝑎𝑛) ∈ 𝔸𝑛 ∣ 𝑓 (𝑎1,… , 𝑎𝑛) ≠ 0} for 𝑓 ∈ k[𝑥1,… , 𝑥𝑛].

The basic open set 𝐷(𝑓 ) is the complement of the affine algebraic set 𝑍 ({𝑓 }).

Let 𝑋 ⊂ 𝔸𝑛
be an affine algebraic set, then we define

𝐼 (𝑋) = {𝑓 ∈ k[𝑥1,… , 𝑥𝑛] ∣ 𝑓 (𝑎1,… , 𝑎𝑛) = 0 ∀(𝑎1,… , 𝑎𝑛) ∈ 𝑋 }

to be the ideal of polynomial functions vanishing on 𝑋 . The coordinate ring 𝐴𝑋 = k[𝑋] of

𝑋 is defined as the quotient

𝐴𝑋 = k[𝑥1,… , 𝑥𝑛]/𝐼 (𝑋).

Let 𝑝 = (𝑎1,… , 𝑎𝑛) ∈ 𝑋 be any point of 𝑋 , then we define

m𝑝 = 𝐼 (𝑝) = {𝑓 ∈ k[𝑥1,… , 𝑥𝑛] ∣ 𝑓 (𝑝) = 𝑓 (𝑎1,… , 𝑎𝑛) = 0} = ⟨𝑥1 − 𝑎1,… , 𝑥𝑛 − 𝑎𝑛⟩.

The idealm𝑝 is maximal and corresponds to a maximal ideal of𝐴𝑋 , which will be denoted by

m𝑝 as well. Denote by Specm𝐴𝑋 the set of all maximal ideals of𝐴𝑋 . Hilbert’s Nullstellensatz

states that the map 𝑋 → Specm𝐴𝑋 defined by 𝑝 ↦ m𝑝 is a bijection [Har77, Theorem

1.3A].
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The induced Zariski topology from 𝔸𝑛
makes an affine algebraic set 𝑋 ⊂ 𝔸𝑛

a topo-

logical space as well. An affine algebraic variety is an irreducible affine algebraic set, i.e.

an algebraic set 𝑋 ⊂ 𝔸𝑛
k is an algebraic variety if it is not a union of two proper closed

subsets. An algebraic set 𝑋 is an algebraic variety if and only if 𝐴𝑋 is an integral domain,

which is true if and only if 𝐼 (𝑋) is a prime ideal of the polynomial algebra k[𝑥1,… , 𝑥𝑛]. In

particular, the affine space 𝔸𝑛
is an affine algebraic variety.

For more on affine algebraic varieties, we refer to [Har77, Chapter I] and [Sha94a].

Appendix A of this thesis gives the basics of scheme theory. Affine algebraic varieties can

be defined in the scheme theoretical setting as integral separated affine schemes of finite
type over k, see Example A.0.14. Later in this thesis, we will use this association.

1.3 Tangent space and dimension
In this section, we define the notion of dimension and smoothness of an algebraic

variety. For more details, we recommend [Sha94a, Chapter 2]. If 𝑓 ∈ k[𝑥1,… , 𝑥𝑛] and

𝑝 = (𝑎1,… , 𝑎𝑛) ∈ 𝑋 is a point, then 𝑓 has a Taylor series expansion

𝑓 (𝑥) = 𝑓 (𝑝) + 𝑓 (1)(𝑥) +⋯ + 𝑓 (𝑘)(𝑥),

where 𝑓 (𝑖)
are homogeneous polynomials of degree 𝑖 in the variables 𝑥𝑗 − 𝑎𝑗 . The linear

form 𝑓 (1) ∶ k𝑛 → k𝑛 is called the differential of 𝑓 at 𝑝, and is denoted by 𝑑𝑝𝑓 . Explicitly,

we have

𝑑𝑝𝑓 (𝑥1,… , 𝑥𝑛) = 𝑓 (1)(𝑥1,… , 𝑥𝑛) =
𝑛

∑
𝑗=1

𝜕𝑓
𝜕𝑥𝑖

(𝑝)(𝑥𝑖 − 𝑎𝑖).

By definition,

𝑑𝑝(𝑓 + 𝑔) = 𝑑𝑝𝑓 + 𝑑𝑝𝑔, and 𝑑𝑝(𝑓 𝑔) = 𝑓 (𝑝)𝑑𝑝𝑔 + 𝑔(𝑝)𝑑𝑝𝑓

for all 𝑓 , 𝑔 ∈ 𝐴𝑋 . If the ideal 𝐼 (𝑋) is generated by 𝑓1,… , 𝑓𝑘, we define the tangent space
𝑇𝑝𝑋 of 𝑝 as the vector space

𝑇𝑝𝑋 = {(𝑥1,… , 𝑥𝑛) ∈ k𝑛 ∣ 𝑑𝑝𝑓𝑖(𝑥1,… , 𝑥𝑛) = 0, for each 𝑖 = 1,… , 𝑘}.

If 𝐹 ∈ 𝐴𝑋 is such that 𝐹 = 𝑓 + 𝐼𝑋 , then we set the differential of 𝐹 at 𝑝 as 𝑑𝑝𝐹 ∶= 𝑑𝑝𝑓 |𝑇𝑝𝑋 .

It is possible to show that 𝑑𝑝𝐹 is a well-defined linear form on 𝑇𝑝𝑋 [Sha94a, Section

2.1.3].

We define the dimension of 𝑋 as

dim𝑋 = max
𝑝∈𝑋

dim 𝑇𝑝𝑋

the maximal dimension of the tangent vector spaces of𝑋 . This is one of the many equivalent

ways of defining the dimension of an affine algebraic variety. A point 𝑝 ∈ 𝑋 such that

dim 𝑇𝑝𝑋 = dim𝑋 is called non-singular point. We say that 𝑋 is smooth if every point is

non-singular.

Let m𝑝 be the maximal ideal of 𝐴𝑋 corresponding to 𝑝 ∈ 𝑋 . We have that 𝑑𝑝 ∶ 𝐴𝑋 →
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(𝑇𝑝𝑋)∗ is a well-defined linear map, and it inherits the relations

𝑑𝑝(𝐹𝐺) = 𝐹(𝑝)𝑑𝑝𝐺 + 𝐺(𝑝)𝑑𝑝𝐹 , for 𝐹 , 𝐺 ∈ 𝐴𝑋

Since 𝑑𝑝(𝛼) = 0 for all 𝛼 ∈ k and 𝐴𝑋 = k⊕m𝑝 as a vector space, we only need to consider

its restriction 𝑑𝑝 ∶ m𝑝 → (𝑇𝑝𝑋)∗.

Proposition 1.3.1 ([Sha94a, Theorem 2.1, Section 2.1.3]). The map 𝑑𝑝 is an isomorphism
between m𝑝/m2

𝑝 and (𝑇𝑝𝑋)∗.

Therefore, if 𝑝 is non-singular, we get that dimm𝑝/m2
𝑝 = dim𝑋 .

1.4 The Lie algebra of vector fields
In this section, we present one of the protagonists of this thesis: the Lie algebra of

vector fields on an algebraic variety. By Example 1.1.4, the set of all derivations

𝑋 = Derk(𝐴𝑋 ) = {𝐷 ∈ Endk(𝐴𝑋 ) ∣ 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏 + 𝑎𝐷(𝑏) for all 𝑎, 𝑏 ∈ 𝐴𝑋 }

is a Lie subalgebra of glk(𝐴𝑋 ), because the commutator of two derivations is a deriva-

tion.

Example 1.4.1. Let 𝑋 = 𝔸𝑛
, then 𝐴𝔸𝑛 = k[𝑥1,… , 𝑥𝑛], and we will denote 𝔸𝑛 ∶= 𝑉𝑛 =

Derk(k[𝑥1,… , 𝑥𝑛]). Thus,

𝑉𝑛 =
𝑛

⨁
𝑖=1

k[𝑥1,… , 𝑥𝑛]
𝜕
𝜕𝑥𝑖
,

where
𝜕
𝜕𝑥𝑖

∈ 𝑋 is the partial derivative with respect to 𝑥𝑖.

Example 1.4.2. Let

𝑋 = 𝕋𝑛 =
𝑛

∏
𝑖=1

𝕊1 =
{
(𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛) ∈ 𝔸2𝑛 ∣ 𝑥2𝑖 + 𝑦

2
𝑖 = 1, 𝑖 = 1,… , 𝑛

}
,

then 𝐼𝕋𝑛 = (𝑥2𝑖 + 𝑦2𝑖 − 1, 𝑖 = 1,… , 𝑛). The algebra homomorphism given by 𝑡𝑗 ↦ 𝑦𝑗 −
𝑖𝑥𝑗 + 𝐼𝕋𝑛 and 𝑡−1𝑗 ↦ 𝑦𝑗 + 𝑖𝑥𝑗 + 𝐼𝕋𝑛 defines an isomorphism between 𝐴𝕋𝑛 and the Laurent

polynomial algebra in 𝑛 variables k[𝑡±11 ,… , 𝑡±1𝑛 ]. For each 𝑖 = 1,… , 𝑛, we define 𝑑𝑖 = 𝑡𝑖 𝜕𝜕𝑡𝑖 ,
where

𝜕
𝜕𝑡𝑖

∈ 𝑋 is the partial derivative with respect to 𝑡𝑖. Then,

[𝑡𝑟𝑑𝑎, 𝑡𝑠𝑑𝑏] = 𝑠𝑎𝑡𝑟+𝑠𝑑𝑏 − 𝑟𝑏𝑡𝑟+𝑠𝑑𝑎, 𝑎, 𝑏 = 1,… , 𝑛, 𝑟, 𝑠 ∈ ℤ𝑛,

where we set 𝑡𝑟 = 𝑡𝑟11 ⋯ 𝑡𝑟𝑛𝑛 for each 𝑟 = (𝑟1,… , 𝑟𝑛) ∈ ℤ𝑛
. Hence, the adjoint action of

𝑑1,… , 𝑑𝑛 defines a ℤ𝑛
-grading on 𝕋𝑛 , and

𝕋𝑛 ≅
𝑛

⨁
𝑖=1

k[𝑡±11 ,… , 𝑡±1𝑛 ]𝑑𝑖.

The Lie algebra 𝕋𝑛 is called generalized Witt algebra [BF18]. When 𝑛 = 1, then 𝕊1 is the

Witt algebra whose universal central extension is the famous Virasoro algebra [Mat92a].
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Various properties of the Lie algebra 𝑋 depend on the affine variety it is associated

with, including simplicity as the following theorem shows.

Theorem 1.4.3 ([Jor86; Sie96]). Let 𝑋 be an affine algebraic variety with coordinate ring
𝐴𝑋 , then the Lie algebra Der(𝐴𝑋 ) is simple if and only if 𝑋 is smooth.

Therefore, this thesis focuses on the representation theory of an infinite family of

simple Lie algebras. Their properties change a lot depending on which affine algebraic

variety they are associated with.

In [BF18], this theorem was reviewed and many examples of these Lie algebras were

investigated. Using the next proposition, we may create a relation between the Lie algebra

𝑋 and a quotient of 𝑉𝑛 = Der (k[𝑥1,… , 𝑥𝑛]).

Proposition 1.4.4 ([BF18, Proposition 3.1]). There exists an isomorphism between 𝑋 =
Derk(𝐴𝑋 ) and {𝜇 ∈ 𝑉𝑛 ∣ 𝜇 (𝐼 (𝑋)) ⊂ 𝐼 (𝑋)} / {𝜇 ∈ 𝑉𝑛 ∣ 𝜇(k[𝑥1,… , 𝑥𝑛]) ⊂ 𝐼 (𝑋)}.

Remark 1.4.5. As explained in [BF18], the isomorphism presented in Proposition 1.4.4 al-

lows us to represent derivations in Derk(𝐴𝑋 ) as elements of the free𝐴𝑋 -module

𝑛

⨁
𝑖=1
𝐴𝑋

𝜕
𝜕𝑥𝑖

.

If 𝐴𝑋 = k[𝑥1,… , 𝑥𝑛]/(𝑓1,… , 𝑓𝑠), then an element 𝜇 = 𝑔1
𝜕
𝜕𝑥1

+⋯ + 𝑔𝑛
𝜕
𝜕𝑥𝑛

∈
𝑛

⨁
𝑖=1
𝐴𝑋

𝜕
𝜕𝑥𝑖

is a

derivation of 𝐴𝑋 if and only if

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

𝑔1 𝜕𝑓1𝜕𝑥1
+⋯ + 𝑔𝑛 𝜕𝑓1𝜕𝑥𝑛

= 0
𝑔1 𝜕𝑓2𝜕𝑥1

+⋯ + 𝑔𝑛 𝜕𝑓2𝜕𝑥𝑛
= 0

⋮
𝑔1 𝜕𝑓𝑠𝜕𝑥1 +⋯ + 𝑔𝑛 𝜕𝑓𝑠𝜕𝑥𝑛

= 0

holds in 𝐴𝑋 .

In general, the Lie algebras 𝑋 can have different properties depending on the variety

𝑋 considered. For instance, the Lie algebra 𝑋 is always a projective module over the

coordinate ring 𝐴𝑋 (since 𝑋 is smooth), however, it is not always a free module as the

next example shows.

Example 1.4.6. Let 𝑋 = 𝕊2 =
{
(𝑎1, 𝑎2, 𝑎3) ∈ 𝔸3 ∣ 𝑎21 + 𝑎22 + 𝑎23 = 1

}
. We may use Re-

mark 1.4.5 to find elements of 𝕊2 inside

3

⨁
𝑖=1
𝐴𝕊2

𝜕
𝜕𝑥𝑖

. The derivations

Δ𝑖𝑗 = 𝑥𝑖
𝜕
𝜕𝑥𝑗

− 𝑥𝑗
𝜕
𝜕𝑥𝑖

∈ 𝕊2

with 𝑖 < 𝑗 ∈ {1, 2, 3} generate 𝕊2 as a module over 𝐴𝕊2 but not freely since

𝑥1Δ23 − 𝑥2Δ13 + 𝑥3Δ12 = 0.

Both 𝔸𝑛 and 𝑇 𝑛 are not only free as modules over the respective coordinate ring, but
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they have a Cartan subalgebra that decomposes them in weight spaces. In general, this

will rarely occur. Some of the Lie algebras may not even have semisimple or nilpotent

elements as the next example shows.

Example 1.4.7. Let ℎ ∈ k[𝑥] be a polynomial of odd degree equal to 2𝑚 + 1 ≥ 3. The

hyperelliptic curve  = {(𝑥, 𝑦) ∣ 𝑦2 = 2ℎ(𝑥)} ⊂ 𝔸2
is smooth if and only if gcd(ℎ, ℎ′) =

1 [BF18, Proposition 5.1]. As a vector space, its coordinate ring 𝐴 is k[𝑥] ⊕ 𝑦k[𝑥] and it

has a filtration given by

deg(𝑥𝑘) = 2𝑘 and deg(𝑦𝑥𝑘) = 2𝑘 + 2𝑚 + 1.

The Lie algebra  is a free module over 𝐴 and it is generated by 𝜏 = 𝑦 𝜕
𝜕𝑥 + ℎ

′(𝑥) 𝜕𝜕𝑦 . The

filtration on 𝐴 induces a filtration on  by deg(𝑔𝜏) = deg(𝑔) + 2𝑚 − 1 such that

deg([𝜂, 𝜇]) = deg(𝜂) + deg(𝜇) > deg(𝜂) ≥ 1

if deg(𝜂) ≠ deg(𝜇). Hence, 𝜂 is the only eigenvector of ad𝜂 for every 𝜂 ∈  , i.e.  has

no semisimple elements. Similarly,  has no nilpotent elements as well.

1.5 The module of Kähler differentials and the tangent
sheaf

When it comes to the infinitesimal theory of algebraic varieties, the module of Kähler
differentials appears as a substitute for the notion of differential forms. In this section, we

introduce the notion of derivation of an algebra into a module and we define the module

of Kähler differentials, then we show how they are related. We will use these notions to

introduce one of the main objects of study of this thesis.

Let 𝑅 be a commutative ring and 𝐴 be an 𝑅-algebra. For any 𝐴-module, a derivation of
𝐴 into 𝑀 is an 𝑅-linear map 𝐷 ∶ 𝐴 → 𝑀 such that

𝐷(𝑎𝑏)𝑚 = (𝐷(𝑎)𝑏 + 𝑎𝐷(𝑏))𝑚

for all 𝑎, 𝑏 ∈ 𝐴 and 𝑚 ∈ 𝑀 . We denote the space of all derivations of 𝐴 into 𝑀 by

Der𝑅(𝐴,𝑀). Since the sum of two derivations is a derivation and 𝑎𝐷 is a derivation for

each 𝑎 ∈ 𝐴 and 𝐷 ∈ Der𝑅(𝐴,𝑀), we have that Der𝑅(𝐴,𝑀) is an 𝐴-module.

The 𝐴-module of Kähler differentials Ω𝑅/𝐴 relative to 𝑅 is the 𝐴-module generated by

the symbols d𝑎 for all 𝑎 ∈ 𝐴 subject to the relations

d(𝑟𝑎 + 𝑏) = 𝑟d𝑎 + d𝑏, 𝑑(𝑎𝑏) = 𝑎d𝑏 + 𝑏d𝑎, 𝑎, 𝑏 ∈ 𝐴, 𝑟 ∈ 𝑅.

Note that Ω𝑅/𝐴 comes with a linear map d ∶ 𝐴 → Ω𝑅/𝐴 given by 𝑎 ↦ d𝑎. If𝐷 ∈ Der𝑅(𝐴,𝑀),
then define 𝜑𝐷 ∶ Ω𝐴/𝑅 → 𝑀 as 𝜑(d𝑎) = 𝐷(𝑎). Since𝐷 is a derivation of𝐴 into𝑀 , it follows

that 𝜑𝐷 is a homomorphism of 𝐴-modules. By construction, 𝜑𝐷 is the only 𝐴-module

homomorphism such that 𝜑𝐷 ◦d = 𝐷. It follows that d is a universal homomorphism.

Proposition 1.5.1. Let 𝑅 be a commutative ring, 𝐴 an 𝑅-algebra and Ω𝑅/𝐴 the 𝐴-module of
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Kähler differentials relative to 𝑅. Then the universal derivation d ∶ 𝐴 → Ω𝑅/𝐴 is a derivation
of 𝐴 into Ω𝑅/𝐴 and satisfies the universal property: for any derivation 𝐷 ∈ Der𝑅(𝐴,𝑀), there
exists a unique homomorphism of 𝐴-modules 𝜑 ∶ Ω𝐴/𝑅 → 𝑀 such that 𝐷 = 𝜑 ◦ d. Therefore,
the composition with d provides the isomorphism

Hom𝐴(Ω𝐴/𝑅, 𝑀) ≅ Der𝑅(𝐴,𝑀).

for every 𝐴-module 𝑀 .

In the case that 𝑀 = 𝐴, we will denote Der𝑅(𝐴,𝑀) by simply Der𝑅(𝐴). The last

proposition together with Proposition 1.4.4 implies the following corollary.

Corollary 1.5.2. Let 𝑋 be an algebraic variety. Then the following are isomorphic to each
other:

1. 𝑋 = Derk(𝐴𝑋 );

2. {𝜇 ∈ 𝑉𝑛 ∣ 𝜇(𝐼 (𝑋)) ⊂ 𝐼 (𝑋)} / {𝜇 ∈ 𝑉𝑛 ∣ 𝜇(k[𝑥1,… , 𝑥𝑛]) ⊂ 𝐼 (𝑋)};

3. Hom𝐴𝑋 (Ω𝐴𝑋 ,k, 𝐴𝑋 ).

Example 1.5.3. Let𝐴 = k[𝑥1,… , 𝑥𝑛], then any element of Ω𝐴/k can be written as ∑𝑛
𝑖=1 𝑓𝑖𝑑𝑥𝑖

with 𝑓1,… , 𝑓𝑛 ∈ 𝐴. The image of 𝐴-homomorphism 𝛼𝑖 ∶ Ω𝐴/k → 𝐴 that sends d𝑥𝑗 to 𝛿𝑖𝑗
under the isomorphism Hom𝐴(Ω𝐴/k, 𝐴) ≅ Derk(𝐴) is the derivation

𝜕
𝜕𝑡𝑖

. Furthermore, Ω𝐴/k
has a basis of d𝑥1,… , d𝑥𝑛 as an 𝐴-module.

Let 𝐴 be a k-algebra. If ℎ ∈ 𝐴, we denote by 𝐴ℎ = 𝑆−1𝐴 where 𝑆 is the multiplicative

set 𝑆 = {ℎ𝑘 ∣ 𝑘 ≥ 0}. If p is a prime ideal of 𝐴, we denote by 𝐴p = 𝑆−1𝐴 where 𝑆 is the

multiplicative set 𝑆 = 𝐴 ⧵ p. We may localize 𝐴-modules as well, and we will use the

notations 𝑀𝑓 = 𝐴𝑓 ⊗𝐴 𝑀 and 𝑀p = 𝐴p ⊗𝐴 𝑀 for the localization of an 𝐴-module 𝑀 by

the multiplicative sets {ℎ𝑘 ∣ 𝑘 ≥ 0} and 𝐴 ⧵ p, respectively. For details on the localization

of algebras and modules, we refer to [AM69, Chapter 3].

Lemma 1.5.4. Let 𝑅 be a commutative algebra and 𝐴 an 𝑅-algebra, then

1. Ω𝐴′/𝑅′ ≅ Ω𝐴′/𝑅 ⊗𝑅 𝑅′, where 𝑅′ is another 𝑅-algebra and 𝐴′ = 𝐴 ⊗𝑅 𝑅′.

2. 𝑆−1Ω𝐴/𝑅 ≅ Ω𝑆−1𝐴/𝑅 for any multiplicative set 𝑆 ⊂ 𝐴.

Proof. See [Har77, Proposition 16.4, Proposition 16.9].

The Lemma 1.5.4 shows that the module of Kähler differentials interacts nicely with

localization. Combined with Proposition 1.5.1, we may use Lemma 1.5.4 to express the

tangent sheaf associated with an affine algebraic variety using the localization of its

coordinate ring. We refer to Appendix A for the basics of scheme theory and sheaf theory

that we will use in this thesis.

Lemma 1.5.4 implies that there is a sheaf Ω𝑋 on 𝑋 = Spec (𝐴) such that

Γ(𝐷(ℎ),Ω𝑋 ) = Ω𝐴ℎ,k, ℎ ∈ 𝐴.

This sheaf is called sheaf of differentials of 𝑋 over Spec (k).
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Let 𝑋 be a smooth affine algebraic variety, 𝐴 = 𝐴𝑋 be its coordinate ring and  = 𝑋 =
Derk(𝐴) the Lie algebra of vector fields on 𝑋 . We can now define a quasi-coherent sheaf

Θ𝑋 = ̃𝑋 on 𝑋 (more precisely, on Spec (𝐴)), called tangent sheaf. Since 𝐴 is Noetherian,

𝑆−1Hom𝐴(𝑀,𝑁 ) ≅ Hom𝑆−1𝐴(𝑆−1𝑀, 𝑆−1𝑁 ) for every finitely generated 𝐴-module 𝑀,𝑁 by

[Eis95, Proposition 2.10]. Therefore, by Proposition 1.5.1 and Lemma 1.5.4,

𝑆−1Derk(𝐴) ≅ 𝑆−1Hom𝐴(Ω𝐴,k, 𝐴) ≅ Hom𝑆−1𝐴(𝑆−1Ω𝐴,k, 𝑆−1𝐴)
≅ Hom𝑆−1𝐴(Ω𝑆−1𝐴,k, 𝑆−1𝐴) ≅ Derk(𝑆−1𝐴).

This means that Θ𝑋,ℎ = Derk(𝐴𝑋,ℎ) for every ℎ ∈ 𝐴 and Θ𝑋,𝑝 = Derk (𝐴m𝑝) for every

𝑝 ∈ 𝑋 . Furthermore, the isomorphism on Proposition 1.5.1 implies an isomorphism of

sheaves

Hom𝑋 (Ω𝑋 ,𝑋 ) ≅ Θ𝑋 .

1.6 Local parameters and uniformizing parameters
Suppose that 𝑋 is smooth, and dim𝑋 = 𝑟 . Let 𝑝 ∈ 𝑋 . We say that 𝑢1,… , 𝑢𝑟 ∈ 𝐴𝑋 are

local parameters at 𝑝 ∈ 𝑋 if each 𝑢𝑖 ∈ m𝑝, and their images form a basis of the vector

space m/m2
𝑝. Using the isomorphism 𝑑𝑝 ∶ m𝑝/m2

𝑝 → 𝑇𝑝𝑋 ∗
, we see that 𝑢1,… , 𝑢𝑟 are local

parameters if and only if the linear forms 𝑑𝑝𝑢1,… , 𝑑𝑝𝑢𝑟 are linearly independent. This is

equivalent to saying that the system of equations

𝑑𝑝𝑢1 = ⋯ = 𝑑𝑝𝑢𝑟 = 0

has 0 as its only solution on 𝑇𝑝𝑋 .

We know the images of 𝑥1 − 𝑎1,… , 𝑥𝑛 − 𝑎𝑛 generate m𝑝/m2
𝑝. We will show how to get

local parameters at 𝑝 using these functions. Let 𝐼𝑋 = (𝑓1,… , 𝑓𝑚), and define

J(𝑝) =
⎡
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓1
𝜕𝑥𝑛

(𝑝)
⋯

𝜕𝑓𝑚
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓𝑚
𝜕𝑥𝑛

(𝑝)

⎤
⎥
⎥
⎥
⎦

.

By definition of 𝑇𝑝𝑋 , dim 𝑇𝑝𝑋 = 𝑛 − rank 𝐽 (𝑝). Thus, there exists a nonzero (𝑛 − 𝑟)-
minor of 𝐽 (𝑝), since 𝑝 is nonsingular. Suppose the principal (𝑛− 𝑟)-minor ℎ(𝑝) is nonzero,

then

𝑡1 = 𝑥𝑛−𝑟+1 − 𝑎𝑛−𝑟+1, … , 𝑡𝑟 = 𝑥𝑛 − 𝑎𝑛
may be chosen as local parameters at 𝑝 = (𝑎1,… , 𝑎𝑛). Similarly, if the (𝑛 − 𝑟)-minor

with row indices 𝛼 = {𝑖1,… , 𝑖𝑛−𝑟} and columns indices 𝛽 = {𝑗1,… , 𝑗𝑛−𝑟} is nonzero, then

𝑡𝑖 = 𝑥𝑖 − 𝑎𝑖, 𝑖 ∉ 𝛽, can be chosen as local parameters at 𝑝 = (𝑎1,… , 𝑎𝑛) [BN19, Lemma

3].

For each ℎ ∈ 𝐴𝑋 , define 𝐷(ℎ) = {𝑞 ∈ 𝑋 ∣ ℎ(𝑞) ≠ 0}. Thus, if 𝑝 ∈ 𝑋 and ℎ(𝑝) ≠ 0, then

𝐷(ℎ) is an open neighborhood of 𝑝. Let 𝐽 = (
𝜕𝑓𝑖
𝜕𝑥𝑗 ), and {ℎ𝑗 ∣ 𝑗 ∈ 𝐽 } be the set of all nonzero

(𝑛 − 𝑟)-minors of 𝐽 . Thus, {𝐷(ℎ𝑗) ∣ 𝑗 ∈ 𝐽 } is an open cover of 𝑋 [BN19, Lemma 2], and

hence it is an atlas for 𝑋 , called standard atlas and its open sets 𝐷(ℎ𝑗) are called standard
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charts.

Definition 1.6.1. Let  be the structure sheaf of 𝑋 and 𝑈 ⊂ 𝑋 an affine open subset, then

𝑡1,… , 𝑡𝑠 ∈ 𝐴 are called uniformizing parameters on 𝑈 if

1. 𝑡1,… , 𝑡𝑠 are algebraically independent over k, thus k[𝑡1,… , 𝑡𝑠] ⊂ 𝐴𝑋 ;

2. every 𝑓 ∈ 𝐴𝑋 is algebraic over k[𝑡1,… , 𝑡𝑠], that is, there exists a polynomial 𝑝(𝑥) ∈
k[𝑡1,… , 𝑡𝑠][𝑥] such that 𝑝(𝑓 ) = 0;

3.
𝜕
𝜕𝑡𝑖

extends uniquely to a derivation of the localized algebra 𝐴𝑈 = Γ(𝑈,).

If 𝑈 has uniformizing parameters 𝑡1,… , 𝑡𝑠, then we say that 𝑈 is an ètale chart.

If 𝑡1,… , 𝑡𝑠 ∈ 𝐴𝑋 are uniformizing parameters in the chart 𝐷(ℎ), then 𝑠 = 𝑟 = dim𝑋 ,

each element of 𝑓 ∈ 𝐴𝐷(ℎ) is algebraic over k[𝑡1,… , 𝑡𝑠], and Derk(𝐴𝐷(ℎ)) =
𝑟

⨁
𝑖=1
𝐴𝐷(ℎ)

𝜕
𝜕𝑡𝑖

.

Furthermore, if 𝜂 ∈  then there exist unique 𝑔1,… , 𝑔𝑟 ∈ 𝐴𝐷(ℎ) such that 𝜂 =
𝑟

∑
𝑖=1
𝑔𝑖
𝜕
𝜕𝑡𝑖

,

since  ⊂ Derk(𝐴𝐷(ℎ)).

If 𝑥𝑖1 ,… , 𝑥𝑖𝑟 are the variables such that the 𝑖𝑎-collumn is not part of the minor ℎ ∈
{ℎ𝑗 ∣ 𝑗 ∈ 𝐽 }, then 𝑥𝑖1 ,… , 𝑥𝑖𝑟 are uniformizing parameters in 𝐷(ℎ) [BN19, Lemma 3], called

standard uniformizing parameters. If 𝑡1,… , 𝑡𝑟 are standard uniformizing parameters in the

standard chart 𝐷(ℎ), then ℎ 𝜕
𝜕𝑡𝑖

∈ 𝑋 for each 𝑖 = 1,… , 𝑟 [BF18, Section 3].

The isomorphism Hom𝐴𝐷(ℎ) (Ω𝐴𝐷(ℎ)/k, 𝐴𝐷(ℎ))
≅−→ Derk(𝐴𝐷(ℎ)) =

𝑟

⨁
𝑖=1
𝐴𝐷(ℎ)

𝜕
𝜕𝑡𝑖

sends the

map 𝛼𝑗 ∶ Ω𝐴𝐷(ℎ)/k → 𝐴𝐷(ℎ) given by 𝑔𝑑𝑡𝑖 ↦ 𝛿𝑖𝑗 to
𝜕
𝜕𝑡𝑗

. Hence, the maps 𝛼1,… , 𝛼𝑟
freely generate Hom𝐴𝐷(ℎ) (Ω𝐴𝐷(ℎ)/k, 𝐴𝐷(ℎ)). Since 𝛼1,… , 𝛼𝑟 are the dual of d𝑡1,… , d𝑡𝑟 in

Hom𝐴𝐷(ℎ) (Ω𝐴𝐷(ℎ)/k, 𝐴𝐷(ℎ)), we have that Ω𝐴𝐷(ℎ)/k is also a free 𝐴𝐷(ℎ)-module, and d𝑡1,… , d𝑡𝑟
forms a basis of it.

Proposition 1.6.2 ([BFN19, Lemma 3]). Let ℎ ∈ 𝐴𝑋 and 𝑡1,… , 𝑡𝑟 ∈ 𝐴𝑋 uniformizing
parameters of 𝐷(ℎ). Let 𝑝 ∈ 𝐷(ℎ), and define 𝑡 𝑖 = 𝑡𝑖 − 𝑡𝑖(𝑝) for each 𝑖 = 1,… , 𝑟 . Then,
𝑡1,… , 𝑡𝑟 are local parameters at 𝑝.

Example 1.6.3. Let 𝑋 = 𝕊2 = {(𝑥, 𝑦, 𝑧) ∈ k3 ∣ 𝑥2 + 𝑦2 + 𝑧2 = 1} and 𝐴 = 𝐴𝕊2 . Its Jacobian

matrix is

Jac = [2𝑥 2𝑦 2𝑧] .

We may choose ℎ = 𝑧 and 𝐷(ℎ) = 𝑋 ⧵ {(𝑥, 𝑦, 𝑧) ∈ 𝑋 ∣ 𝑧 = 0} as standard chart. Note that

𝑥, 𝑦 are algebraically independent over k. Let 𝑝 ∈ k[𝑥, 𝑦][𝑢] given by 𝑝(𝑢) = 𝑢2+𝑥2+𝑦2−1,

then 𝑝(𝑧) = 0 and 𝑧 is algebraic over k[𝑥, 𝑦]. Since 𝑥, 𝑦, 𝑧 generates 𝐴 as a ring, every

element of 𝐴 is algebraic over k[𝑥, 𝑦]. Note that 0 = 𝜕
𝜕𝑥 (𝑥

2 + 𝑦2 + 𝑧2 − 1) = 2𝑥 + 2𝑧 𝜕𝑧𝜕𝑥 ,

so
𝜕𝑧
𝜕𝑥 = − 𝑥

𝑧 which determines
𝜕
𝜕𝑥 ∈ Der(𝐴ℎ). By symmetry

𝜕𝑧
𝜕𝑦 = −𝑦

𝑧 . Therefore, 𝑥, 𝑦 are

uniformizing parameters in 𝐷(𝑧).
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Example 1.6.4. Let

𝑋 = 𝕋𝑛 =
𝑛

∏
𝑖=1

𝕊1 =
{
(𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) ∈ 𝔸2𝑛 ∣ 𝑥2𝑖 + 𝑦

2
𝑖 = 1 ∀𝑖 = 1,… , 𝑛

}

be the 𝑛-torus. Note that 𝐴 = k[𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛]/𝐼 , where 𝐼 = ⟨𝑥2𝑗 + 𝑦2𝑗 = 1 ∣ 𝑗 = 1,… , 𝑛⟩.

Let ℎ =
𝑛

∏
𝑗=1
𝑦𝑗 + 𝐼 , then 𝐷(ℎ) = 𝑋 ⧵ {(𝑥1, 𝑦1,… , 0,±1,… , 𝑥𝑛, 𝑦𝑛) ∈ 𝑋 } is 𝑋 without two

(𝑛 − 1)-tori. We will prove that 𝑥1 + 𝐼 ,… , 𝑥𝑛 + 𝐼 are uniformizing parameters for 𝐷(ℎ).
They are algebraically independent. If 𝑞𝑗(𝑢) = 𝑥2𝑗 + 𝑢2 − 1 + 𝐼 ∈ k[𝑥1 + 𝐼 ,… , 𝑥𝑛 + 𝐼 ][𝑢],
then 𝑞𝑗(𝑦𝑗 + 𝐼 ) = 0. Since 𝐴 is generated by 𝑥𝑗 , 𝑦𝑗 as an algebra, each element of 𝐴 is

algebraic over k[𝑥1 + 𝐼 ,… , 𝑥𝑛 + 𝐼 ]. Since 0 = 𝜕
𝜕𝑥𝑎

(𝑥2𝑏 + 𝑦2𝑏) = 2𝛿𝑎𝑏𝑥𝑏 + 2𝑦𝑏 𝜕𝑦𝑏𝜕𝑥𝑎
, we have that

𝜕𝑦𝑎
𝜕𝑥𝑏

= −𝛿𝑎𝑏 𝑥𝑎𝑦𝑎 and it determines
𝜕
𝜕𝑥𝑎

∈ 𝐴ℎ. Therefore, 𝑥1,… , 𝑥𝑛 are uniformizing parameters

for 𝐷(ℎ). In the other hand, 𝑦1,… , 𝑦𝑛 are uniformizing parameters for 𝐷(𝑥1 ⋯ 𝑥𝑛).

If 𝐷(ℎ) is a standard chart of 𝑋 , we may see 𝐷(ℎ) itself as a smooth affine algebraic

variety with coordinate ring

𝐴ℎ ≅ k[𝑥1,… , 𝑥𝑛, 𝑡]/(𝑓1,… , 𝑓𝑟 , 𝑡ℎ − 1)

where 𝐴 = k[𝑥1,… , 𝑥𝑛]/(𝑓1,… , 𝑓𝑟) is the coordinate ring of 𝑋 . Without loss of generality,

assume that 𝑡1 = 𝑥1,… , 𝑡𝑟 = 𝑥𝑟 are standard uniformizing parameters in 𝐷(ℎ). We may

apply Remark 1.4.5 and solve that system to obtain a basis

𝜏𝑖 =
𝜕
𝜕𝑥𝑖

+
1
ℎ

𝑛

∑
𝑗=𝑛−𝑟+1

𝑞1𝑗
𝜕
𝜕𝑥𝑗

, 𝑖 = 1,… , 𝑟

of Γ(𝐷(ℎ),𝑋 ) = Der (𝐴ℎ) as an Γ(𝐷(ℎ),𝑋 ) = 𝐴ℎ-module. We have that 𝜏𝑖(𝑥𝑗) = 𝛿𝑖𝑗 , and

𝜏1,… , 𝜏𝑟 are exactly the derivatives that
𝜕
𝜕𝑡1
,… , 𝜕𝜕𝑡𝑟 extends to. For every 𝑝 ∈ 𝐷(ℎ), 𝜏1,… , 𝜏𝑟

extend to derivations of 𝑋,𝑝 = 𝐴m𝑝 and

Θ𝑋,𝑝 = Derk (𝑋,𝑝) =
𝑟

⨁
𝑖=1

𝑋,𝑝𝜏𝑖.

Example 1.6.5. Let 𝑋 = 𝕊2 =
{
(𝑎1, 𝑎2, 𝑎3) ∈ 𝔸3

k ∣ 𝑎21 + 𝑎22 + 𝑎23 = 1
}
⊂ 𝔸3

k be the sphere,

and 𝐴 = k[𝑥1, 𝑥2, 𝑥3]/(𝑥21 + 𝑥22 + 𝑥23 − 1) its coordinate ring. Take the standard chart

𝐷(2𝑥3) = 𝐷(𝑥3), then 𝜇 = 𝑔1 𝜕
𝜕𝑥1

+ 𝑔2 𝜕
𝜕𝑥2

+ 𝑔3 𝜕
𝜕𝑥3

∈ Derk(𝐴𝑥3) if and only if

𝑥1𝑔1 + 𝑥2𝑔2 + 𝑥3𝑔3 = 0.

Thus, 𝑔3 = − 𝑥1
𝑥3
𝑔1 − 𝑥2

𝑥3
𝑔2, and

𝜇 = 𝑔1(
𝜕
𝜕𝑥1

−
𝑥1
𝑥3

𝜕
𝜕𝑥3)

+ 𝑔2(
𝜕
𝜕𝑥2

−
𝑥2
𝑥3

𝜕
𝜕𝑥3)

.
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We have that 𝑡1 = 𝑥1, 𝑡2 = 𝑥2 are standard uniformizing parameters in the chart 𝐷(𝑥3) and

(
𝜕
𝜕𝑥𝑖

−
𝑥𝑖
𝑥3

𝜕
𝜕𝑥3)

(𝑥𝑗) = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, 2.

Hence, the local sections 𝜏1 = 𝜕
𝜕𝑥1

− 𝑥1
𝑥3

𝜕
𝜕𝑥3

and 𝜏2 = 𝜕
𝜕𝑥2

− 𝑥2
𝑥3

𝜕
𝜕𝑥3

are the partial derivatives

𝜕
𝜕𝑡1

and
𝜕
𝜕𝑡2

, respectively. Moreover,

Γ(𝐷(𝑥3),Θ𝑋 ) = Der(𝐴𝑥3) = 𝐴𝑥3𝜏1 ⊕ 𝐴𝑥3𝜏2.

Note that 𝜏1 and 𝜏2 are not global, but 𝑥3𝜏1 and 𝑥3𝜏2 are. This process can be done similarly

with the other two standard charts 𝐷(𝑥1) and 𝐷(𝑥2).

1.7 Power series and filtrations

Let 𝑝 ∈ 𝑋 be a nonsingular point of 𝑋 with local parameters 𝑡1,… , 𝑡𝑟 ∈ 𝐴. For any

𝑓 ∈ 𝐴m𝑝 is possible to find 𝐹𝑖 ∈ k[𝑇1,… , 𝑇𝑠] of degree 𝑖, 𝑖 ≥ 0, such that 𝑓 −
𝑘

∑
𝑖=0
𝐹𝑖(𝑡1,… , 𝑡𝑠) ∈

m𝑘+1
𝑝 [Sha94a, Section II.2.2]. Thus we can define the formal power series Ψ =

∞

∑
𝑖=0
𝐹𝑖 of 𝑓 ,

called Taylor series.

Theorem 1.7.1 ([Sha94a, Section II.2.2]). Every function 𝑓 ∈ 𝐴m𝑝 has at least one Taylor
series. If 𝑝 is nonsingular, then a function has a unique Taylor series.

Therefore, we have a uniquely determined map 𝜋 ∶ 𝐴 → 𝑅 that takes each functions to

its Taylor series, where 𝑅 = k[[𝑇1,… , 𝑇𝑠]] such that 𝜋(𝑡𝑖) = 𝑇𝑖. It is possible to show that

𝜋 is a homomorphism of algebras. The kernel of 𝜋 is equal to {𝑓 ∈ 𝑃 ∣ 𝑓 ∈ m𝑘+1
𝑝 ∀𝑘 ≥ 0},

thus 𝑓 ∈ ker 𝜋 if and only if 𝑓 ∈
∞

⋂
𝑘=0

m𝑘
𝑃 = (0). Thus 𝜋 is injective, and every element of

m𝑝/m2
𝑃 is uniquely determined by its Taylor series.

Example 1.7.2. Let 𝑋 = 𝔸1
with coordinate 𝑡, and let 𝑝 = 0. Then m𝑝 = (𝑡), and one

can associate a power series

∞

∑
𝑚=0

𝛼𝑚𝑡𝑚 with any rational function 𝑓 (𝑡) = 𝑃(𝑡)/𝑄(𝑡) with

𝑄(0) ≠ 0 such that

𝑃(𝑡)
𝑄(𝑡)

−
𝑘

∑
𝑚=0

𝛼𝑚𝑡𝑚 = 0 mod 𝑡𝑘+1.

For example,

1
1 − 𝑡

=
∞

∑
𝑚=0

𝑡𝑚, because

1
1 − 𝑡

−
𝑘

∑
𝑚=0

𝑡𝑚 =
𝑡𝑘+1

1 − 𝑡
= 0 mod 𝑡𝑘+1.

Let m0 be the ideal in 𝑅 of power series without constant term. Consider descending
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chain in 𝐴 and 𝑅:

𝐴 ⊃ m𝑝 ⊃ m2
𝑝 ⊃ m3

𝑃 ⊃ …
𝑅 ⊃ m0 ⊃ m2

0 ⊃ m3
0 ⊃ …

(1.1)

We define topologies on 𝐴 and 𝑅 by taking (1.1) to be bases of open neighborhoods of

0. Since

∞

⋂
𝑘=0

m𝑘
𝑝 = (0) and

∞

⋂
𝑘=0

m𝑘
𝑝 = (0), these topologias are separable. In this topology,

the closure of k[𝑡1,… , 𝑡𝑟] is 𝐴, hence k[𝑡1,… , 𝑡𝑟] is a dense subset of 𝐴. By construction,

𝜋(m𝑗
𝑝) ⊂ m𝑗

0, hence the map 𝜋 is continuous.

Remark 1.7.3. Suppose 𝑋 ⊂ 𝐴𝑛. Denote by m′
𝑝 the ideal of k[𝑥1,… , 𝑥𝑛] corresponding to

𝑝, then we have that

(𝑇𝑝𝑋)∗ ≅ m𝑝/m2
𝑝 ≅ m′

𝑝/(m
′
𝑝)

2 ≅ m0/m2
0.

Fix a standard chart 𝐷(ℎ) with 𝑝 ∈ 𝐷(ℎ) and suppose that 𝑡1,… , 𝑡𝑟 ∈ 𝐴 are standard

uniformizing parameters. For 𝑙 ≥ −1 define 𝑋 (𝑙) =
{
𝜂 ∈ 𝑋 ∣ 𝜂(𝐴) ⊂ m𝑙−1

𝑝

}
. If 𝑙 + 𝑘 ≥ 1,

then [𝑋 (𝑙),𝑋 (𝑘)] ⊂ 𝑋 (𝑙 + 𝑘), thus 𝑋 (0) is an ideal of 𝑋 . Furthermore, we have a

filtration

𝑋 = 𝑋 (−1) ⊃ 𝑋 (0) ⊃ 𝑋 (1) ⊃ 𝑋 (2) ⊃ … ,

and 𝑋 (𝑙) = m𝑙+1
𝑝 𝑋 for every 𝑙 ≥ −1 [BFN19, Lemma 5]. Similarly, we construct a filtration

on ̂ = Derk(𝑅) = ⨁𝑟
𝑖=1 𝑅 𝜕

𝜕𝑇𝑖
given by

̂ = ̂(−1) ⊃ ̂(0) ⊃ ̂(1) ⊃ ̂(2) ⊃ … ,

with ̂(𝑙) = m𝑙
0̂.

Proposition 1.7.4 ([BF18, Proposition 3.2]). With the notation we fixed above, there exists
a unique embedding

𝜋 ∶ 𝑋 → ̂,

such that the following diagram is commutative

𝑋 × 𝐴 𝐴

̂ × 𝑅 𝑅

𝜋×𝜋 𝜋

where the horizontal arrows are the actions of a Lie algebra by derivations, i.e. (𝜇, 𝑓 ) ∈
𝑋 × 𝐴 ↦ 𝜇(𝑓 ) ∈ 𝐴 and (𝑑,Ψ) ∈ ̂ × 𝑅 ↦ 𝑑(Ψ) ∈ 𝑅.
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Chapter 2

Sheafification of 𝐴-modules

We move to the representation theory of the Lie algebras of vector fields on an affine

algebraic variety. Because of the lack of a common structure on these Lie algebras that

would allow us to use popular Lie theory techniques, we will consider representations

that admit a compatible action of the ring of functions associated with the variety. This

allows us to use techniques from commutative algebra and algebraic geometry to infer

interesting properties of these modules.

Suppose that 𝐴𝑋 is the coordinate ring of the smooth affine algebraic variety 𝑋 and

𝑋 = Der(𝐴𝑋 ) is its Lie algebra of derivations. In this chapter, we study the modules called

𝐴𝑋𝑋 -modules. These modules were instrumental in the classification of weight modules

with finite multiplicities over both 𝑇 𝑛 and 𝔸𝑛 , see [BF16] and [GS22].

There exist several examples of 𝐴𝑋𝑋 -modules that have a fundamental role in various

mathematical theories. For instance, both 𝐴𝑋 and 𝑋 are 𝐴𝑋𝑋 -modules as well as the

modules Ω𝑘𝑋 of 𝑘-differential forms on 𝑋 . Furthermore, every module over the algebra of

differential operators on 𝑋 is an 𝐴𝑋𝑋 -module, which evolves into a theory that finds

valuable applications across various mathematical domains.

The main objective of this chapter is to introduce a geometric object related to these

modules. In other words, for an 𝐴𝑋𝑋 -module 𝑀 that is finitely generated as 𝐴𝑋 -module,

we prove there is an action of the tangent sheaf Θ𝑋 on the coherent sheaf �̃� that is

compatible with its structure of module over the structure sheaf 𝑋 of 𝑋 . We called these

sheaves infinitesimally equivariant sheaves. Our approach to demonstrate this is fairly

algebraic and any reader familiar with the basics of commutative algebra theory should be

able to follow the proofs. We also prove that the associated representation 𝑋 → Endk(𝑀)
is a differential operator and finalize the chapter proving the main conjecture of [BFN19],

which states that every finite 𝐴-module is a gauge module. These results can be found

in the paper published by Bouaziz and the author [BR23], and we summarize them in the

following theorem.

Theorem. Let 𝑋 be smooth irreducible affine algebraic variety, 𝐴 be its coordinate ring and
 = Der(𝐴). Then,

1. Every finite 𝐴-module is a gauge module.
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2. There is an equivalence between the category of finite 𝐴-modules and the category of
infinitesimally equivariant bundles on 𝑋 .

3. If 𝑀 is a finite 𝐴-module with associated -representation 𝜌 ∶  → glk(𝑀), then 𝜌
is a differential transformation with order less or equal to a number that depends solely
on the rank of 𝑀 as an 𝐴-module.

For a more explicit claim of these results, we refer to the conclusion Section 2.8 of this

chapter.

In Section 2.1, we start the chapter with definitions and preliminary results. We give a

precise definition of an 𝐴𝑋𝑋 -module as well as a way to construct new 𝐴𝑋𝑋 -modules

using existing ones. After giving some examples, we prove the first fundamental result of

the section, Theorem 2.1.8, that states that any 𝐴𝑋𝑋 -module that is finitely generated as

𝐴𝑋 -module is a projective 𝐴𝑋 -module. This implies that the corresponding coherent sheaf

is a vector bundle.

Afterward, we study an associative algebra that governs 𝐴𝑋𝑋 -modules in Section 2.2,

which has a similar role to the universal enveloping algebra of a Lie algebra. This associative

algebra is the smash product 𝐴𝑋#𝑈 (𝑋 ) of 𝐴𝑋 and the universal enveloping algebra of

𝑋 , which is an associative algebra defined on the tensor product 𝐴 ⊗ 𝑈 () using the

coproduct of 𝑈 (). We will prove several identities in this algebra, especially for its Lie

subalgebra 𝐴⊗ . These identities will be used in the following sections to prove the main

results of this chapter.

Section 2.3 is dedicated to finding certain annihilators in 𝐴𝑋#𝑈 (𝑋 ). We will use the

identities proven in the previous section for certain elements of 𝐴𝑋 ⊗ 𝑋 ⊂ 𝐴𝑋#𝑈 (𝑋 ) to

construct elements in the annihilator. These elements measure a degree 𝐴𝑋 -nonlinearity

of the representation of 𝑋 associated with an 𝐴𝑋𝑋 -module.

We define the action of the tangent sheaf on the coherent sheaf associated with

an 𝐴𝑋𝑋 -module finitely generated as an 𝐴𝑋 -module in Section 2.4. We will use the

annihilators we found in the previous section and a formula provided in [BI23] to define

the action of the local section of 𝑋 associated with affine basic open sets. After proving

this is well-defined and is exactly the action we needed, we establish the main theorem of

this chapter Theorem 2.4.5, building on the work done in previous sections.

We define infinitesimally equivariant sheaves in Section 2.5. They are the sheaf-

theoretically version of 𝐴-modules. This was a term coined by Emile Bouaziz when

we started working on this problem together with Yuly Billig and Collin Ingalls. In this

section, we introduce this notion and relate it to the Atiyah algebra of a sheaf of modules.

We finish the section explaining that for smooth irreducible algebraic varieties, the category

of infinitesimally equivariant bundles is equivalent to the category of 𝐴-modules.

In Section 2.6, an analysis of the representation associated with an 𝐴-module or the

Lie map associated with an infinitesimally equivariant sheaf is presented. We define the set

of differential operators between two sheaves of modules (or modules over a commutative

algebra). Additionally, we use the annihilators studied before to show the representation

𝑋 → glk(𝑀) associated with an 𝐴𝑋𝑋 -module 𝑀 is a differential operator. Since being

a differential operator is a local property, we infer that the Lie map of infinitesimally
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equivariant sheaves on schemes that are covered by smooth affine algebraic varieties is a

differential operator as well.

Before we give a summary of all results of this chapter in Section 2.8, we prove the main

conjecture of the paper [BFN19] in Section 2.7, which states that every finite 𝐴-module

is a gauge module. We combine the results of this chapter with the structure theorems

of [BI23] to prove the conjecture.

2.1 Preliminaries

Let 𝑋 be a smooth affine variety, 𝐴 = 𝐴𝑋 its coordinate ring and  = 𝑋 = Der(𝐴𝑋 ).
We say that𝑀 is an 𝐴-module if𝑀 is both a -module and an 𝐴-module such that

𝜂 ⋅ (𝑓 ⋅ 𝑚) = 𝜂(𝑓 ) ⋅ 𝑚 + 𝑓 ⋅ (𝜂 ⋅ 𝑚) (2.1)

for all 𝜂 ∈  , 𝑓 ∈ 𝐴, and 𝑚 ∈ 𝑀 . The formula (2.1) is called the Leibniz rule.

Since 𝐴 is a commutative algebra, we may consider the tensor product 𝑀 ⊗𝐴 𝑁 of the

𝐴-modules𝑀 and 𝑁 , which is an 𝐴-module. This vector space is also a -module, where

the action is given by

𝜂(𝑚 ⊗ 𝑛) = (𝜂𝑚) ⊗ 𝑛 + 𝑚 ⊗ (𝜂𝑛), for all 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑁 , and 𝜂 ∈  .

Because

𝜂(𝑓 (𝑚 ⊗ 𝑛)) = 𝜂 ((𝑓 𝑚) ⊗ 𝑛) = 𝜂(𝑓 𝑚) ⊗ 𝑛 + (𝑓 𝑚) ⊗ (𝜂𝑛)
= (𝜂(𝑓 )𝑚) ⊗ 𝑛 + (𝑓 (𝜂𝑚)) ⊗ 𝑛 + (𝑓 𝑚) ⊗ (𝜂𝑛)

for all 𝑚 ∈ 𝑀 , 𝑛 ∈ 𝑁 , 𝜂 ∈  , and 𝑓 ∈ 𝐴, we have that 𝑀 ⊗𝐴 𝑁 is an 𝐴-module.

Consider the 𝑝th tensor product 𝑀⊗𝐴𝑝
of 𝑀 over 𝐴. This is an 𝐴-module as we just

discussed in the previous paragraph. The permutation group S𝑝 acts on 𝑀⊗𝐴𝑝
by

𝜎(𝑣1 ⊗𝐴 ⋯ ⊗𝐴 𝑣𝑝) = 𝑣𝜎(1) ⊗𝐴 ⋯ ⊗𝐴 𝑣𝜎(𝑝)

for each tensor 𝑣1 ⊗𝐴 ⋯ ⊗𝐴 𝑣𝑝 ∈ 𝑀⊗𝐴𝑝
. We say that 𝑣 ∈ 𝑀⊗𝐴𝑝

is an alternating 𝑝-tensor if

𝜎(𝑣) = sgn(𝜎)𝑣. The set Λ𝑝𝐴𝑀 of all alternating 𝑝-tensors is an 𝐴-submodule of 𝑀⊗𝐴𝑝
.

There is a correspondence between Λ𝑝𝐴𝑀 and the 𝑝-exterior power of 𝑀 , which is the

vector subspace of the exterior algebra

Λ∙
𝐴(𝑀) = 𝑇𝐴(𝑀)/ (𝑣 ⊗𝐴 𝑣 ∣ 𝑣 ∈ 𝑀)

generated by tensors 𝑣1 ∧ ⋯ ∧ 𝑣𝑝 = 𝑣1 ⊗𝐴 ⋯ ⊗𝐴 𝑣𝑝 + (𝑣 ⊗𝐴 𝑣 ∣ 𝑣 ∈ 𝑀), 𝑣1,… , 𝑣𝑝 ∈ 𝑀 . Both

Λ𝑝𝐴(𝑀) and Λ∙
𝐴(𝑀) are 𝐴-modules.

Another way to construct 𝐴-modules using existing ones is considering the dual of a

module. For an 𝐴-module 𝑀 the full dual space

𝑀∗ = Homk(𝑀,k)
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is both an 𝐴-module and -module with (𝑓 ⋅𝜑)(𝑚) ∶= 𝜑(𝑓 ⋅𝑚) and (𝜂 ⋅𝜑)(𝑚) = −𝜑(𝜂 ⋅𝑚)
for all 𝑓 ∈ 𝐴, 𝜂 ∈  , 𝑚 ∈ 𝑀 . These actions are compatible because

(𝜂(𝑓 𝜑))(𝑚) = (𝑓 𝜑)(−𝜂𝑚) = 𝜑(−𝑓 (𝜂𝑚)) = 𝜑(𝜂(𝑓 )𝑚 − 𝜂(𝑓 𝑚)) = (𝜂(𝑓 )𝜑 + 𝑓 (𝜂𝜑))(𝑚).

We can also consider the dual of 𝑀 as a module over the algebra 𝐴. The vector

space

𝑀 ◦ = Hom𝐴(𝑀,𝐴)

is naturally an 𝐴-module with (𝑓 ⋅ 𝜑)(𝑚) = 𝜑(𝑓 ⋅ 𝑚). However, the action of  is given

by

(𝜂 ⋅ 𝜑)(𝑚) = −𝜑(𝜂 ⋅ 𝑚) + 𝜂 ⋅ (𝜑(𝑚)).

Considering that

(𝜂(𝑓 𝜑))(𝑚) = − (𝑓 𝜑)(𝜂𝑚) + 𝜂((𝑓 𝜑)(𝑚)) = 𝜑(−𝑓 (𝜂𝑚)) + 𝜂(𝜑(𝑓 𝑚))
=𝜑(𝜂(𝑓 )𝑚 − 𝑓 (𝜂𝑚)) + 𝜂(𝜑(𝑓 𝑚)) = (𝜂(𝑓 )𝜑)(𝑚) − 𝜑(𝜂(𝑓 𝑚)) + 𝜂((𝜑)(𝑓 𝑚))
=(𝜂(𝑓 )𝜑 + 𝑓 (𝜂𝜑))(𝑚), 𝑓 ∈ 𝐴, 𝜂 ∈  , 𝑚 ∈ 𝑀,

we see that 𝑀 ◦
is an 𝐴-module.

Example 2.1.1. The algebra 𝐴 is an 𝐴-module naturally and it is a simple 𝐴-module

when 𝑋 is smooth [BF18, Theorem 4.1].

Example 2.1.2. The Lie algebra  is an 𝐴-module as well. For all 𝜂, 𝜇 ∈  and 𝑓 ∈ 𝐴,

[𝜂, 𝑓 𝜇] = 𝜂(𝑓 )𝜇 + 𝑓 [𝜂, 𝜇].

Thus, the adjoint representation and the natural action of 𝐴 on  make  an 𝐴-module.

Example 2.1.3. Another example is the 𝐴-module Ω1
𝐴 of Käller differentials. The action

of  on Ω1
𝐴 is given by

𝜂(𝑎d𝑏) = 𝜂(𝑎)d𝑏 + 𝑎d(𝜂𝑏),

which is compatible with the action of 𝐴. Since exterior powers of an 𝐴-module is an

𝐴-module, we have that Ω𝑘𝐴 = Λ𝑘𝐴(Ω1
𝐴) is an 𝐴-module as well.

Example 2.1.4. The algebra  = 𝑋 of differential operators is the associative subalgebra

of Endk(𝐴) generated by the subspaces 𝐴 id and  , where id ∶ 𝐴 → 𝐴 denotes the identity

morphism. Therefore, a -module is both an 𝐴-module and -module. Since

𝜂 ◦ 𝑓 id = 𝜂(𝑓 )id + (𝑓 id) ◦ 𝜂, for all 𝑓 ∈ 𝐴, 𝜂 ∈  ,

we have that any -module is an 𝐴-module. However, a -module 𝑀 also satisfies

(𝑓 𝜂)𝑚 = 𝑓 ⋅ (𝜂 ⋅𝑚). In fact, an 𝐴-module𝑀 is a -module if and only if (𝑓 𝜂)𝑚 = 𝑓 ⋅ (𝜂 ⋅𝑚)
for all 𝑓 ∈ 𝐴, 𝜂 ∈  , and 𝑚 ∈ 𝑀 [Gro67]. The formal definition of the sheaf of differential

operators on a scheme is different from the one presented here for a smooth affine variety.

If 𝑌 = (|𝑌 |,𝑌 ) is a scheme, then 𝑌 = Diff𝑌 (𝑌 ,𝑌 ), where Diff𝑌 (, ) is defined

in Section 2.6 for two sheaves of 𝑌 -modules  and  .

Definition 2.1.5. An 𝐴-module 𝑀 is called finite if 𝑀 is finitely generated as an 𝐴-
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module.

For an 𝐴-module 𝑀 and prime ideal p ∈ Spec (𝐴), we define

rankp(𝑀) = dimk(p)(k(p) ⊗𝐴 𝑀),

where k(p) = 𝐴p/(p) is the residue field of the local algebra 𝐴p. Note that rank(0)(𝑀) =
dimFrac(𝐴) Frac(𝐴) ⊗𝐴 𝑀 . By Nakayama’s Lemma, rank(0)(𝑀) ≤ rankp(𝑀) for each p ∈
Spec (𝐴).

Lemma 2.1.6. Let 𝑀 be an 𝐴-module with 𝑟 = rank(0)(𝑀) < ∞. Then 𝑀 is a projective
𝐴-module if and only if Λ𝑘𝐴(𝑀) = 0 for all 𝑘 > 𝑟 .

Proof. If 𝐵 is a local algebra and 𝑁 is a 𝐵-module, then one of the consequences of

Nakayama’s Lemma is that rank(𝑁 ) = 0 implies 𝑁 = 0. We have that rankp(Λ𝑘(𝑀)) =
(rankp(𝑀)

𝑘 ). Therefore, rankpΛ𝑘(𝑀) = 0 if 𝑘 > rankp(𝑀), so the module (Λ𝑘𝐴(𝑀))p =
Λ𝑘𝐴p

(𝑀p) over the local algebra 𝐴p is zero if 𝑘 > rankp(𝑀).

If 𝑀 is projective, then rankp(𝑀) = rank(0)(𝑀) = 𝑟 for every prime ideal p ∈ Spec (𝐴).
Hence, (Λ𝑘𝐴(𝑀))p = 0 for each p ∈ Spec (𝐴), and 𝑘 > 𝑟 . Since its support is Spec (𝐴),
Λ𝑘𝐴(𝑀) = 0.

On the other hand, suppose Λ𝑘𝐴(𝑀) = 0 for all 𝑘 > 𝑟 . If 𝑘 > 𝑟 , then rank(Λ𝑘𝐴(𝑀)) = 0. So

rankp(Λ𝑘𝐴(𝑀)) = 0 for each p ∈ Spec (𝐴). Therefore, rankp(𝑀) ≤ rank(0)(𝑀). We conclude

rankp(𝑀) = rank(0)(𝑀). Since 𝐴 is a Notherian intregral domain, rankp(𝑀) = rank(0)(𝑀)
for every p ∈ Spec (𝐴) is equivalent to 𝑀 being projective [Eis95, Exercise 20.13].

If 𝑀 is an 𝐴-module, we define the 𝐴-annihilator of 𝑀 to be

Ann𝐴(𝑀) = {𝑓 ∈ 𝐴 ∣ ∀𝑚 ∈ 𝑀 𝑓𝑚 = 0} .

The 𝐴-annihilator is an ideal of 𝐴. When 𝑀 is an 𝐴-module, its 𝐴-annihilator is trivial

as the next lemma shows.

Lemma 2.1.7. Let 𝑀 be an 𝐴-module. Then

Ann𝐴(𝑀) = {𝑓 ∈ 𝐴 ∣ ∀𝑚 ∈ 𝑀 𝑓𝑚 = 0} = 0.

Proof. We will show the ideal Ann𝐴(𝑀) is an 𝐴-submodule of 𝐴. For every 𝑓 ∈ Ann𝐴(𝑀)
and 𝜂 ∈  ,

𝜂(𝑓 )𝑚 = 𝜂(𝑓 𝑚) − 𝑓 (𝜂𝑚) = 0, for each 𝑚 ∈ 𝑀.

Therefore, 𝜂(𝑓 ) ∈ Ann𝐴(𝑀). Hence, Ann𝐴(𝑀) is an 𝐴-submodule of 𝐴. Since 𝐴 is a

simple 𝐴-module (see [BF18, Theorem 4.1]) and Ann𝐴(𝑀) is an ideal, Ann𝐴(𝑀) = 0.

For an 𝐴-module 𝑀 , we denote by

Supp(𝑀) =
{
p ∈ Spec (𝐴) ∣ 𝑀p = 0

}

and it is called the support of𝑀 . It is known that Supp(𝑀) = 𝑉 (Ann𝐴(𝑀)), where 𝑉 (𝑃) ∶=
{p ∈ Spec (𝐴) ∣ 𝐼 ⊂ p} is the set of all prime ideals that contains the subset 𝑃 ⊂ 𝐴.
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Theorem 2.1.8. Let 𝑀 be a finite 𝐴-module, then 𝑀 is a projective 𝐴-module.

Proof. Let 𝑟 = rank(0)(𝑀), hence Λ𝑟𝐴(𝑀) is nonzero. Suppose Λ𝑝𝐴(𝑀) ≠ 0 for some 𝑝 > 𝑟 .
We know that localization commutes with exterior power, thus Λ𝑝Frac(𝐴)(Frac(𝐴)⊗𝐴𝑀) = 0.

Then there exists a prime ideal p of 𝐴 such that (Λ
𝑝
𝐴(𝑀))p = Λ𝑝𝐴p

(𝑀p) = 0. Therefore,

p ∈ Supp(Λ𝑝𝐴(𝑀)) = 𝑉 (Ann𝐴(Λ
𝑝
𝐴(𝑀))).

Hence, Ann𝐴(Λ
𝑝
𝐴(𝑀)) ≠ 0, which is a contradiction by Lemma 2.1.7 and the fact that

Λ𝑝𝐴(𝑀) is an 𝐴-module. Thus, Λ𝑝𝐴𝑀 must be trivial for each 𝑝 > 𝑟 . We conclude that 𝑀
is a projective 𝐴-module using Lemma 2.1.6.

The previous theorem implies the sheaf �̃� on 𝑋 associated with any finite 𝐴-module

𝑀 is a vector bundle.

It was proved in [BIN23, Lemma 4.2] that the torsion of any finite 𝐴-module is trivial,

i.e.

Tor𝐴(𝑀) = {𝑚 ∈ 𝑀 ∣ ∃𝑓 ∈ 𝐴, 𝑓 ≠ 0, such that 𝑓 𝑚 = 0} = 0

for every finite 𝐴-module 𝑀 . The above theorem can be seen as a generalization of this

statement since every projective module over 𝐴 is torsion-free.

2.2 The smash product 𝐴#𝑈 () and its Lie subalgebra
𝐴#

Vector fields have a natural geometric origin, thus it is reasonable to ask whether

𝐴-modules have an algebraic geometric object related to it as well. This translates into

the question of the possibility to construct a Θ𝑋 = ̃-module structure on the coherent

sheaf �̃� of 𝑋 -modules that satisfies the Leibniz rule for each affine subset of 𝑋 , where

�̃� is the sheaf associated to a finite 𝐴-module 𝑀 . We give a positive answer to this

question in Theorem 2.4.5. The second main problem is related to the structure of the map

Θ → Endk() associated with the representation  → Endk(𝑀). We wish to prove it is a

differential operator. To prove these results, we will investigate certain associative algebra

related to 𝐴-modules and prove some identities in it.

The universal enveloping algebra 𝑈 () of  is a Hopf Algebra with the coproduct

given by

Δ(𝜂) = 𝜂 ⊗ 1 + 1 ⊗ 𝜂, for all 𝜂 ∈  .

The coproduct Δ is extended to 𝑈 () as an algebra homomorphism Δ ∶ 𝑈 () → 𝑈 () ⊗
𝑈 (). The usual notation for the coproduct of an arbitrary element 𝑢 ∈ 𝑈 () is given

by Δ(𝑢) = ∑
(𝑢)

𝑢(1) ⊗ 𝑢(2). The action of  on the algebra 𝐴 allows us to define the smash

product 𝐴#𝑈 () which is an associative algebra. In fact, 𝐴#𝑈 () is a Hopf algebra, but we

will only use its algebra structure. As a vector space, 𝐴#𝑈 () coincides with 𝐴 ⊗ 𝑈 (),
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and the product is defined as

(𝑓 #𝑢)(𝑔#𝑣) = ∑
(𝑢)

𝑓 (𝑢(1)𝑔)#𝑢(2)𝑣 (2.2)

for all 𝑓 , 𝑔 ∈ 𝐴, 𝑢, 𝑣 ∈ 𝑈 (). In particular,

(𝑓 #𝜂)(𝑔#𝜇) = 𝑓 𝜂(𝑔)#𝜇 + 𝑓 𝑔#𝜂𝜇, (2.3)

for each 𝑓 , 𝑔 ∈ 𝐴, 𝜂, 𝜇 ∈  . Notice that (𝑓 #1)(𝑔#𝜇) = 𝑓 𝑔#𝜇. For details on Hopf algebras

and smash products, we refer to [DNR01].

Due to the fact that 𝐴 ≅ 𝐴#k ⊂ 𝐴#𝑈 () and 𝑈 () ≅ k#𝑈 () ⊂ 𝐴#𝑈 (), we see that

every module over 𝐴#𝑈 () is both an 𝐴-module and -module. Taking 𝑓 = 1 and 𝑣 = 1
in the equation (2.2), we conclude that these actions satisfy (2.1). Therefore, every module

over𝐴#𝑈 () is an𝐴-module. On the other hand, an𝐴-module𝑀 is an𝐴#𝑈 ()-module

if we define (𝑓 #𝜇) ⋅𝑚 ∶= 𝑓 ⋅ (𝜇 ⋅𝑚) for each 𝑓 ∈ 𝐴, 𝜇 ∈  and 𝑚 ∈ 𝑀 . Consequently, there

exists an equivalence of the categories of 𝐴-modules and modules over 𝐴#𝑈 ().

From now on, results in this section do not depend on 𝑋 . Therefore, we may assume

that 𝐴 is an integral domain and  = Der(𝐴).

The smash product 𝐴#𝑈 () is an associative algebra, thus the commutator defines a

Lie algebra structure on it. By (2.3),

[𝑓 #𝜂, 𝑔#𝜇] = 𝑓 𝑔#[𝜂, 𝜇] + 𝑓 𝜂(𝑔)#𝜇 − 𝑔𝜇(𝑓 )#𝜂

for all 𝑓 , 𝑔 ∈ 𝐴 and 𝜂, 𝜇 ∈  . It follows that 𝐴# is a Lie subalgebra of 𝐴#𝑈 ().

The vector space 𝐴# = 𝐴⊗k is an (𝐴,𝐴)-bimodule. Explicitly, (𝑎, 𝑏)(𝑓 #𝜂) = 𝑎𝑓 #𝑏𝜂
for all 𝑎, 𝑏, 𝑓 ∈ 𝐴 and 𝜂 ∈  . We may write these actions using the tensor product

(𝑎 ⊗ 𝑏)(𝑓 #𝜂) = 𝑎𝑓 #𝑏𝜂.

The vector space𝐴⊗k𝐴 is an algebra with product given by (𝑎⊗𝑏)(𝑐⊗𝑑) = (𝑎𝑐)⊗(𝑏𝑑).
The multiplication map m ∶ 𝐴 ⊗ 𝐴 → 𝐴, m(𝑎 ⊗ 𝑏) = 𝑎𝑏 , is a homomorphism of

commutative algebras, and its kernel is the ideal of 𝐴 ⊗ 𝐴 generated by

𝑓 ⊗ 1 − 1 ⊗ 𝑓 , 𝑓 ∈ 𝐴.

Consider the linear map 𝛿 ∶ 𝐴 → 𝐴⊗𝐴 given by 𝛿(𝑓 ) = 𝑓 ⊗ 1− 1⊗𝑓 , then 𝛿(𝑓 ) ∈ ker m,

and 𝛿(𝑓1)⋯ 𝛿(𝑓𝑘) ∈ (ker m)𝑘 for all 𝑓 , 𝑓1,… , 𝑓𝑘 ∈ 𝐴.

The algebra 𝐴 ⊗k 𝐴 is an (𝐴,𝐴)-bimodule. We will write 𝑓 (𝑎 ⊗ 𝑏) = (𝑓 𝑎) ⊗ 𝑏 , and

(𝑎 ⊗ 𝑏)𝑓 = 𝑎 ⊗ (𝑏𝑓 ) for each 𝑓 , 𝑎, 𝑏 ∈ 𝐴. With this notation, we have that 𝛿(𝑓 𝑔) =
𝑓 𝛿(𝑔)+𝛿(𝑓 )𝑔 for all 𝑓 , 𝑔 ∈ 𝐴, hence the following lemma may be proved inductively.

Lemma 2.2.1. For all 𝑓 , 𝑔 ∈ 𝐴 and 𝑝 ≥ 1,

1. (𝛿(𝑓 𝑔))𝑝 =
𝑝

∑
𝑘=0

(
𝑝
𝑘)
𝑓 𝑘𝛿(𝑔)𝑘𝛿(𝑓 )𝑝−𝑘𝑔𝑝−𝑘;
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2. (𝛿(𝑓 + 𝑔))𝑝 =
𝑝

∑
𝑘=0

(
𝑝
𝑘)
𝛿(𝑓 )𝑝−𝑘𝛿(𝑔)𝑘.

The previous lemma shows how 𝛿 interacts with the structure of 𝐴 ⊗k 𝐴 as both an

algebra and (𝐴,𝐴)-bimodule.

For each 𝑓 ∈ 𝐴, 𝜂 ∈  and 𝑝 ≥ 1 consider the following element of 𝐴#

Ω𝑝(𝑓 , 𝜂) = 𝛿(𝑓 )𝑝(1#𝜂) =
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑓 𝑝−𝑘#𝑓 𝑘𝜂 ∈ 𝐴#𝑈 (). (2.4)

We will prove identities for these elements inside the Lie algebra 𝐴# . Their importance

will be seen in the next sections of this thesis.

The first interesting property of these elements is that they commute with 𝐴 ≅ 𝐴#1 ⊂
𝐴#𝑈 (). Therefore, their action on an 𝐴-module can be seen to be by operators in

End𝐴(𝑀).

Lemma 2.2.2. For all 𝑓 , 𝑔 ∈ 𝐴, 𝜂 ∈  , and 𝑝 ≥ 1,

Ω𝑝(𝑓 , 𝜂)(𝑔#1) = (𝑔#1)Ω𝑝(𝑓 , 𝜂).

Proof. It follows from the Binomial Theorem that 0 = (1 − 1)𝑝 =
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)

. Thus,

Ω𝑝(𝑓 , 𝜂)(𝑔#1) − (𝑔#1)Ω𝑝(𝑓 , 𝜂)

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)((𝑓 𝑝−𝑘#𝑓 𝑘𝜂)(𝑔#1) − (𝑔#1)(𝑓 𝑝−𝑘#𝑓 𝑘𝜂))

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)((𝑓 𝑝𝜂(𝑔)#1 + 𝑓 𝑝−𝑘𝑔#𝑓 𝑘𝜂 − 𝑔𝑓 𝑝−𝑘#𝑓 𝑘𝜂) = 0

for each 𝑓 , 𝑔 ∈ 𝐴, and 𝜂 ∈  .

The following lemmas give identities that will be used in other sections. The goal now

is to investigate the bracket between the elements (2.4).

Lemma 2.2.3. For every 𝑓 , 𝑔 ∈ 𝐴, 𝜂, 𝜇 ∈  , and 𝑝, 𝑞 ≥ 1,

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑔, 𝜇)] =
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑓 𝑝−𝑘𝑔𝑞−𝑙#[𝑓 𝑘𝜂, 𝑔 𝑙𝜇]

Proof. As we saw in the proof of the last lemma,

𝑟

∑
𝑘=0

(−1)𝑘(
𝑟
𝑘)

= 0 for all 𝑟 ≥ 1. Hence,

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑔, 𝜇)]

=
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)

[𝑓 𝑝−𝑘#𝑓 𝑘𝜂, 𝑔𝑞−𝑙#𝑔 𝑙𝜇]
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=
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)(𝑓 𝑝𝜂(𝑔𝑞−𝑙)#𝑔 𝑙𝜇 − 𝑔𝑞𝜇(𝑓 𝑝−𝑘)#𝑓 𝑘𝜂 + 𝑓 𝑝−𝑘𝑔𝑞−𝑙#[𝑓 𝑘𝜂, 𝑔 𝑙𝜇])

=
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑓 𝑝−𝑘𝑔𝑞−𝑙#[𝑓 𝑘𝜂, 𝑔 𝑙𝜇].

The following lemma will be used frequently when we calculate other brackets inside

𝐴# .

Lemma 2.2.4. For every 𝑓 ∈ 𝐴, 𝜂, 𝜇 ∈  , and 𝑝, 𝑞 ≥ 1,

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝜇)] = Ω𝑝+𝑞(𝑓 , [𝜂, 𝜇]) + 𝑝Ω𝑝+𝑞−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑞Ω𝑝+𝑞−1(𝑓 , 𝜂(𝑓 )𝜇).

Proof. By the previous lemma,

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝜇)]

=
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑓 𝑝+𝑞−𝑘−𝑙#[𝑓 𝑘𝜂, 𝑓 𝑙𝜇]

=
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑓 𝑝+𝑞−𝑘−𝑙# (𝑙𝑓 𝑘+𝑙−1𝜂(𝑓 )𝜇 − 𝑘𝑓 𝑘+𝑙−1𝜇(𝑓 )𝜂 + 𝑓 𝑘+𝑙[𝜂, 𝜇])

Let us separate this into three sums. Set 𝑢 = 𝑘+𝑙. Thus, the coefficient at 𝑓 𝑝+𝑞−𝑢#𝑓 𝑢[𝜂, 𝜇]
is the same as at 𝑦𝑢 in

𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑦𝑘+𝑙

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑦𝑘

(

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑞
𝑙)
𝑦 𝑙
)

=(1 − 𝑦)𝑝(1 − 𝑦)𝑞 = (1 − 𝑦)𝑝+𝑞

=
𝑝+𝑞

∑
𝑢=0

(−1)𝑢(
𝑝 + 𝑞
𝑢 )𝑦

𝑢

Therefore,

𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑓 𝑝+𝑞−𝑘−𝑙#𝑓 𝑘+𝑙[𝜂, 𝜇] = Ω𝑝+𝑞(𝑓 , [𝜂, 𝜇]).

The coefficient at 𝑓 𝑝+𝑞−𝑢#𝑓 𝑢−1𝜂(𝑓 )𝜇 is the same as in 𝑦𝑢 in

𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑙𝑦𝑘+𝑙
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=
(

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑦𝑘
)(

𝑞

∑
𝑙=0

(−1)𝑙(
𝑞
𝑙)
𝑙𝑦 𝑙

)

=
(

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑦𝑘
)(𝑦

𝑑
𝑑𝑦)(

𝑞

∑
𝑙=0

(−1)𝑙(
𝑞
𝑙)
𝑦 𝑙
)

=(1 − 𝑦)𝑝 (𝑦
𝑑
𝑑𝑦

(1 − 𝑦)𝑞) = −𝑞𝑦(1 − 𝑦)𝑝+𝑞−1

= − 𝑞
𝑝+𝑞−1

∑
𝑢=0

(−1)𝑢(
𝑝 + 𝑞 − 1

𝑢 )𝑦
𝑢+1.

Hence,

𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑙𝑓 𝑝+𝑞−𝑘−𝑙#𝑓 𝑘+𝑙−1𝜂(𝑓 )𝜇

= −𝑞
𝑝+𝑞−1

∑
𝑢=0

(−1)𝑢(
𝑝 + 𝑞 − 1

𝑢 )𝑓
𝑝+𝑞−𝑢−1#𝑓 𝑢𝜂(𝑓 )𝜇

= −𝑞Ω𝑝+𝑞−1(𝑓 , 𝜂(𝑓 )𝜇).

Similarly,

−
𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑘𝑓 𝑝+𝑞−𝑘−𝑙#𝑓 𝑘+𝑙−1𝜂(𝑓 )𝜇

=𝑝
𝑝+𝑞−1

∑
𝑢=0

(−1)𝑢(
𝑝 + 𝑞 − 1

𝑢 )𝑓
𝑝+𝑞−𝑢−1#𝑓 𝑢𝜇(𝑓 )𝜂

=𝑝Ω𝑝+𝑞−1(𝑓 , 𝜇(𝑓 )𝜂)

We conclude that

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝜇)] = Ω𝑝+𝑞(𝑓 , [𝜂, 𝜇]) + 𝑝Ω𝑝+𝑞−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑞Ω𝑝+𝑞−1(𝑓 , 𝜂(𝑓 )𝜇)

Lemma 2.2.5. For every 𝑓 , 𝑔, ℎ ∈ 𝐴, 𝜂, 𝜇 ∈  , 𝑝, 𝑞 ≥ 1,

1. [Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔𝜇)] − [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , 𝜇)] = Ω𝑝+𝑞(𝑓 , 𝜂(𝑔)𝜇 + 𝜇(𝑔)𝜂).

2. [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , ℎ𝜂)] − [Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔ℎ𝜂)] = 2Ω𝑝+𝑞(𝑓 , ℎ𝜂(𝑔)𝜂)

3. [Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔𝜂)] − [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , 𝜂)] = 2Ω𝑝+𝑞(𝑓 , 𝜂(𝑔)𝜂);

4. [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , 𝜂(ℎ)𝜂)] − [Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔𝜂(ℎ)𝜂)] = 2Ω𝑝+𝑞(𝑓 , 𝜂(𝑔)𝜂(ℎ)𝜂);

Proof. For part (1), we have that [𝜂, 𝑔𝜇] − [𝑔𝜂, 𝜇] = 𝜂(𝑔)𝜇 + 𝜇(𝑔)𝜂. Therefore,

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔𝜇)] − [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , 𝜇)]
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=Ω𝑝+𝑞(𝑓 , [𝜂, 𝑔𝜇]) + 𝑝Ω𝑝+𝑞−1(𝑓 , 𝑔𝜇(𝑓 )𝜂) − 𝑞Ω𝑝+𝑞−1(𝑓 , 𝜂(𝑓 )𝑔𝜇)
− Ω𝑝+𝑞(𝑓 , [𝑔𝜂, 𝜇]) − 𝑝Ω𝑝+𝑞−1(𝑓 , 𝜇(𝑓 )𝑔𝜂) + 𝑞Ω𝑝+𝑞−1(𝑓 , 𝑔𝜂(𝑓 )𝜇)

=Ω𝑝+𝑞(𝑓 , [𝜂, 𝑔𝜇] − [𝑔𝜂, 𝜇]) = Ω𝑝+𝑞(𝑓 , 𝜂(𝑔)𝜇 + 𝜇(𝑔)𝜂).

Part (2) follows from part (1) by substituting 𝜂 by ℎ𝜂 and 𝜇 by 𝜂. All other parts follow

from (1) and (2).

Lemma 2.2.6. For all 𝑓 ∈ 𝐴, 𝜂, 𝜇 ∈  , and 𝑝 ≥ 1,

[Ω𝑝(𝑓 , 𝜂), 1#𝜇] = Ω𝑝(𝑓 , [𝜂, 𝜇]) + 𝑝Ω𝑝−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑝𝜇(𝑓 )Ω𝑝−1(𝑓 , 𝜂).

Proof. For every 𝜂, 𝜇 ∈  ,

[Ω𝑝(𝑓 , 𝜂), 1#𝜇]

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)

[𝑓 𝑝−𝑘#𝑓 𝑘𝜂, 1#𝜇]

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)(𝑓 𝑝−𝑘#[𝑓 𝑘𝜂, 𝜇] − (𝑝 − 𝑘)𝜇(𝑓 )𝑓 𝑝−𝑘−1#𝑓 𝑘𝜂)

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)(𝑓 𝑝−𝑘#𝑓 𝑘[𝜂, 𝜇] − 𝑘𝑓 𝑝−𝑘#𝑓 𝑘−1𝜇(𝑓 )𝜂 − (𝑝 − 𝑘)𝜇(𝑓 )𝑓 𝑝−𝑘−1#𝑓 𝑘𝜂)

=Ω𝑝(𝑓 , [𝜂, 𝜇]) + 𝑝Ω𝑝−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝜇(𝑓 )
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)

(𝑝 − 𝑘)𝑓 𝑝−𝑘−1#𝑓 𝑘𝜂.

The coefficient at 𝑓 𝑝−1−𝑢#𝑓 𝑢𝜂 is the same as in 𝑦𝑢 in

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)

(𝑝 − 𝑘)𝑦𝑘

=𝑝
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑦𝑘 − 𝑦

𝑑
𝑑𝑦

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑦𝑘

=𝑝(1 − 𝑦)𝑝 − 𝑦
𝑑
𝑑𝑦

(1 − 𝑦)𝑝 = 𝑝(1 − 𝑦)𝑝 + 𝑝𝑦(1 − 𝑦)𝑝−1

=𝑝(1 − 𝑦)𝑝−1(1 − 𝑦 + 𝑦) = 𝑝(1 − 𝑦)𝑝−1 = 𝑝
𝑝−1

∑
𝑢=0

(−1)𝑢(
𝑝 − 1
𝑢 )𝑦

𝑢.

Thus,

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)

(𝑝 − 𝑘)𝑓 𝑝−𝑘−1#𝑓 𝑘𝜂 =𝑝
𝑝−1

∑
𝑘=0

(−1)𝑘(
𝑝 − 1
𝑘 )𝑓

𝑝−𝑘−1#𝑓 𝑘𝜂

=𝑝Ω𝑝−1(𝑓 , 𝜂).
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Therefore,

[Ω𝑝(𝑓 , 𝜂), 1#𝜇] = Ω𝑝(𝑓 , [𝜂, 𝜇]) + 𝑝Ω𝑝−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑝𝜇(𝑓 )Ω𝑝−1(𝑓 , 𝜂).

The last lemma of this section shows a way to define Ω𝑝(𝑓 , 𝜂) recursively.

Lemma 2.2.7. For each 𝑓 ∈ 𝐴, 𝑝 ≥ 0, and 𝜂 ∈ 𝑓 ,

Ω𝑝(𝑓 , 𝑓 𝜂) = 𝑓Ω𝑝(𝑓 , 𝜂) − Ω𝑝+1(𝑓 , 𝜂).

Proof. Using the well-known recurrence relation (𝑝+1𝑘 ) − (𝑝𝑘) = ( 𝑝
𝑘−1), we get

𝑓Ω𝑝(𝑓 , 𝜂) − Ω𝑝+1(𝑓 , 𝜂)

=
𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑓 𝑝−𝑘+1#𝑓 𝑘𝜂 − (−1)𝑘(

𝑝 + 1
𝑘 )𝑓

𝑝+1−𝑘#𝑓 𝑘𝜂 − (−1)𝑝1#𝑓 𝑝+1𝜂

=
𝑝

∑
𝑘=0

(−1)𝑘 ((
𝑝
𝑘)

−(
𝑝 + 1
𝑘 )) 𝑓

𝑝+1−𝑘#𝑓 𝑘𝜂 − (−1)𝑝1#𝑓 𝑝+1𝜂

=
𝑝+1

∑
𝑘=1

(−1)𝑘+1(
𝑝

𝑘 − 1)
𝑓 𝑝+1−𝑘#𝑓 𝑘𝜂

=
𝑝

∑
𝑙=0

(−1)𝑙(
𝑝
𝑙)
𝑓 𝑝−𝑙#𝑓 𝑙+1𝜂 = Ω𝑝(𝑓 , 𝜂).

2.3 Annihilators of finite 𝐴-modules
Recall that 𝑋 is a smooth irreducible algebraic variety, 𝐴 is its coordinate ring and

 = Der(𝐴) is its Lie algebra of polynomial vector fields. For an 𝐴-module 𝑀 , we define

the annihilator Ann(𝑀) by

Ann(𝑀) = {𝑥 ∈ 𝐴#𝑈 () ∣ 𝑥𝑚 = 0 for all 𝑚 ∈ 𝑀} .

Example 2.3.1. If𝑀 is an 𝐴-module, then Ω1(𝑓 , 𝜂) ∈ Ann(𝑀) for every 𝑓 ∈ 𝐴 and 𝜂 ∈ 
if and only if𝑀 is a -module by example 2.1.4. If we take𝑀 =  , then Ω2(𝑓 , 𝜂) ∈ Ann()
for every 𝑓 ∈ 𝐴, and 𝜂 ∈  , because

𝑓 2[𝜂, 𝜇] − 2𝑓 [𝑓 𝜂, 𝜇] + [𝑓 2𝜂, 𝜇]
=𝑓 2[𝜂, 𝜇] + 2𝑓 𝜇(𝑓 )𝜂 − 2𝑓 2[𝜂, 𝜇] − 2𝑓 𝜇(𝑓 )𝜂 + 𝑓 2[𝜂, 𝜇] = 0.

We wish to prove that for every finite 𝐴-module 𝑀 and for all 𝑓 ∈ 𝐴, there exists

𝑁 > 0 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for each 𝑝 > 𝑁 and 𝜂 ∈  . We will use the identities

we provided earlier to show that.
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Lemma 2.3.2. Let 𝑀 be a finite 𝐴-module with 𝑟 = rank𝐴(𝑀), 𝑓 ∈ 𝐴 and 𝜂 ∈  . For

any 𝑝 > 𝑟2, there exist 𝑎1,… , 𝑎𝑟2 ∈ 𝐴 and 𝑏 ∈ 𝐴 ⧵ {0} such that 𝑏Ω𝑝(𝑓 , 𝜂) +
𝑟2

∑
𝑖=1
𝑎𝑖Ω𝑖(𝑓 , 𝜂) ∈

Ann(𝑀).

Proof. Since 𝑀 is finitely generated with rank 𝑟 , we have that End𝐴(𝑀) is a finitely

generated𝐴-module with rank at most 𝑟2. By Lemma 2.2.2, the action of Ω𝑖(𝑓 , 𝜂) commutes

with the action of 𝐴 in 𝑀 for each 𝑖 ∈ {1, 2,… , 𝑟2, 𝑝}, hence {Ω𝑘(𝑓 , 𝜂) ∣ 𝑘 = 1,… , 𝑟2} ∪
{Ω𝑝(𝑓 , 𝜂)} defines a family of endomorphisms in End𝐴(𝑀). Therefore, it must be 𝐴-linearly

dependent. Thus, there exists 𝑎1,… , 𝑎𝑁 ∈ 𝐴 and 𝑏 ∈ 𝐴, 𝑏 ≠ 0, such that 𝑏Ω𝑝(𝑓 , 𝜂) +
𝑟2

∑
𝑖=1
𝑎𝑖Ω𝑖(𝑓 , 𝜂) ∈ Ann(𝑀).

Lemma 2.3.3. Let 𝑀 be a finite 𝐴-module with rank 𝑟 , 𝑓 ∈ 𝐴 and 𝜂 ∈  such that
𝜂(𝑓 ) ≠ 0. Then exists 𝑁 that depends on 𝑟 such that Ω𝑝(𝑓 , 𝜂(𝑓 )𝑟

2𝜂) ∈ Ann(𝑀) for all 𝑝 ≥ 𝑁 .

Proof. Let 𝑚 > 𝑟2, then by Lemma 2.3.2 there exists 𝑎1,… , 𝑎𝑟2 ∈ 𝐴 not all zero and

𝑎𝑟2+1 ∈ 𝐴 ⧵ {0} such that

𝑟2+1

∑
𝑖=1
𝑎𝑖Ω𝑚𝑖(𝑓 , 𝜂) ∈ Ann(𝑀) where 𝑚𝑖 = 𝑖 if 𝑖 ≤ 𝑟2 and 𝑚𝑖 = 𝑝 if

𝑖 = 𝑟2 + 1. Thus, for every 𝑚 ∈ 𝑀 ,

0 = Ω𝑚1(𝑓 , 𝜂)(

𝑟2+1

∑
𝑖=1
𝑎𝑖Ω𝑚𝑖(𝑓 , 𝜂))

𝑚

=
(

𝑟2+1

∑
𝑖=1
𝑎𝑖Ω𝑚𝑖(𝑓 , 𝜂))

Ω𝑚1(𝑓 , 𝜂)𝑚 +
(

𝑟2+1

∑
𝑖=1
𝑎𝑖 [Ω𝑚1(𝑓 , 𝜂),Ω𝑚𝑖(𝑓 , 𝜂)])

𝑚

=
(

𝑟2+1

∑
𝑖=2
𝑎𝑖(𝑚1 − 𝑚𝑖)Ω𝑚1+𝑚𝑖−1(𝑓 , 𝜂(𝑓 )𝜂))

𝑚.

Therefore,

𝑟2+1

∑
𝑖=2
𝑎𝑖(𝑚1 − 𝑚𝑖)Ω𝑚1+𝑚𝑖−1(𝑓 , 𝜂(𝑓 )𝜂) ∈ Ann(𝑀). For all 𝑚 ∈ 𝑀

0 = Ω𝑚1+𝑚2−1(𝑓 , 𝜂(𝑓 )𝜂)(

𝑟2+1

∑
𝑖=2
𝑎𝑖(𝑚1 − 𝑚𝑖)Ω𝑚1+𝑚𝑖−1(𝑓 , 𝜂(𝑓 )𝜂))

𝑚

=
(

𝑟2+1

∑
𝑖=2
𝑎𝑖(𝑚1 − 𝑚𝑖) [Ω𝑚1+𝑚2−1(𝑓 , 𝜂(𝑓 )𝜂),Ω𝑚1+𝑚𝑖−1(𝑓 , 𝜂(𝑓 )𝜂)])

𝑚

=
(

𝑟2+1

∑
𝑖=3
𝑎𝑖(𝑚1 − 𝑚𝑖)(𝑚2 − 𝑚𝑖)Ω2𝑚1+𝑚2+𝑚𝑖−2(𝑓 , 𝜂(𝑓 )

2𝜂)
)
𝑚.

We may do this process 𝑟2 times to conclude that 𝑏Ω𝑝+𝑁 (𝑓 , 𝜂(𝑓 )𝑟
2𝜂) ∈ Ann(𝑀) for some

0 ≠ 𝑏 ∈ 𝐴 and 𝑁 ≥ 0 that depends on 𝑟 . By Theorem 2.1.8, Tor𝐴(𝑀) = 0, hence
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Ω𝑚+𝑁 (𝑓 , 𝜂(𝑓 )𝑟
2𝜂) ∈ Ann(𝑀). Since this holds for every 𝑝 > 𝑟2, Ω𝑘+𝑟2+𝑁 (𝑓 , 𝜂(𝑓 )𝑟

2𝜂) ∈
Ann(𝑀) for every 𝑘 ≥ 1.

Proposition 2.3.4. Let 𝑀 be a finite 𝐴-module and 𝑓 ∈ 𝐴. If there exists 𝜇 ∈  such that
𝜇(𝑓 ) ≠ 0, then there exist 𝜂 ∈  with 𝜂(𝑓 ) ≠ 0 and 𝑁 that depends on the rank of 𝑀 such
that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for every 𝑝 > 𝑁 .

Lemma 2.3.5. Let𝑀 be a finite 𝐴-module, 𝑓 ∈ 𝐴, and 𝜂 ∈  . Suppose Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀)
for each 𝑝 > 𝑁 for some 𝑁 > 0. Then for all 𝑔, ℎ ∈ 𝐴

1. Ω2𝑁+1+𝑘(𝑓 , 𝜂(𝑔)𝜂) ∈ Ann(𝑀) for all 𝑘 ≥ 1;

2. Ω3𝑁+2+𝑘(𝑓 , 𝜂(𝑔)𝜂(ℎ)𝜂) ∈ Ann(𝑀) for all 𝑘 ≥ 1;

3. Ω3𝑁+2+𝑘(𝑓 , 𝑔𝜂(𝜂(ℎ))𝜂) ∈ Ann(𝑀) for all 𝑘 ≥ 1.

Proof. The first and second claims follow from parts (3) and (4) of Lemma 2.2.5, respectively.

Since

Ω𝑝(𝑓 , 𝑔𝜂(𝜂(ℎ))𝜂) = Ω𝑝(𝑓 , 𝜂(𝑔𝜂(ℎ))𝜂) − Ω𝑝(𝑓 , 𝜂(𝑔)𝜂(ℎ)𝜂),

we get that Ω𝑝(𝑓 , 𝑔𝜂(𝜂(ℎ))𝜂) for 𝑝 > 3𝑁 + 2.

The following proposition is key for this Section’s main result.

Proposition 2.3.6. Let 𝑀 be a finite 𝐴-module, and 𝑓 ∈ 𝐴. Let 𝜂 ∈  with 𝜂(𝑓 ) ≠ 0 and
𝑁 > 0 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for every 𝑝 > 𝑁 . Let 𝑔, ℎ ∈ 𝐴 and 𝐼𝑔,ℎ,𝑓 ,𝜂 be the principal
ideal of 𝐴 generated by 𝜂(𝑔)𝜂(𝜂(ℎ)). Then for every 𝑞 ∈ 𝐼𝑔,ℎ,𝑓 ,𝜂, 𝜏 ∈  and 𝑝 > 3𝑁 + 4,
Ω𝑝(𝑓 , 𝑞𝜏) ∈ Ann(𝑀).

Proof. The ideal 𝐼𝑔,ℎ,𝑓 ,𝜂 is generated as a vector space by elements with the form 𝑞 =
𝑥𝜂(𝑔)𝜂(𝜂(ℎ)) with 𝑥 ∈ 𝐴. By Lemma 2.3.5,

[Ω3𝑁+2+𝑘(𝑓 , 𝑥𝜂(𝜂(ℎ))𝜂),Ω𝑙(𝑓 , 𝑔𝜏)] − [Ω3𝑁+2+𝑘(𝑓 , 𝑔𝑥𝜂(𝜂(ℎ))𝜂),Ω𝑙(𝑓 , 𝜏)]
− Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝜏(𝑔)𝑥𝜂(𝜂(ℎ))𝜂)

=Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝜏(𝑔)𝑥𝜂(𝜂(ℎ))𝜂 + 𝑥𝜂(𝑔)𝜂(𝜂(ℎ))𝜏) − Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝜏(𝑔)𝑥𝜂(𝜂(ℎ))𝜂)
=Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝑞𝜏) ∈ Ann(𝑀)

for each 𝑘, 𝑙 ≥ 1, and 𝜏 ∈  . Therefore, Ω3𝑁+4+𝑘(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝑘 ≥ 1,

𝑞 ∈ 𝐼𝑔,ℎ,𝑓 ,𝜂, 𝜏 ∈  .

Definition 2.3.7. For an ideal 𝐼 of 𝐴, define 𝐼 (0) = 𝐼 and 𝐼 (𝑘) to be the ideal of 𝐴 generated

by {𝑔, 𝜇(𝑔) ∣ 𝑔 ∈ 𝐼 (𝑘−1), 𝜇 ∈ }.

Lemma 2.3.8. Let 𝑀 be an 𝐴-module, and 𝑓 ∈ 𝐴. Suppose that 𝐼 is an ideal of 𝐴 such
that Ω𝑝(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 for some 𝑁 > 0. Then for each 𝑝 > 𝑁 + 𝑘,
Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for all 𝑔 ∈ 𝐼 (𝑘) and 𝜏 ∈  .

Proof. By Lemma 2.2.6,

0 = [Ω𝑝+1(𝑓 , 𝑔𝜏), 1#𝜇]𝑣
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= Ω𝑝+1(𝑓 , [𝑔𝜏, 𝜇])𝑣 + (𝑝 + 1)Ω𝑝(𝑓 , 𝜇(𝑓 )𝑔𝜏)𝑣 − (𝑝 + 1)𝜇(𝑓 )Ω𝑝(𝑓 , 𝑔𝜏)𝑣
= −Ω𝑝+1(𝑓 , 𝜇(𝑔)𝜏)𝑣 + Ω𝑝+1(𝑓 , 𝑔[𝜏, 𝜇])𝑣
= −Ω𝑝+1(𝑓 , 𝜇(𝑔)𝜏)𝑣

for every 𝑔 ∈ 𝐼 , 𝜇, 𝜏 ∈  , 𝑝 > 𝑁 and 𝑣 ∈ 𝑀 . Thus, Ω𝑝+1(𝑓 , 𝜇(𝑔)𝜏) ∈ Ann(𝑀) for every

𝑔 ∈ 𝐼 and 𝜇 ∈  .

Furthermore, for every 𝑔 ∈ 𝐼 and ℎ ∈ 𝐴, we have that 𝑔ℎ ∈ 𝐼 and

Ω𝑝(𝑓 , ℎ𝜇(𝑔)𝜏) = Ω𝑝(𝑓 , 𝜇(𝑔ℎ)𝜏) − Ω𝑝(𝑓 , 𝑔𝜇(ℎ)𝜏) ∈ Ann(𝑀).

Hence, for every 𝑔 ∈ 𝐼 (1), we have that Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 + 1. Since

𝐼 (𝑘) = (𝐼 (𝑘−1))(1), we conclude by induction that Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 + 𝑘,

𝜏 ∈  and 𝑔 ∈ 𝐼 (𝑘).

Lemma 2.3.9. For every 𝑓 ∈ 𝐴 with 𝑓 ∉ k, and 𝑝 ∈ 𝑋 , there exist 𝜇1,… , 𝜇𝑙 ∈  for some
𝑙 ≥ 1 such that (𝜇1 ◦ 𝜇2 ◦ ⋯ ◦ 𝜇𝑙)(𝑓 )(𝑝) ≠ 0.

Proof. The proof is similar to [BF18, Proposition 3.3]. Let 𝑝 ∈ 𝑋 , 𝑡1,… , 𝑡𝑠 be local parameters

centered at 𝑝, 𝜏1,… , 𝜏𝑠 ∈  with 𝜏𝑖(𝑡𝑗) = ℎ𝛿𝑖𝑗 for some ℎ ∈ 𝐴 with ℎ(𝑝) ≠ 0. Write

∑
𝛼
𝑓𝛼𝑡𝛼 ∈ k[[𝑡1,… , 𝑡𝑠]]

the Taylor series at 𝑝 of 𝑓 . Choose 𝛽 = (𝛽1,… , 𝛽𝑠) such that 𝑓𝛽 ≠ 0 and |𝛽| is minimal in

{|𝛼| ∣ 𝑓𝛼 ≠ 0}. If |𝛽| = 0, then 𝑓 (𝑝) = 𝑓𝛽 ≠ 0. If |𝛽| > 0, then

(
𝜕
𝜕𝑡𝑖)

𝛽1

⋯(
𝜕
𝜕𝑡𝑖)

𝛽𝑠

𝑓𝛽

is a nonzero multiple of 1. Therefore, the Taylor series at 𝑝 of

𝜏𝛽11 ◦ ⋯ ◦ 𝜏𝛽𝑠𝑠 (𝑓 ),

has a nonzero constant term. Therefore, 𝜏𝛽11 ◦ ⋯ ◦ 𝜏𝛽𝑠𝑠 (𝑓 )(𝑝) ≠ 0.

Corollary 2.3.10. For all 𝑓 ∈ 𝐴, 𝑓 ∉ k, there exists 𝜂 ∈  with 𝜂(𝑓 ) ≠ 0.

Proof. By Lemma 2.3.9, there exist 𝜇1,… , 𝜇𝑙 ∈  for some 𝑙 ≥ 1 such that (𝜇1 ◦ 𝜇2 ◦ ⋯ ◦
𝜇𝑙)(𝑓 )(𝑝) ≠ 0. In particular, 𝜇𝑙(𝑓 ) ≠ 0.

The main result of this Section is the following theorem.

Theorem 2.3.11. Let 𝑀 be a finite 𝐴-module, and 𝑓 ∈ 𝐴. Then, there exists 𝑁𝑓 , that
depends on 𝑓 , such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for each 𝑝 > 𝑁𝑓 , and 𝜂 ∈  .

Proof. If 𝑓 ∈ k1, then Ω𝑝(𝑓 , 𝜂) = 0 for all 𝑝 ≥ 1. Suppose 𝑓 ∉ k. By Corollary 2.3.10, there

exists 𝜇 ∈  such that 𝜇(𝑓 ) ≠ 0. By Proposition 2.3.4, there exists 𝜂 ∈  with 𝜂(𝑓 ) ≠ 0
and 𝑁 > 0 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for every 𝑝 > 𝑁 . Since 𝜂(𝑓 ) ≠ 0, there exists
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𝑔 ∈ {𝑓 , 𝑓 2} such that 𝜂(𝑓 )𝜂(𝜂(𝑔)) ≠ 0. By Proposition 2.3.6, there exists a nonzero ideal

𝐼 of 𝐴 such that Ω𝑝(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝑞 ∈ 𝐼 , 𝜏 ∈  and 𝑝 > 3𝑁 + 4. Since 𝐴 is

Noetherian and

𝐼 ⊂ 𝐼 (1) ⊂ 𝐼 (2) ⊂ ⋯

is an ascending chain of ideals of 𝐴, we have that 𝐼 (𝑘) = 𝐼 (𝑙) for every 𝑙 ≥ 𝑘 for some

𝑘 ≥ 1. Let 𝑝 ∈ 𝑋 . If there exists 𝑔 ∈ 𝐼 such that 𝑔(𝑝) ≠ 0, then we are done. Otherwise,

by Lemma 2.3.9 there exists 𝑔 ∈ 𝐼 (𝑙) for some 𝑙 such that 𝑔(𝑝) ≠ 0. Since 𝐼 (𝑙) ⊂ 𝐼 (𝑘) or

𝐼 (𝑙) = 𝐼 (𝑘), we have that 𝑔 ∈ 𝐼 (𝑘). Therefore, for every 𝑝 ∈ 𝑋 , there exists 𝑔 ∈ 𝐼 (𝑘) such that

𝑔(𝑝) ≠ 0. By Hilbert’s Nullstellensatz, 𝐼 (𝑘) = 𝐴. By Lemma 2.3.8, for every 𝑔 ∈ 𝐼 (𝑘) = 𝐴 and

𝑝 > 3𝑁 + 4 + 𝑘, Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for every 𝜏 ∈  . In particular, Ω𝑝(𝑓 , 𝜏) ∈ Ann(𝑀)
for each 𝑝 > 𝑁𝑓 where 𝑁𝑓 = 3𝑁 + 4 + 𝑘.

2.4 Localizing 𝐴-modules
Let 𝑀 be a finite 𝐴-module, and 𝑓 ∈ 𝐴, 𝑓 ≠ 0. Then

𝑀𝑓 = 𝐴𝑓 ⊗𝐴 𝑀

is an 𝐴𝑓 -module. Since the Lie algebra  is an 𝐴-module, we may consider the localization

𝑓 = Der(𝐴)𝑓 ≅ Der(𝐴𝑓 ) as well. The open set 𝐷(𝑓 ) = {𝑝 ∈ 𝑋 ∣ 𝑓 (𝑝) ≠ 0} ⊂ 𝑋 is an

irreducible smooth affine variety, and

𝐴𝐷(𝑓 ) = 𝐴𝑓 =
{
𝑔
𝑓 𝑘

∣ 𝑔 ∈ 𝐴, 𝑘 ≥ 0
}
.

Therefore, we may consider the question whether 𝑀𝑓 is an 𝐴𝑓𝑓 -module or not.

We wish to define an action of 𝑓 in such a way that 𝑀𝑓 is a module over 𝐴𝑓 #𝑈 (𝑓 ).
If 𝜂 ∈  ⊂ 𝑓 , then its action on 𝑀𝑓 must be defined as

(1#𝜂)(
𝑚
𝑓 𝑘)

= −𝑘
𝜂(𝑓 )𝑚
𝑓 𝑘+1

+
1
𝑓 𝑘

(𝜂𝑚)

for each 𝑚 ∈ 𝑀 .

DenoteΩ0(𝑓 , 𝜂) = 1#𝜂. By Theorem 2.3.11, there exists𝑁𝑓 such thatΩ𝑝(𝑓 , 𝜂) ∈ Ann(𝑀)
for every 𝑝 > 𝑁𝑓 . Hence, the sum

∞

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)𝑚

is finite for all 𝜂 ∈  , and 𝑚 ∈ 𝑀𝑓 . Inspired by [BI23], we will show that

(1#
𝜂
𝑓 )

𝑚 =
∞

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)𝑚 =
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)𝑚 (2.5)

is well-defined for all 𝜂 ∈  , 𝑚 ∈ 𝑀𝑓 . Assuming it is well-defined, we may use this formula
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to define the action of 1# 𝜂
𝑓 𝑘 for every 𝑘 ≥ 0, and 𝜂 ∈  recursively.

Lemma 2.4.1. The action of 𝑓 given by 2.5 is well-defined.

Proof. To show the action given by (2.5) is well-defined, we first must prove the action of

𝑓 𝜂
𝑓 2 and

𝜂
𝑓 coincides for each 𝜂 ∈  . By Lemma 2.2.7,

∞

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂) =
∞

∑
𝑝=0

𝑝 + 1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂) −
∞

∑
𝑝=1

𝑝
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)

=
∞

∑
𝑝=0

𝑝 + 1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂) −
∞

∑
𝑞=0

𝑞 + 1
𝑓 𝑞+2

Ω𝑞+1(𝑓 , 𝜂) =
∞

∑
𝑝=0

𝑝 + 1
𝑓 𝑝+2 (Ω𝑝(𝑓 , 𝜂) − Ω𝑝+1(𝑓 , 𝜂))

=
∞

∑
𝑝=0

𝑝 + 1
𝑓 𝑝+2

Ω𝑝(𝑓 , 𝑓 𝜂) =
∞

∑
𝑝=0

∞

∑
𝑞=0

1
𝑓 𝑝+𝑞+2

Ω𝑝+𝑞(𝑓 , 𝑓 𝜂)

=
∞

∑
𝑝=0

∞

∑
𝑞=0

1
𝑓 𝑝+𝑞+2

𝑝

∑
𝑘=0

𝑞

∑
𝑙=0

(−1)𝑘+𝑙(
𝑝
𝑘)(

𝑞
𝑙)
𝑓 𝑝+𝑞−𝑘−𝑙#𝑓 𝑘+𝑙+1𝜂

=
∞

∑
𝑝=0

1
𝑓 𝑝+1

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑓 𝑝−𝑘

𝑓 𝑝−𝑘

𝑓 𝑝−𝑘
∞

∑
𝑞=0

1
𝑓 𝑞+1

𝑞

∑
𝑙=0

(−1)𝑙(
𝑞
𝑙)
𝑓 𝑞−𝑙#𝑓 𝑙+𝑘+1𝜂

=
∞

∑
𝑝=0

1
𝑓 𝑝+1

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑓 𝑝−𝑘

∞

∑
𝑞=0

𝑞

∑
𝑙=0

(−1)𝑙(
𝑞
𝑙)

𝑓 𝑝−𝑘

𝑓 𝑝−𝑘+𝑙+1
#𝑓 𝑙+𝑘+1𝜂

=
∞

∑
𝑝=0

1
𝑓 𝑝+1

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑓 𝑝−𝑘 (

𝑓 𝑝−𝑘

𝑓 𝑝+1
#𝑓 2𝑘+1𝜂)

=
∞

∑
𝑝=0

1
𝑓 2(𝑝+1)

𝑝

∑
𝑘=0

(−1)𝑘(
𝑝
𝑘)
𝑓 𝑝−𝑘#𝑓 2𝑘+1𝜂 =

∞

∑
𝑝=0

1
𝑓 2(𝑝+1)Ω𝑝(𝑓

2, 𝑓 𝜂)

It remains to prove the action of 𝜂 and
𝑓 𝜂
𝑓 coincides for each 𝜂 ∈ 𝑓 . By Lemma 2.2.7,

(1#
𝑓 𝜂
𝑓 )𝑚 =

𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝑓 𝜂)𝑚

=
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1 (

𝑓Ω𝑝(𝑓 , 𝜂) − Ω𝑝+1(𝑓 , 𝜂))𝑚

=
(
1#𝜂 +

𝑁𝑓

∑
𝑝=1

1
𝑓 𝑝

Ω𝑝(𝑓 , 𝜂) −
𝑁𝑓 −1

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝+1(𝑓 , 𝜂))
𝑚

= (1#𝜂)𝑚

for each 𝑚 ∈ 𝑀𝑓 . Therefore, the action (2.5) is well-defined.
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In order to define a module over 𝐴𝑓 #𝑈 (𝑓 ), we need to impose that

(𝑔#1)((ℎ#𝜇)𝑚) = ((𝑔#1)(ℎ#𝜇))𝑚 and (ℎ#𝜇)((𝑔#1)𝑚) = ((ℎ#𝜇)(𝑔#1))𝑚

for every 𝜇 ∈ 𝑓 ∪ k, and 𝑔, ℎ ∈ 𝐴𝑓 . We will use this to prove (2.5) satisfies the Leibniz

rule.

Lemma 2.4.2. For all 𝜂 ∈ 𝑓 , 𝑔 ∈ 𝐴𝑓 , 𝑚 ∈ 𝑀 ,

𝑁𝑓

∑
𝑝=0

(
1
𝑓 𝑝+1

#1)Ω𝑝(𝑓 , 𝜂)(𝑔#1) =
𝜂(𝑔)
𝑓

#1 + (𝑔#1)
𝑁𝑓

∑
𝑝=0

(
1
𝑓 𝑝+1

#1)Ω𝑝(𝑓 , 𝜂)

Proof. Let 𝜂 ∈ 𝑓 , 𝑔 ∈ 𝐴𝑓 . By Proposition 2.2.2,

(𝑔#1)Ω𝑝(𝑓 , 𝜂) = Ω𝑝(𝑓 , 𝜂)(𝑔#1)

for all 𝑝 > 0. Therefore,

𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)(𝑔#1) = (
1
𝑓
#1) (1#𝜂)(𝑔#1) +

𝑁𝑓

∑
𝑝=1

(
1
𝑓 𝑝+1

#1)Ω𝑝(𝑓 , 𝜂)

= (
1
𝑓
#1) (𝜂(𝑔)#1 + 𝑔#𝜂) + (𝑔#1)

𝑁𝑓

∑
𝑝=1

(
1
𝑓 𝑝+1

#1)Ω𝑝(𝑓 , 𝜂)

=
𝜂(𝑔)
𝑓

#1 + (𝑔#1)
𝑁𝑓

∑
𝑝=0

(
1
𝑓 𝑝+1

#1)Ω𝑝(𝑓 , 𝜂)

By the last lemma and the comment above,

(1#𝜇) ((𝑔#1)𝑚) = ((1#𝜇)(𝑔#1))𝑚 = (𝜇(𝑔)#1)𝑚 + (𝑔#1) ((1#𝜇)𝑚)

for every 𝑚 ∈ 𝑀𝑓 , 𝜇 ∈ 𝑓 , 𝑔 ∈ 𝐴𝑓 . That is, the action (2.5) satisfies the Leibniz rule.

It remains to prove that (2.5) defines a representation of 𝑓 . To prove it, we will need

the following lemma.

Lemma 2.4.3. For every 𝜂 ∈ 𝑓 , and 𝑚 ∈ 𝑀𝑓 ,

(1#
𝜂
𝑓 𝑘)

𝑚 =
∞

∑
𝑝=0

(
𝑝 + 𝑘 − 1

𝑝 )
1
𝑓 𝑝+𝑘

Ω𝑝(𝑓 , 𝜂)𝑚.

Proof. We will prove the statement by induction on 𝑘 ≥ 1. For 𝑘 = 1, it follows by

Lemma 2.4.1. Suppose by induction that

(1#
𝜂
𝑓 𝑘−1)

𝑚 =
∞

∑
𝑝=0

(
𝑝 + 𝑘 − 2

𝑝 )
1

𝑓 𝑝+𝑘−1
Ω𝑝(𝑓 , 𝜂)𝑚
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for every 𝑚 ∈ 𝑀 and 𝑘 > 1. Hence, if 𝑘 > 1, then

(1#
𝜂
𝑓 𝑘)

𝑚

=
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝 (𝑓 ,
𝜂
𝑓 𝑎−1)

𝑚

=
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

𝑝

∑
𝑎=0

(−1)𝑎(
𝑝
𝑎)
𝑓 𝑝−𝑎(1#

𝑓 𝑎𝜂
𝑓 𝑘−1)

𝑚

=
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

𝑝

∑
𝑎=0

(−1)𝑎(
𝑝
𝑎)
𝑓 𝑝−𝑎

𝑁𝑓

∑
𝑞=0

(
𝑞 + 𝑘 − 2

𝑞 )
1

𝑓 𝑞+𝑘−1

𝑞

∑
𝑏=0

(−1)𝑏(
𝑞
𝑏)
𝑓 𝑞−𝑏#𝑓 𝑎+𝑏𝜂𝑚

=
𝑁𝑓

∑
𝑝=0

𝑁𝑓

∑
𝑞=0

(
𝑞 + 𝑘 − 2

𝑞 )
1

𝑓 𝑝+𝑞+𝑘

𝑝

∑
𝑎=0

𝑞

∑
𝑏=0

(−1)𝑎+𝑏(
𝑝
𝑎)(

𝑞
𝑏)
𝑓 𝑝+𝑞−𝑎−𝑏#𝑓 𝑎+𝑏𝜂𝑚

=
𝑁𝑓

∑
𝑝=0

𝑁𝑓

∑
𝑞=0

(
𝑞 + 𝑘 − 2

𝑞 )
1

𝑓 𝑝+𝑞+𝑘
Ω𝑝+𝑞(𝑓 , 𝜂)𝑚 =

𝑁𝑓

∑
𝑢=0

(
𝑢 + 𝑘
𝑢 )

𝑢 + 1
𝑓 𝑢+2

Ω𝑢(𝑓 , 𝜂)𝑚.

Proposition 2.4.4. 𝑀𝑓 is a 𝑓 -module with the action given by (2.5).

Proof. Fix 𝑚 ∈ 𝑀𝑓 . Since (2.5) is well-defined for all elements of 𝑉𝑓 , we only need to prove

that

[
𝜂
𝑓
,
𝜇
𝑓 ]
𝑚 = −

𝜂(𝑓 )
𝑓 3 𝜇𝑚 +

𝜇(𝑓 )
𝑓 3 𝜂𝑚 +

[𝜂, 𝜇]
𝑓 2 𝑚 =

[

𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂),
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜇)]
𝑚.

By Lemma 2.2.4 and Lemma 2.4.3,

[

𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂),
𝑁𝑓

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜇)]
𝑚

=
𝑁𝑓

∑
𝑘=0

𝑁𝑓

∑
𝑙=0

1
𝑓 𝑘+𝑙+2

[Ω𝑘(𝑓 , 𝜂),Ω𝑙(𝑓 , 𝜇)]𝑚

=
𝑁𝑓

∑
𝑘=0

𝑁𝑓

∑
𝑙=0

1
𝑓 𝑘+𝑙+2

(𝑘Ω𝑘+𝑙−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑙Ω𝑘+𝑙−1(𝑓 , 𝜂(𝑓 )𝜇) + Ω𝑘+𝑙(𝑓 , [𝜂, 𝜇]))𝑚

=
2𝑁𝑓

∑
𝑢=0

((
𝑢 + 2
𝑢 )

1
𝑓 𝑢+3

Ω𝑢(𝑓 , 𝜇(𝑓 )𝜂) −(
𝑢 + 2
𝑢 )

1
𝑓 𝑢+3

Ω𝑢(𝑓 , 𝜂(𝑓 )𝜇) +
𝑢 + 1
𝑓 𝑢+2

Ω𝑢(𝑓 , [𝜂, 𝜇]))𝑚

=
𝑁𝑓

∑
𝑢=0

((
𝑢 + 2
𝑢 )

1
𝑓 𝑢+3

Ω𝑢(𝑓 , 𝜇(𝑓 )𝜂) −(
𝑢 + 2
𝑢 )

1
𝑓 𝑢+3

Ω𝑢(𝑓 , 𝜂(𝑓 )𝜇) +
𝑢 + 1
𝑓 𝑢+2

Ω𝑢(𝑓 , [𝜂, 𝜇]))𝑚
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=
𝜇(𝑓 )
𝑓 3 𝜂𝑚 −

𝜂(𝑓 )
𝑓 3 𝜇𝑚 +

[𝜂, 𝜇]
𝑓 2 𝑚,

where 𝑢 = 𝑘 + 𝑙 − 1 in the above formula.

Since the number of generators of 𝑀𝑓 as an 𝐴𝑓 -module is less or equal to the number

of generators of 𝑀 as an 𝐴-module, we have that 𝑀𝑓 is a finitely generated as an 𝐴𝑓 -

module.

Theorem 2.4.5. If 𝑀 is a finite 𝐴-module and 𝑓 ∈ 𝐴, 𝑓 ≠ 0, then 𝑀𝑓 = 𝐴𝑓 ⊗𝐴 𝑀 is a
finite 𝐴𝑓𝑓 -module, where the action of 𝐴𝑓 is given by left side multiplication and

(
𝜂
𝑓 𝑘)

𝑚 =
∞

∑
𝑝=0

1
𝑓 𝑘(𝑝+1)

Ω𝑝(𝑓 𝑘, 𝜂)𝑚 =
∞

∑
𝑝=0

(
𝑝 + 𝑘 − 1

𝑝 )
1
𝑓 𝑝+𝑘

Ω𝑝(𝑓 , 𝜂)𝑚

for each 𝜂 ∈ 𝑓 .

Proof. We have that𝑀𝑓 is an𝐴𝑓 -module. By Lemma 2.4.1 and Proposition 2.4.4, the formula

above gives a well-defined representation of the Lie algebra 𝑓 . By Lemma 2.4.2, this action

satisfies the Leibniz rule. Therefore, 𝑀𝑓 is an 𝐴𝑓𝑓 -module.

Corollary 2.4.6. Let 𝑀 be a finite 𝐴-module and 𝑔, ℎ ∈ 𝐴 be nonzero elements. If 𝜂 ∈ 𝑔
and 𝜇 ∈ ℎ are such that 𝜂 = 𝜇 as elements of 𝑔ℎ, then 𝜂𝑚 = 𝜇𝑚 for all 𝑚 ∈ 𝑀𝑔ℎ.

Proof. Let 𝜇, 𝜂 ∈  such that
ℎ𝑙𝜂
𝑎 = ℎ𝑘𝜇

𝑎 in 𝑎, where 𝑔, ℎ ∈ 𝐴, 𝑔, ℎ ≠ 0, 𝑘, 𝑙 ≥ 0, and

𝑎 = 𝑔𝑘ℎ𝑙. This means that
𝜂
𝑔𝑘 =

𝜇
ℎ𝑙 in Der (Frac(𝐴)). Hence, 𝑎𝑖(𝑎ℎ𝑙𝜂 − 𝑎𝑔𝑘𝜇) = 0 for some

𝑖 > 0. Since 𝐴 is a domain and  is torsion-free, ℎ𝑙𝜂 = 𝑔𝑘𝜇. Therefore,

∞

∑
𝑝=0

1
𝑎𝑝+1

Ω𝑝(𝑎, ℎ𝑙𝜂) =
∞

∑
𝑝=0

1
𝑎𝑝+1

Ω𝑝(𝑎, 𝑔𝑘𝜇)

as operators of 𝑀𝑎.

Remark 2.4.7. Theorem 2.4.5 and Corollary 2.4.6 imply that the coherent sheaf �̃� on

𝑋 associated to an 𝐴-module 𝑀 is both a sheaf of 𝑋 -modules and a sheaf of Θ𝑋 = ̃-

modules that satisfies

𝜂(𝑓 𝑚) = 𝜂(𝑓 )𝑚 + 𝑓 (𝜂𝑚) for each 𝜂 ∈ Γ(𝑈,Θ𝑋 ), 𝑓 ∈ Γ(𝑈,𝑋 ), and 𝑚 ∈ Γ(𝑈, �̃�)

for each affine open set 𝑈 ⊂ 𝑋 . Note that we needed the assumption that 𝑋 is smooth and

irreducible to prove the results of this section.
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2.5 Infinitesimally equivariant sheaves

In this section, we will extend the theory of 𝐴-modules to scheme theory. Appendix A

reviews the basics of sheaves, schemes and quasi-coherent sheaves.

Let 𝑌 be a separated scheme with structure sheaf . Consider the tangent sheaf Θ over

𝑌 given by Γ(𝑈,Θ) = Der(𝐵) for each affine open set 𝑈 = Spec (𝐵) ⊂ 𝑌 .

Definition 2.5.1. A sheaf  over 𝑌 of -modules is called infinitesimally equivariant, or

infeq for short, if for each affine open set 𝑈 = Spec (𝑈 ) ⊂ 𝑌 , Γ(𝑈,) is a Γ(𝑈,Θ)-module

that satisfies the Leibniz rule:

𝜂 ⋅ (𝑓 ⋅ 𝑚) = 𝜂(𝑓 ) ⋅ 𝑚 + 𝑓 ⋅ (𝜂 ⋅ 𝑚) for each 𝜂 ∈ Γ(𝑈,Θ), 𝑓 ∈ 𝐵, 𝑚 ∈ Γ(𝑈,). (2.6)

If  is a vector bundle, we call  an infeq bundle.

Example 2.5.2. Both  and Θ are infeq sheaves, as well as each -module over 𝑌 .

However, infeq sheaves need not be -modules.

Let  be a vector bundle on 𝑌 and 𝑈 ⊂ 𝑌 an affine open set. If 𝜂 ∈ Γ(𝑈,Θ), then a

linear map 𝛼 ∶ Γ(𝑈,) → Γ(𝑈,) is called a 𝜂-derivation of Γ(𝑈,) if 𝛼 satisfies the

following “Leibniz rule”: 𝛼(𝑓 𝑚) = 𝑓 𝛼(𝑚) + 𝜂(𝑓 )𝑚 for each 𝑓 ∈ Γ(𝑈,) and 𝑚 ∈ Γ(𝑈,).
A linear map 𝛼 ∶ Γ(𝑈,) → Γ(𝑈,) is called derivation of Γ(𝑈,) if there exists

𝜂 ∈ Γ(𝑈,Θ) such that 𝛼 is an 𝜂-derivation.

If 𝛼1 is an 𝜂1-derivation and 𝛼2 is an 𝜂2-derivation, then 𝛼1 + 𝜆𝛼2 is a (𝜂1 + 𝜆𝜂2)-
derivation for every 𝜆 ∈ k. Thus, the set of all derivations of Γ(𝑈,) is a vector subspace

of Γ(𝑈,Endk()).

Definition 2.5.3. The Atiyah algebra At() of a vector bundle  on 𝑌 is the sheaf

defined by

Γ (𝑈,At()) = {𝛼 ∈ Γ (𝑈,Endk()) ∣ 𝛼 is a derivation of Γ(𝑈,)}

for each affine open subset 𝑈 ⊂ 𝑌 .

For a detailed discussion of the Atiyah algebra definition and its related constructions,

we refer the reader to [BS88].

Remark. In this section, we will abuse the language commonly used in algebraic geometry.

For a sheaf 𝑆 on an algebraic scheme 𝑌 , we say that a statement is true for each 𝛼 ∈ 𝑆 if it

is true for each 𝛼 ∈ Γ(𝑈, 𝑆) in every affine open set 𝑈 ⊂ 𝑌 . For instance, Definition 2.5.1

would be written as follows: an infeq bundle is a vector bundle  that is a Θ-module with

𝜂 ⋅ (𝑓 ⋅ 𝑚) = 𝜂(𝑓 ) ⋅ 𝑚 + 𝑓 ⋅ (𝜂 ⋅ 𝑚) for each 𝜂 ∈ Θ, 𝑓 ∈ , and 𝑚 ∈ .

Lemma 2.5.4. The Atiyah algebra is both an -submodule and a Lie subalgebra of glk().

Proof. Let 𝛼, 𝛽 ∈ At() be 𝜂, 𝜇-derivations, respectively. For 𝑓 ∈  and 𝑚 ∈ , we

define (𝑓 𝛼)(𝑚) = 𝑓 𝛼(𝑚). Then (𝑓 𝛼)(𝑚) = 𝑓 𝛼(𝑔𝑚) = 𝑓 𝑔𝛼(𝑚) + 𝑓 𝜂(𝑔)(𝑚) for each 𝑔 ∈ .

Therefore, 𝑓 𝛼 is a (𝑓 𝜂)-derivation, and At() is a -module.
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We define the bracket [𝛼, 𝛽] by the commutator, then

[𝛼, 𝛽](𝑓 𝑚) =𝛼(𝛽(𝑓 𝑚)) − 𝛽(𝛼(𝑓 𝑚))
=𝛼(𝑓 𝛽(𝑚) + 𝜇(𝑓 )𝑚) − 𝛽(𝑓 𝛼(𝑚) + 𝜂(𝑓 )𝑚)
=𝑓 𝛼(𝛽(𝑚)) + 𝜂(𝑓 )𝛽(𝑚) + 𝜇(𝑓 )𝛼(𝑚) + 𝜂(𝜇(𝑓 ))𝑚
− 𝑓 𝛽(𝛼(𝑚)) − 𝜇(𝑓 )𝛼(𝑚) − 𝜂(𝑓 )𝛽(𝑚) − 𝜇(𝜂(𝑓 ))𝑚

=𝑓 [𝛼, 𝛽](𝑚) + [𝜂, 𝜇](𝑓 )𝑚.

Hence, [𝛼, 𝛽] is a [𝜂, 𝜇]-derivation. We conclude At() is a Lie subalgebra of glk().

We are assuming that  is a vector bundle, hence it is torsion-free. If 𝛼 ∈ At()
is both an 𝜂-derivation and a 𝜇-derivation, then 𝜂(𝑓 )𝑚 = 𝛼(𝑓 𝑚) − 𝑓 𝛼(𝑚) = 𝜇(𝑓 )𝑚 for

every 𝑓 ∈ , 𝑚 ∈ . Therefore, 𝜂 = 𝜇 since  is torsion free. In other words, the map

𝜎 ∶ At() → Θ that assigns an 𝜂-derivation 𝛼 ∈ At() to 𝜂 is well-defined. This map is

often called symbol.

Definition 2.5.5. We call a Lie algebra homomorphism 𝐿 ∶ Θ → At() a Lie map if it is

a k-linear splitting of the symbol 𝜎, i.e., 𝜎(𝐿(𝜂)) = 𝜂 for every 𝜂 ∈ Θ.

Proposition 2.5.6. A vector bundle  is an infeq bundle if and only if there exists a Lie
map 𝐿 ∶ Θ → At(𝑀).

Proof. Suppose  is an infeq bundle, then define 𝐿(𝜂)𝑚 = 𝜂 ⋅ 𝑚 for each 𝜂 ∈ Θ, and

𝑚 ∈ . By definition of infeq sheaf, 𝐿(𝜂)(𝑓 𝑚) = 𝜂(𝑓 )𝑚 + 𝑓 𝐿(𝜂)(𝑚). Therefore, the image

of 𝐿 lies in At(), and 𝐿 is a k-linear splitting of 𝜎. Furthermore, 𝐿 is the representation

of Θ in , so it is a Lie algebra homomorphism.

On the other hand, if  is a vector bundle equipped with a Lie map 𝐿 ∶ Θ → At(),
then 𝐿 ∶ Θ → glk() is a representation of Θ that satisfies the Leibniz rule (2.6). Therefore,

 is an infeq bundle.

Remark 2.5.7. In other words, Definition 2.5.1 could be rephrased as follows: a vector

bundle  is said to be an infeq bundle if it is equipped with a linear splitting 𝐿 ∶ Θ →
At() of the symbol 𝜎 ∶ At() → Θ.

Theorem 2.5.8. Let 𝑋 be an affine algebraic variety and 𝑀 be a finite 𝐴𝑋𝑋 -module. Then
�̃� is an infeq bundle on 𝑋 ≅ Spec (𝐴).

Proof. Let  the structure sheaf of 𝐴 on Spec (𝐴). Consider the quasi-coherent sheaf �̃�
given by Γ(𝐷(𝑓 ), �̃�) = 𝑀𝑓 for each 𝑓 ∈ 𝐴. By Theorem 2.1.8, 𝑀 is a projective module.

This is equivalent to saying that �̃� is a locally free -module. Therefore, �̃� is a vector

bundle.

By Theorem 2.4.5 and Corollary 2.4.6, Γ(𝐷(𝑓 ), �̃�) is a Γ(𝐷(𝑓 ),)#𝑈 (Γ(𝐷(𝑓 ), ̃))-
module for each 𝑓 ∈ 𝐴, actions agree on intersections and restrictions behaves nicely with

respect to the -module structure. Therefore, �̃� is an infeq bundle.
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On the other hand, if  is an infeq bundle on 𝑋 , then Γ(𝑋,) is an 𝐴-module by

definition. This, together with the previous theorem, shows that we have an equivalence

of categories.

Corollary 2.5.9. The category of infeq bundles on a smooth irreducible affine algebraic
variety 𝑋 = Spec (𝐴) is equivalent to the category of finite 𝐴𝑋𝑋 -modules.

2.6 The Lie map as a differential operator

Let  and  be two vector bundles on a scheme 𝑌 with structure sheaf 𝑌 . Fol-

lowing Grothendieck [Gro67, Section 16.8], we define the sheaf of differential operators

Diff(, ) as a subsheaf of Homk(, ) constructed inductively as follows. Let

Diff0𝑌 (, ) = Hom𝑌 (, )

be the set of homomorphisms of -modules. For 𝑛 ≥ 0, define

Diff𝑛+1𝑌 (, ) =
{
𝐷 ∈ Homk(, ) ∣ [𝐷, 𝑓 ] ∈ Diff𝑛𝑌 (, ) ∀𝑓 ∈ 𝑌

}
.

Then the sheaf of differential operators from  to  is

Diff𝑌 (, ) =
∞

⋃
𝑛=0

Diff𝑛𝑌 (, ).

A sheaf  ∈ Diff𝑛𝑌 (, ) is called a differential operator of order less or equal than 𝑛.

All these notions can be defined similarly for two modules 𝑀 and 𝑁 over a commutative

algebra 𝐵.

We record the following proposition which will be used in the main theorem of this

section.

Proposition 2.6.1 ([Gro67, Proposition 16.8.8]). Let ,  be sheaves on 𝑌 of 𝑌 -modules,
and 𝐷 ∈ Homk(, ). Then, 𝐷 is a differential operator of order less or equal than 𝑛 if and
only if for each 𝑎1,… , 𝑎𝑛+1 ∈ 𝑌 and 𝑡 ∈ ,

∑
𝐻⊂{1,…,𝑛+1}

(−1)|𝐻 |

(
∏
𝑖∈𝐻

𝑎𝑖)
𝐷
((

∏
𝑖∉𝐻

𝑎𝑖)
𝑡
)

= 0

where |𝐻 | is the cardinality of 𝐻 .

For a differential operator 𝐷 ∈ Diff1𝑌 (, ) of order less or equal to 1, we de-

fine

𝜀(𝐷)(𝑓 ) = [𝐷, 𝑓 ] ∈ Hom𝑌 (, ) ∀𝑓 ∈ 𝑌 .

Using the natural isomorphism Θ ⊗ Hom𝑌 (, ) ≅ Derk (𝑌 ,Hom𝑌 (, )) given

by 𝜂 ⊗ 𝑇 ↦ (𝑓 ↦ 𝜂(𝑓 )𝑇 ), we have a map

𝜀 ∶ Diff1𝑌 (, ) → Θ ⊗ Hom𝑌 (, ),
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which is also called symbol. In the case where  =  , the pre-image 𝜀−1(Θ⊗ id) is exactly

the set of maps 𝐷 ∶  →  such that 𝜀(𝐷)(𝑓 ) = [𝐷, 𝑓 ] = 𝜂(𝑓 )id for some 𝜂 ∈ Θ. That

is, At() = 𝜀−1(Θ ⊗ id). In other words,

At() =
{
𝐷 ∈ Diff1𝑌 () ∣ 𝜀(𝐷) ∈ Θ ⊗ id

}
,

and the symbol 𝜎 ∶ At() → Θ we defined earlier is exactly the restriction: 𝜀|At() =
𝜎.

We wish to show that the Lie map associated with an infeq bundle is a differential

operator. We will prove this in the affine setting first. Let 𝑋 be a smooth irreducible variety,

𝐴 its coordinate ring and  the Lie algebra of vector fields as before.

Theorem 2.6.2. If 𝑀 is a finite 𝐴-module with rank 𝑟 , then Ω𝑝(𝑓 , 𝜏) ∈ Ann(𝑀) for every
𝑓 ∈ 𝐴, 𝜏 ∈  , and 𝑝 > 3 𝑟2 + 4.

Proof. Let 𝑓 ∈ 𝐴. If 𝑓 ∈ k, then Ω1(𝑓 , 𝜂) = 0 for every 𝜂 ∈  . Assume 𝑓 ∉ k, then there

exists 𝜇 ∈  such that 𝜇(𝑓 ) ≠ 0. Set 𝜂 = 𝜇
𝜇(𝑓 ) ∈ 𝜇(𝑓 ), then 𝜂(𝑓 ) = 1. By Lemma 2.2.4,

[Ω1(𝑓 , 𝜂),Ω𝑝(𝑓 , 𝜂)] = (1 − 𝑝)Ω𝑝(𝑓 , 𝜂).

Consider 𝐹 = Frac(𝐴) the field of fractions of 𝐴, and 𝑀 = 𝐹 ⊗𝐴 𝑀 , then we may see

each Ω𝑝(𝑓 , 𝜂) as an element of the vector space End𝐹 (𝑀) of 𝐹 -linear endomorphisms of

𝑀 . We have that Ω1(𝑓 , 𝜂) acts on End𝐹 (𝑀) by commutation Ω1(𝑓 , 𝜂) ⋅ 𝑇 = [Ω1(𝑓 , 𝜂), 𝑇 ]
for each 𝑇 ∈ End𝐹 (𝑀). The elements of the set

{
Ω𝑝(𝑓 , 𝜂) ∣ 𝑝 = 1,… , rank(𝑀)2 + 1

}
⊂

End𝐹 (𝑀) are eigenvectors of Ω1(𝑓 , 𝜂) with distinct eigenvalues. Therefore, there exists

𝑝 ∈ {1,… , rank(𝑀)2 + 1} such that Ω𝑝(𝑓 , 𝜂) = 0. However, by Lemma 2.2.4

[Ω𝑎(𝑓 , 𝜂),Ω𝑏(𝑓 , 𝜂)] = (𝑎 − 𝑏)Ω𝑎+𝑏−1(𝑓 , 𝜂)

thus Ω𝑝(𝑓 , 𝜂) = 0 implies Ω𝑞(𝑓 , 𝜂) = 0 for every 𝑞 > 𝑝. In particular, for all 𝑞 > rank(𝑀)2
we have Ω𝑞(𝑓 , 𝜂) ∈ Ann(𝑀). By Proposition 2.3.6, 𝜂(𝑓 )𝜂(𝜂(𝑓 2)) = 2 implies that Ω𝑞(𝑓 , 𝜏) ∈
Ann(𝑀) for every 𝜏 ∈ Derk(𝐹), 𝑞 > 3 rank(𝑀)2+4. Since  injects itself in Derk(𝐹) and𝑀
is a torsion-free 𝐴-module, we have that Ω𝑝(𝑓 , 𝜏) ∈ Ann(𝑀) for every 𝑝 > 3 rank(𝑀)2 + 4,

and 𝜏 ∈  .

In the beginning of Section 2.2, we use the linear map 𝛿 ∶ 𝐴 → 𝐴 ⊗ 𝐴 given 𝛿(𝑓 ) =
𝑓 ⊗ 1 − 1 ⊗ 𝑓 to define Ω𝑝(𝑓 , 𝜂). For each 𝑓1,… , 𝑓𝑝 ∈ 𝐴 and 𝜂 ∈  , define

Ω((𝑓1,… , 𝑓𝑝), 𝜂) = 𝛿(𝑓1)⋯ 𝛿(𝑓𝑝)(1#𝜂).

These elements are a generalization of the Ω𝑝 defined previously. If 𝑓𝑖 = 𝑓𝑗 for each

𝑖 = 1,… , 𝑝, then Ω((𝑓1,… , 𝑓𝑝), 𝜂) = Ω𝑝(𝑓1, 𝜂). Similar to Ω𝑝(𝑓 , 𝜂), Ω((𝑓1,… , 𝑓𝑝), 𝜂) also

commutes with 𝐴#1.

Lemma 2.6.3. For every 𝑓1,… , 𝑓𝑝, 𝑔 ∈ 𝐴 and 𝜂 ∈  ,

Ω((𝑓1,… , 𝑓𝑝), 𝜂)(𝑔#1) = (𝑔#1)Ω((𝑓1,… , 𝑓𝑝), 𝜂).
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Proof. Let 𝑃 = {1,… , 𝑝}. For each 𝐻 ⊂ 𝑃 , let |𝐻 | be the cardinality of 𝐻 . Hence,

Ω((𝑓1,… , 𝑓𝑝), 𝜂) = 𝛿(𝑓1)⋯ 𝛿(𝑓𝑝)(1#𝜂) =
𝑝

∏
𝑖=1

(𝑓𝑖 ⊗ 1 − 1 ⊗ 𝑓𝑖)(1#𝜂)

= −∑
𝐻⊂𝑃

(−1)|𝐻 | ∏
𝑖∈𝐻

𝑓𝑖#∏
𝑖∉𝐻

𝑓𝑖𝜂.

Thus,

− Ω((𝑓1,… , 𝑓𝑝), 𝜂)(𝑔#1) + (𝑔#1)Ω((𝑓1,… , 𝑓𝑝), 𝜂)

=
(
∑
𝐻⊂𝑃

(−1)|𝐻 | ∏
𝑖∈𝐻

𝑓𝑖#∏
𝑖∉𝐻

𝑓𝑖𝜂)
(𝑔#1) − (𝑔#1)

(
∑
𝐻⊂𝑃

(−1)|𝐻 | ∏
𝑖∈𝐻

𝑓𝑖#∏
𝑖∉𝐻

𝑓𝑖𝜂)

=∑
𝐻⊂𝑃

(−1)|𝐻 | ∏
𝑖∈𝑃
𝑓𝑖𝜂(𝑔)#1 + ∑

𝐻⊂𝑃(
(−1)|𝐻 | ∏

𝑖∈𝐻
𝑓𝑖𝑔#∏

𝑖∉𝐻
𝑓𝑖𝜂 − (−1)|𝐻 |𝑔∏

𝑖∈𝐻
𝑓𝑖#∏

𝑖∉𝐻
𝑓𝑖𝜂)

=𝜂(𝑔)
𝑝

∏
𝑖=1

(𝑓𝑖 − 𝑓𝑖)#1 = 0.

We want to prove Ω((𝑓1,… , 𝑓𝑝), 𝜂) ∈ Ann(𝑀) for large 𝑝, but first we need to prove

the following lemma.

Lemma 2.6.4. Let 𝑉 be a vector space and let 𝐹(𝑧1,… , 𝑧𝑝) ∈ k[𝑧1,… , 𝑧𝑝]⊗𝑉 , 𝐹 = ∑
𝛼∈ℤ𝑝+

𝑧𝛼𝑣𝛼 .

If 𝐹(𝑎1,… , 𝑎𝑝) = 0 for all 𝑎1,… , 𝑎𝑝 ∈ k, then 𝑣𝛼 = 0 for all 𝛼 ∈ ℤ𝑝
+.

Proof. Fix 𝑘 ≥ 1. For 𝛼 = (𝑎1,… , 𝑎𝑝), 𝛽 = (𝑏1,… , 𝑏𝑝) ∈ ℤ𝑝
+, denote |𝛼| ∶= 𝑎1 +⋯ + 𝑎𝑝 and

𝛼𝛽 ∶= 𝑎𝑏11 ⋯ 𝑎𝑏𝑝𝑝 . Consider the set

𝑆 =
{
𝛼 ∈ ℤ𝑝

+ ∣ |𝛼| ≤ 𝑘
}
⊂ ℤ𝑝

+.

Enumerate 𝑆 = {𝛼1,… , 𝛼𝑙}, then the determinant 𝐿𝑘,𝑝 of the matrix (𝛼
𝛼𝑗
𝑖 )

𝑛

𝑖,𝑗=1 is nonzero.

The value 𝐿𝑘,𝑝 is equal to

(

𝑘

∏
𝑖=1
𝑖(
𝑘−𝑖+𝑝
𝑝 )

)

𝑝

≠ 0.

If 𝑘 is the maximum degree of 𝛼 such that 𝑣𝛼 ≠ 0, then 𝐹(𝛼𝑖) = 0, 𝑖 = 1,… , 𝑙, implies

that the associated homogeneous linear system in 𝑉 has variables 𝑣𝛼𝑖 , 𝑖 = 1,… , 𝑙, and its

associated matrix (𝛼
𝛼𝑗
𝑖 )

𝑛

𝑖,𝑗=1 has determinant 𝐿𝑘,𝑝 ≠ 0. Hence, this system has a unique

solution. Consequently, 𝑣𝛼𝑖 = 0 for every 𝑖 = 1,… , 𝑙.

Lemma 2.6.5. For each 𝑝 > 3 rank(𝑀)2 + 4, we have that Ω((𝑓1,… , 𝑓𝑝), 𝜂) ∈ Ann(𝑀).
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Proof. Since each Ω𝑝(𝑓𝑖, 𝜂) ∈ Ann(𝑀), we have that

Ω𝑝(

𝑝

∑
𝑖=1
𝑎𝑖𝑓𝑖, 𝜂)

= ∑
𝑙1+⋯+𝑙𝑝=𝑝

(
𝑝

𝑙1,… , 𝑙𝑝)
𝑎𝑙11 ⋯ 𝑎

𝑙𝑝
𝑝

𝑝

∏
𝑖=1
𝛿(𝑓𝑖)𝑙𝑖(1#𝜂) ∈ Ann(𝑀) (2.7)

for all 𝑎1,… , 𝑎𝑝 ∈ k. We may see (2.7) as the evaluation 𝐹(𝑎1,… , 𝑎𝑝) of

𝐹 = ∑
𝑙1+⋯+𝑙𝑝=𝑝

(
𝑝

𝑙1,… , 𝑙𝑝)
𝑧𝑙11 ⋯ 𝑧𝑙𝑝𝑝 ⊗

𝑝

∏
𝑖=1
𝛿(𝑓𝑖)𝑙𝑖(1#𝜂) ∈ k[𝑧1,… , 𝑧𝑝] ⊗ Endk(𝑀)

By Lemma 2.6.4, Ω((𝑓𝑖1 ,… , 𝑓𝑖𝑝), 𝜂) ∈ Ann(𝑀) for every 1 ≤ 𝑖1,… , 𝑖𝑝 ≤ 𝑝.

The previous lemma and Proposition 2.6.1 imply the main result of this section.

Theorem 2.6.6. Let  be an infeq bundle on a separated scheme 𝑌 that admits a finite open
cover of smooth irreducible affine algebraic varieties. Denote by 𝑌 the structure sheaf of 𝑌
and Θ𝑌 its tangent sheaf. Then, the associated Lie map 𝐿 ∶ Θ𝑌 → At() is a differential
operator of order less or equal to 3 rank()2 + 4.

Proof. Since being a differential operator is a local property, we may assume that 𝑌 is affine

without loss of generality. Suppose that 𝑌 is a smooth irreducible affine algebraic variety

with coordinate ring 𝐴 and Lie algebra of derivations  . Set 𝑝 = 3rank𝐴(Γ(𝑋,))2 + 4.

By Lemma 2.6.5,

Ω((𝑓1,… , 𝑓𝑝), 𝜂)𝑚 = ∑
𝐻⊂{1,…,𝑝}

(−1)|𝐻 |

(
∏
𝑖∈𝐻

𝑓𝑖)
𝐿
((

∏
𝑖∈𝐻

𝑓𝑖)
𝜂
)
𝑚 = 0

for each 𝑚 ∈ , 𝜂 ∈  , 𝑓1,… , 𝑓𝑝 ∈ 𝐴. By Proposition 2.6.1, 𝐿 is a differential operator of

order less than 𝑝.

2.7 Gauge modules
In this section, we wish to give a more explicit description of the local structure of

an 𝐴-module utilizing the results we proved in this thesis and the structure theorems

proved in [BI23]. We will prove the conjecture from [BFN19] that states that every finite

𝐴-module is a gauge module.

For 𝑘 = (𝑘1,… , 𝑘𝑛) ∈ ℤ𝑛
+, we denote

𝑥𝑘 = 𝑥𝑘11 ⋯ 𝑥𝑘𝑛𝑛 ,

where 𝑥1,… , 𝑥𝑛 are variables.

Recall that 𝑋 is a smooth affine variety with dimension dim𝑋 = 𝑟 ,  is its structure

sheaf with Γ(𝑋,) = 𝐴, and Θ is its tangent sheaf with  = Γ(𝑋,Θ) = Der(𝐴). Let
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𝑈 ⊂ 𝑋 be an ètale chart with uniformizing parameters 𝑡1,… , 𝑡𝑟 ∈ 𝐴. Hence, the sections

𝑡1,… , 𝑡𝑠 ∈ 𝐵 = Γ(𝑈,) define partial derivatives such that

 ∶= Γ(𝑈,Θ) =
𝑟

⨁
𝑖=1
𝐵
𝜕
𝜕𝑡𝑖
.

We denote by 𝑟,+ the Lie subalgebra of vector fields on the affine space 𝔸𝑛
that

vanishes at the origin. Explicitly,

𝑟,+ =
𝑟

⨁
𝑖=1

(𝑇1,… , 𝑇𝑟)
𝜕
𝜕𝑇𝑖

⊂
𝑟

⨁
𝑖=1

k[𝑇1,… , 𝑇𝑟]
𝜕
𝜕𝑇𝑖

.

Let 𝑉 be a finite-dimensional vector space and 𝛼 ∶ 𝑟,+ → gl(𝐵 ⊗ 𝑉 ) be a representation

of 𝑟,+ such that 𝛼(𝑥)(𝑏 ⊗ 𝑣) = 𝑏𝛼(𝑥)(1 ⊗ 𝑣) for every 𝑏 ∈ 𝐵, 𝑥 ∈ 𝑟,+ and 𝑣 ∈ 𝑉 . Then,

𝐵-linear functions 𝐵𝑖 ∶ 𝐵 ⊗ 𝑉 → 𝐵 ⊗ 𝑉 , 𝑖 = 1,… , 𝑟 , are called gauge fields if

[𝐵𝑖, 𝛼 (𝑟,+)] = 0

and the operators

[
𝜕
𝜕𝑡𝑖

⊗ 1 + 𝐵𝑖,
𝜕
𝜕𝑡𝑗

⊗ 1 + 𝐵𝑗] = 0

for all 𝑖, 𝑗 = 1,… , 𝑟 . If {𝐵1,… , 𝐵𝑟} is a set of gauge fields, then the space 𝐵⊗𝑉 is a -module

with the following action

(𝑓
𝜕
𝜕𝑡𝑖)

(𝑔 ⊗ 𝑣) = 𝑓
𝜕𝑔
𝜕𝑡𝑖

⊗ 𝑣 + 𝑓 𝑔𝐵𝑖(1 ⊗ 𝑣) + 𝑔 ∑
𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝜕𝑘𝑓
𝜕𝑡𝑘

𝛼(𝑡
𝑘 𝜕
𝜕𝑡𝑖)

(1 ⊗ 𝑣)

where 𝑓 , 𝑔 ∈ 𝐵, 𝑣 ∈ 𝑉 and 𝑖 = 1,… , 𝑟 . In this case, 𝐵 ⊗ 𝑉 is a 𝐵#𝑈 ()-module, and it is

called a local gauge module on 𝑈 . We say that a finite 𝐴-module 𝑀 is a gauge module
if there exists an affine open cover {𝑈𝑖 ∣ 𝑖 ∈ 𝑌 } of 𝑋 such that Γ(𝑈𝑖, �̃�) is a local gauge

module on 𝑈𝑖 for each 𝑖 ∈ 𝑌 . The definition given here is a slight variation of the one given

in [BFN19] to accommodate the now-known fact that 𝐴-modules sheafify.

Let 𝑀 be a finite 𝐴-module with associated representation 𝜌 ∶  → gl(𝑀) of  . By

Theorem 2.4.5, 𝑀 is a projective 𝐴-module, thus the coherent sheaf �̃� is locally free. Let

us assume that both 𝑀 ′ = Γ(𝑈, �̃�) and  = Γ(𝑈,Θ) are free 𝐵 = Γ(𝑈,)-modules.

For each 𝑘 ∈ ℤ𝑟
, denote by Ω𝑘,𝑖 ∈ glk(𝑀 ′) the endomorphism of 𝑀 ′

that gives the

action of

𝛿(𝑡)𝑘
𝜕
𝜕𝑡𝑖

∶= 𝛿(𝑡1)𝑘1 ⋯ 𝛿(𝑡𝑠)𝑘𝑠 (1#
𝜕
𝜕𝑡𝑖)

.

By Theorem 2.6.6, 𝜌 is a differential transformation with finite order. If 𝑁 is the order of

differential transformation 𝜌, then Ω𝑘,𝑖 = 0 for every 𝑘 ∈ ℤ𝑠
+ with |𝑘| > 𝑁 . Note that the

family

{
Ω𝑘,𝑖 ∣ 𝑘 ∈ ℤ𝑠

+ ⧵ {0}, 𝑖 = 1,… , 𝑠
}
⊂ gl𝐵(𝑀 ′) because the action of 𝐵 commutes with

these endomorphisms by Lemma 2.6.3.

Denote by Δ𝑝 = (ker m)𝑝 the 𝑝-th power of the kernel of the multiplication map m ∶
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𝐵 ⊗ 𝐵 → 𝐵. We have that Δ𝑝 ⊗𝐵  ⊂ 𝐵# is generated by Ω((𝑓1,… , 𝑓𝑝), 𝜂), 𝑓1,… , 𝑓𝑝 ∈ 𝐵,

𝜂 ∈  . Let 𝐽 denotes the limit

𝐽 = lim
←
(𝐵#)/ (Δ𝑝 ⊗𝐵 ) .

and ̂𝑟,+ denote the Lie algebra

̂𝑟,+ =
𝑟

⨁
𝑖=1

(𝑇1,… , 𝑇𝑟)
𝜕
𝜕𝑇𝑖

⊂
𝑟

⨁
𝑖=1

k[[𝑇1,… , 𝑇𝑟]]
𝜕
𝜕𝑇𝑖

of derivations of the power series in 𝑟 variables that vanishes at the origin. The vector

space 𝐵 ⊗ ̂𝑟,+ is a Lie algebra with Lie bracket given by [𝑓 ⊗ 𝜂, 𝑔 ⊗ 𝜇] = 𝑓 𝑔 ⊗ [𝑓 , 𝑔] for

every 𝑓 , 𝑔 ∈ 𝐵 and 𝜂, 𝜇 ∈ ̂𝑟,+. Define the semi-direct product  ⋉ (𝐵 ⊗ ̂𝑟,+) using the

bracket

[𝜂, 𝑓 ⊗ 𝜇] = 𝜂(𝑓 ) ⊗ 𝜇, 𝜂 ∈  , 𝑓 ∈ 𝐵, 𝜇 ∈ ̂𝑟,+.

The main theorem of [BI23] states there is an isomorphism between 𝐽 and  ⋉ (𝐵 ⊗ ̂𝑟,+).
This isomorphism is given by two maps 𝜑 ∶ 𝐽 → ⋉(𝐵⊗̂𝑟,+) and𝜓 ∶ ⋉(𝐵⊗̂𝑟,+) → 𝐽
defined by

𝜑(𝑔#𝑓
𝜕
𝜕𝑡𝑖)

= 𝑔𝑓
𝜕
𝜕𝑡𝑖

+ ∑
𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝑔
𝜕𝑘𝑓
𝜕𝑡𝑘

⊗ 𝑇 𝑘
𝜕
𝜕𝑇𝑖

,

𝜓(𝑔
𝜕
𝜕𝑡𝑖)

= 𝑔 ⊗
𝜕
𝜕𝑡𝑖
,

𝜓(𝑔 ⊗ 𝑇
𝑘 𝜕
𝜕𝑇𝑖)

= (−1)𝑘(𝑔#1)𝛿(𝑡1)𝑘1 ⋯ 𝛿(𝑡𝑟)𝑘𝑟 (1#
𝜕
𝜕𝑡𝑖)

.

This theorem allows us to give an explicit formula for the action of 𝐵# in 𝑀 ′
in

terms of Ω𝑘,𝑖. If 𝐿 ∶ 𝐵# → glk(𝑀 ′) is the representation of 𝐵# associated to 𝑀 ′
, then

we define a representation 𝑇 ∶  ⋉ (𝐵 ⊗ ̂𝑟,+) → glk(𝑀 ′) by 𝑇 = 𝐿 ◦ 𝜓. Explicitly,

𝑇 (𝑔 ⊗ 𝑇
𝑘 𝜕
𝜕𝑇𝑖)

𝑚 = (𝑔#1)(𝛿(𝑡1)
𝑘1 ⋯ 𝛿(𝑡𝑠)𝑘𝑠 (1#

𝜕
𝜕𝑡𝑖))

𝑚 = (𝑔#1)Ω𝑘,𝑖𝑚,

𝑇 (𝑓
𝜕
𝜕𝑡𝑖)

𝑚 = (𝑓 #
𝜕
𝜕𝑡𝑖)

𝑚,

for every 𝑓 , 𝑔 ∈ 𝐵, 𝑖 ∈ {1,… , 𝑟}, 𝑚 ∈ 𝑀 ′
. This is well-defined because Ω𝑘,𝑖 = 0 for |𝑘| > 𝑁 .

Hence, calculating 𝑇 ◦ 𝜑, we get that

(𝑔#𝑓
𝜕
𝜕𝑡𝑖)

𝑚 = (𝑔𝑓 #
𝜕
𝜕𝑡𝑖)

𝑚 + ∑
𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝑔
𝜕𝑘𝑓
𝜕𝑡𝑘

Ω𝑘,𝑖𝑚

for every 𝑚 ∈ 𝑀 ′
, 𝑓 , 𝑔 ∈ 𝐵 and 𝑖 = 1,… , 𝑟 .
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The isomorphisms above hint that the Lie subalgebra generated by

{
Ω((𝑡𝑖1 ,… , 𝑡𝑖𝑝) ,

𝜕
𝜕𝑡𝑎)

∣ 𝑝 > 0, 𝑖1,… , 𝑖𝑝, 𝑎 ⊂ {1,… , 𝑟}
}

in 𝐵# is isomorphic to the Lie algebra 𝑟,+. The following lemma confirms that.

Lemma 2.7.1. For each 𝑘, 𝑙 ∈ ℤ𝑟
+ ⧵ {0} and 𝑎, 𝑏 ∈ {1,… , 𝑟},

[𝛿(𝑡)
𝑘 𝜕
𝜕𝑡𝑎
, 𝛿(𝑡)𝑙

𝜕
𝜕𝑡𝑏 ]

= 𝑙𝑎𝛿(𝑡)𝑘+𝑙−𝜖𝑎
𝜕
𝜕𝑡𝑏

− 𝑘𝑏𝛿(𝑡)𝑘+𝑙−𝜖𝑏
𝜕
𝜕𝑡𝑎

Proof. We have that

𝛿(𝑡)𝑘
𝜕
𝜕𝑡𝑎

= ∑
0≤𝑐≤𝑘

(−1)𝑘−𝑐(
𝑘
𝑐)
𝑡𝑘−𝑐#𝑡𝑐

𝜕
𝜕𝑡𝑎

where (𝑘𝑐) denotes the multinomial coefficient and (−1)𝑐 = (−1)𝑐1+𝑐2+⋯+𝑐𝑟
for each 𝑐 ∈ ℤ𝑟

+.

Thus,

[𝛿(𝑡)
𝑘 𝜕
𝜕𝑡𝑎
, 𝛿(𝑡)𝑙

𝜕
𝜕𝑡𝑏 ]

=(𝛿(𝑡)
𝑘 𝜕
𝜕𝑡𝑎
𝛿(𝑡)𝑙

𝜕
𝜕𝑡𝑏

− 𝛿(𝑡)𝑙
𝜕
𝜕𝑡𝑎
𝛿(𝑡)𝑘

𝜕
𝜕𝑡𝑏)

= ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑(
𝑘
𝑐)(

𝑙
𝑑)(𝑡

𝑘−𝑐#𝑡𝑘
𝜕
𝜕𝑡𝑎)(𝑡

𝑙−𝑑#𝑡𝑑
𝜕
𝜕𝑡𝑏)

− ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑(
𝑘
𝑐)(

𝑙
𝑑)(𝑡

𝑙−𝑑#𝑡𝑑
𝜕
𝜕𝑡𝑏)(𝑡

𝑘−𝑐#𝑡𝑘
𝜕
𝜕𝑡𝑎)

= ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑(
𝑘
𝑐)(

𝑙
𝑑)(𝑡

𝑘 𝜕
𝜕𝑡𝑎

(𝑡 𝑙−𝑑) #𝑡𝑑
𝜕
𝜕𝑡𝑏

− 𝑡 𝑙
𝜕
𝜕𝑡𝑏

(𝑡𝑘−𝑐) #𝑡𝑐
𝜕
𝜕𝑡𝑎)

+ ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑(
𝑘
𝑐)(

𝑙
𝑑)
𝑡𝑘+𝑙−𝑐−𝑑# [𝑡

𝑐 𝜕
𝜕𝑡𝑎
, 𝑡𝑑

𝜕
𝜕𝑡𝑏 ]

=
(

∑
0≤𝑐≤𝑘

(−1)𝑘−𝑐(
𝑘
𝑐)

(𝑡𝑘#1)
)

∑
0≤𝑑≤𝑙

(−1)𝑙−𝑑(
𝑙
𝑑)

𝜕
𝜕𝑡𝑎

(𝑡 𝑙−𝑑) #𝑡𝑑
𝜕
𝜕𝑡𝑏

−
(

∑
0≤𝑑≤𝑙

(−1)𝑙−𝑑(
𝑙
𝑑)

(𝑡 𝑙#1)
)

∑
0≤𝑐≤𝑘

(−1)𝑘−𝑐(
𝑘
𝑐)

𝜕
𝜕𝑡𝑏

(𝑡𝑘−𝑐) #𝑡𝑐
𝜕
𝜕𝑡𝑎

+ ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑(
𝑘
𝑐)(

𝑙
𝑑)
𝑡𝑘+𝑙−𝑐−𝑑#(𝑡

𝑐 𝜕
𝜕𝑡𝑎

(𝑡𝑑)
𝜕
𝜕𝑡𝑏

− 𝑡𝑑
𝜕
𝜕𝑡𝑏

(𝑡𝑐)
𝜕
𝜕𝑡𝑎)

= ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑𝑑𝑎(
𝑘
𝑐)(

𝑙
𝑑)
𝑡𝑘+𝑙−𝑐−𝑑#𝑡𝑐+𝑑−𝜖𝑎

𝜕
𝜕𝑡𝑏

− ∑
0≤𝑐≤𝑘

∑
0≤𝑑≤𝑙

(−1)𝑘+𝑙−𝑐−𝑑𝑐𝑏(
𝑘
𝑐)(

𝑙
𝑑)
𝑡𝑘+𝑙−𝑐−𝑑#𝑡𝑐+𝑑−𝜖𝑏

𝜕
𝜕𝑡𝑎
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=𝑙𝑎𝛿(𝑡)𝑘+𝑙−𝜖𝑎
𝜕
𝜕𝑡𝑏

− 𝑘𝑏𝛿(𝑡)𝑘+𝑙−𝜖𝑏
𝜕
𝜕𝑡𝑎

The fifth equality follows from the fact that ∑
0≤𝑐≤𝑘

(−1)𝑘−𝑐(
𝑘
𝑐)
𝑥 = 0 and the last equality

follows from [BIN23, Lemma 3.2 (c)], which states that

∑
0<𝑚≤𝑘

∑
0<𝑗≤𝑙

(−1)𝑘+𝑙−𝑚−𝑗(
𝑘
𝑚)(

𝑙
𝑗)
𝑗𝑝𝑥𝑘+𝑙−𝑚−𝑗𝑦𝑚+𝑗−𝜖𝑝

=𝑙𝑝 ∑
0<≤𝑘𝑙−𝜖𝑝

(−1)𝑘+𝑙−𝜖𝑝𝑥𝑘+𝑙−𝑗−𝜖𝑝𝑦𝑗

where 𝑥, 𝑦 denote multi-variables.

Let 𝑠 be the rank of 𝑀 ′
and 𝑣1,… , 𝑣𝑠 ∈ 𝑀 ′

be a basis of 𝑀 ′
as a 𝐵-module, then

𝑀 ′ = 𝐵𝑉 ≅ 𝐵 ⊗k 𝑉 is a module over 𝑟,+ under the isomorphism given by the last lemma,

where 𝑉 = spank{𝑣1,… , 𝑣𝑠}. If 𝛼 ∶ 𝑟,+ → gl(𝐵𝑉 ) is the associated representation, then

𝛼(𝑥)(𝑏𝑣) = 𝑏𝛼(𝑥)𝑣 for every 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑉 and 𝑥 ∈ 𝑟,+ because the action of Ω𝑘,𝑖 commutes

with the action of 𝐵. For each 𝑣 ∈ 𝑉 , we have

(𝑔#𝑓
𝜕
𝜕𝑡𝑖)

(ℎ𝑣) = (𝑔#𝑓
𝜕
𝜕𝑡𝑖)

(ℎ𝑣) + 𝑔 ∑
𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝜕𝑘𝑓
𝜕𝑡𝑘

Ω𝑘,𝑖(ℎ𝑣)

= (𝑔𝑓
𝜕
𝜕𝑡𝑖

(ℎ)) 𝑣 + 𝑔𝑓 ℎ(
𝜕
𝜕𝑡𝑖
𝑣) + 𝑔ℎ ∑

𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝜕𝑘𝑓
𝜕𝑡𝑘

Ω𝑘,𝑖𝑣.

For each 𝑖 = 1,… , 𝑟 , consider the map

𝑉 → 𝑀 ′

𝑣 ↦ (1#
𝜕
𝜕𝑡𝑖)

𝑣.

Let 𝐵𝑖 ∶ 𝐵 ⊗ 𝑉 → 𝑀 ′
be the 𝐵-linear extension of this map. Then, 𝐵1,… , 𝐵𝑟 are gauge

fields, because they are 𝐵-linear maps that commute with the action of +,𝑟 given by the

Ω𝑘,𝑗 and

[
𝜕
𝜕𝑡𝑖

⊗ 1 + 𝐵𝑖,
𝜕
𝜕𝑡𝑗

⊗ 1 + 𝐵𝑗]

=
𝜕
𝜕𝑡𝑖 (

𝜕
𝜕𝑡𝑗

(ℎ)) 𝑣 + ℎ𝐵𝑖(𝐵𝑗(1 ⊗ 𝑣)) −
𝜕
𝜕𝑡𝑗 (

𝜕
𝜕𝑡𝑖

(ℎ)) 𝑣 + ℎ𝐵𝑗(𝐵𝑖(1 ⊗ 𝑣))

=ℎ (𝐵𝑗 ◦ 𝐵𝑖 − 𝐵𝑖 ◦ 𝐵𝑗)(1 ⊗ 𝑣)) = ℎ [1#
𝜕
𝜕𝑡𝑖
, 1#

𝜕
𝜕𝑡𝑗 ]

𝑣 = 0.
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Therefore, the action of 𝐵# can be rewritten as

(𝑔#𝑓
𝜕
𝜕𝑡𝑖)

(ℎ𝑣) = (𝑔𝑓
𝜕
𝜕𝑡𝑖

(ℎ)) 𝑣 + 𝑔𝑓 ℎ𝐵𝑖(1 ⊗ 𝑣) + 𝑔ℎ ∑
𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝜕𝑘𝑓
𝜕𝑡𝑘

Ω𝑘,𝑖𝑣.

Thus, 𝑀 ′
is a local gauge module on 𝑈 . This solves the conjecture in [BFN19].

Theorem 2.7.2. Every finite 𝐴-module is a gauge module.

Proof. Let 𝑀 be a finite 𝐴-module and 𝑝 ∈ 𝑋 , then 𝑝 ∈ 𝐷(ℎ) is an element of a standard

chart and there exists an open neighborhood 𝑈 ⊂ 𝑋 of 𝑝 such that both Γ(𝑈, �̃�) is a free

Γ(𝑈,)-module. Take 𝑈𝑝 = 𝐷(ℎ)∩𝑈 , hence Γ(𝑈𝑝, �̃�) is a local gauge module on 𝑈𝑝 by the

arguments given above. Doing this for each 𝑝 ∈ 𝑋 , we have that {𝑈𝑝 ∣ 𝑝 ∈ 𝑋 } is an open

cover of 𝑋 such that Γ(𝑈𝑝, �̃�) is a local gauge module on 𝑈𝑝 for each 𝑝 ∈ 𝑋 . Therefore, 𝑀
is a gauge module.

Remark 2.7.3. Since the localization maps 𝐴 ↪ 𝐵,  ↪  and 𝑀 ↪ 𝑀 ′
are injective, 𝑀

is a gauge 𝐴-module in the sense of the definition given in [BFN19].

2.8 Summary of results

In this chapter, we developed further the theory of 𝐴-modules and proved the main

conjecture of the paper [BFN19] that made the foundations of this theory, which states

that every finite 𝐴-module is a gauge module.

This was only possible because we proved that the coherent sheaf associated with a

finite 𝐴-module is a vector bundle such that local sections admit a compatible action of

the tangent sheaf.

Theorem (Theorem 2.4.5, Theorem 2.1.8). Let 𝑋 be a smooth irreducible affine algebraic
variety, 𝐴 be its coordinate ring and  = Der(𝐴). Denote by  the structure sheaf of 𝑋
and by Θ its tangent sheaf. Let 𝑀 be a finite 𝐴-module. Then, the coherent sheaf �̃� of
-modules is an infinitesimally equivariant bundle. That is, for every affine open set 𝑈 ⊂ 𝑋 ,
the Γ(𝑈,)-module Γ(𝑈, �̃�) is a Γ(𝑈,)Γ(𝑈,Θ)-module. In particular, if 𝑈 = 𝐷(𝑓 ) for
𝑓 ∈ 𝐴, then

∞

∑
𝑝=0

𝑝

∑
𝑙=0

(−1)𝑙(
𝑝 + 𝑘
𝑝 )(

𝑝
𝑙)

1
𝑓 𝑘+𝑙

#𝑓 𝑙𝜂

is a finite sum as an operator on 𝑀𝑓 and express the action of
𝜂
𝑓 𝑘

for each 𝜂 ∈  .

This theorem allowed us to show that the representation 𝜌 ∶  → glk(𝑀) associated

with the 𝐴-module is a differential operator.

Theorem (Theorem 2.6.6). Let 𝑋 be a smooth irreducible affine algebraic variety, 𝐴 be its
coordinate ring and  = Der(𝐴). If 𝑀 is an 𝐴-module with -representation 𝜌 ∶  →
glk(𝑀), then 𝜌 is a differential operator with order less or equal to 𝑁 = rank(𝑀)2 + 4. In
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particular, for every 𝑝 > 𝑁 ,

∑
𝐻⊂𝑃

(−1)card(𝐻 )∏
𝑖∈𝐻

𝑓𝑖𝜌(
∏
𝑖∉𝐻

𝑓𝑖)
= 0

where 𝑓1,… , 𝑓𝑝 ∈ 𝐴, 𝜂 ∈  and 𝑃 = {1,… , 𝑝}.

The theory of 𝐴-modules that started algebraically has now a compatible geometric

counterpart, which we call Infinitesimally equivariant sheaves. The algebraic-geometric

version of these results can be summarized in the following theorem.

Theorem (Theorem 2.5.9, Theorem 2.6.6). 1. Let 𝑋 be a smooth irreducible affine al-
gebraic variety, 𝐴 its coordinate ring and  = Der(𝐴). There is an equivalence of
categories between the category of finite𝐴-modules and the category of infinitesimally
equivariant bundles.

2. Let  be an infinitesimally equivariant bundle on a separated scheme 𝑌 that admits
a finite open cover of smooth irreducible affine algebraic varieties. Denote by 𝑌 the
structure sheaf of 𝑌 and Θ𝑌 its tangent sheaf. Then, the associated Lie map 𝐿 ∶ Θ𝑌 →
At() is a differential operator of order less or equal to 3 rank()2 + 4.

These results are detailed in the paper authored by Bouaziz and the present au-

thor [BR23].

When combined with the structure theorems proved in [BI23], our results give us a

proof for the conjecture in [BFN19] as we saw in Section 2.7. This also gives a picture of

the local structure of 𝐴-modules.

Theorem (Theorem 2.7.2). Let 𝑋 be a smooth irreducible affine algebraic variety with
dimension 𝑟 = dim(𝑋) and structure sheaf . If  is an infinitesimally equivariant sheaf
on 𝑋 , then for every 𝑝 ∈ 𝑋 there exists an ètale chart 𝑈 ∋ 𝑝 with uniformizing parameters
𝑡1,… , 𝑡𝑟 ∈ Γ(𝑈,), a finite-dimensional subvector space 𝑉 ⊂ Γ(𝑈,) that admits repre-
sentation 𝜌 ∶ 𝑟,+ → glk(𝑉 ) that commutes with the action of Γ(𝑈,) and gauge fields
𝐵1,… , 𝐵𝑟 ∶ Γ(𝑈,) ⊗k 𝑉 → Γ(𝑈,) such that 𝑀 ≅ Γ(𝑈,) ⊗k 𝑉 and

(𝑔#𝑓
𝜕
𝜕𝑡𝑖)

(ℎ𝑣) = (𝑔𝑓
𝜕
𝜕𝑡𝑖

(ℎ)) 𝑣 + 𝑔𝑓 ℎ𝐵𝑖(1 ⊗ 𝑣) + 𝑔ℎ ∑
𝑘∈ℤ𝑟⧵{0}

1
𝑘!
𝜕𝑘𝑓
𝜕𝑡𝑘

𝜌(𝑇
𝑘 𝜕
𝜕𝑇𝑖)

𝑣

for every 𝑣 ∈ 𝑉 , 𝑓 , 𝑔, ℎ ∈ Γ(𝑈,), and 𝑖 = 1,… , 𝑟 .
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Chapter 3

Supervarieties, superalgebras and
Lie superalgebras

In this chapter, we extend concepts and results from previous chapters to the super-

symmetric case. This entails delving into super vector spaces, superalgebras, and superva-

rieties.

As we saw in Theorem 1.4.3, the Lie algebra of vector fields on a smooth irreducible

affine algebraic variety is simple. We will prove the same result but now for the Lie

superalgebra of vector fields on a smooth irreducible affine supervariety. We will also

investigate the theory of 𝐴-modules, however, we will assume from the start we have an

infinitesimally equivariant sheaf and prove that the associated Lie map is a differential

operator. We will also study 𝐴-modules associated with the supervariety with purely

odd 𝑛-dimensional superspace. In this case, the Lie superalgebra of vector fields is the

simple finite-dimensional Lie superalgebra of Cartan type W(𝑛) and the coordinate ring

is the Grassmann algebra Λ(𝑛) in 𝑛 variables. After showing an isomorphism analogous

to the one proven in [BIN23], we prove there is an equivalence of categories between

the category of finite W(𝑛)Λ(𝑛)-modules and finite-dimensional modules over the Lie

superalgebra of vector fields that vanishes in the unique point of the associated variety. All

these results are explicitly displayed in Section 3.10 with the summary of our results.

We will start the chapter with the basics of superlinear algebra. In Section 3.1, we

define super vector spaces, superalgebras and Lie superalgebras. To summarize, these can

be seen as generalizations of the usual structures but with minor changes made to add a

ℤ2-grading. Every vector space, algebra and Lie algebra are included in this context if we

consider them as having a null odd part.

In the next section, we move to supergeometry. The main objective of Section 3.2 is

to define supervarieties. To do it, we go through several concepts from supergeometry,

introducing superschemes, morphisms of superschemes, functor of points and other related

notions. Our definition of supervarieties is a direct generalization of the definition of

algebraic varieties given in the scheme theoretical setting.

The infinitesimal theory of supervarierties is explored in Section 3.3. We will go through

several related concepts, e.g. the tangent sheaf, the tangent space, the sheaf of differentials



52

3 | SUPERVARIETIES, SUPERALGEBRAS AND LIE SUPERALGEBRAS

and smoothness. These concepts will be tied together in Theorem 3.3.11, which is part of a

more general theorem proven in [She21, Theorem B.3].

Similar to what we have done in the first preliminary chapter of this thesis, we will

define the system of parameters at a point in Section 3.4. We will give a more precise

description of the tangent sheaf, especially of its local behavior. In Example 3.4.6, we show

explicitly how to algebraically construct a local basis of the tangent sheaf seen as a sheaf

of modules of the structure sheaf of a supervariety.

Before moving to our result on the simplicity of the Lie algebra of vector fields, we will

need one more notion which will be introduced in Section 3.5. We will talk about topological

algebras, completions and power series. These will give us a powerful tool to study the

local structure of the tangent sheaf and the structure sheaf of a supervariety.

Section 3.6 contains one of our main theorems of this chapter. We will prove that if 𝑋
is a smooth integral affine supervariety of dimension greater or equal to 1|0, then global

sections of the tangent sheaf form a simple Lie superalgebra. Our proof is algebraic and it

mimics the one given in the non-super case by Billig and Futorny [BF18].

Infinitesimally equivariant sheaves on supervarieties are introduced in Section 3.7 as

well as their module version. We show that every infeq finite module over 𝑆 sheafifies

into an infinitesimally equivariant sheaf if 𝑋 = Spec (𝑆) is an integral smooth affine

supervariety. In Section 3.8, we will prove that the Lie map associated with infinitesimally

equivariant sheaves on a smooth integral supervariety is a differential operator.

In Section 3.9, we will study infinitesimally equivariant sheaves on the affine superva-

riety with only odd variables, i.e. the structure scheme of the Grassmann algebra. We will

prove that the smash product Λ(𝑛)#𝑈 (W(𝑛)) of the Grassmann superalgebra Λ(𝑛) and the

universal enveloping algebra of its Lie algebra W(𝑛) = Der(Λ(𝑛)) of derivations is isomor-

phic to the the tensor product of Endk(Λ(𝑛)) and the universal enveloping algebra of the

Lie subalgebra W(𝑛)+ of W(𝑛) formed by the vector fields that vanish at the unique point of

the associated supervariety. We finish Section 3.9 by proving the equivalence of categories

between finite-dimensional modules over Λ(𝑛)#𝑈 (W(𝑛)) and finite-dimensional modules

over W(𝑛)+. Thus, such modules may be simultaneously viewed as Rudakov modules or

tensor modules.

3.1 Super vector spaces and superalgebras
Definition 3.1.1. A super vector space 𝑉 is a ℤ2-graded k-vector space 𝑉 = 𝑉0⊕𝑉1, where

elements of 𝑉0 are called even and elements of 𝑉1 are called odd. An element 𝑣 ∈ 𝑉 is called

homogeneous if it is an element of either 𝑉0 or 𝑉1. For a homogeneous element 𝑣 ∈ 𝑉 we

define its parity as

|𝑣| =

{
0 if 𝑣 ∈ 𝑉0

1 if 𝑣 ∈ 𝑉1

A subspace 𝑊 of a super vector space is a vector super space 𝑊 = 𝑊0 ⊕𝑊1 ⊂ 𝑉 with

𝑊𝑖 ⊂ 𝑉𝑖 for 𝑖 ∈ ℤ2. If dim𝑉0 = 𝑚 and dim𝑉1 = 𝑛, the superdimension of 𝑉 is the pair

(𝑚, 𝑛), which will be denoted by dim𝑉 = 𝑚|𝑛.
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Remark 3.1.2. When we write |𝑣| for an element of a super vector space, we will implicitly

assume that 𝑣 is a homogeneous element.

Example 3.1.3. For 𝑚, 𝑛 ≥ 0, we define the super vector space k𝑚|𝑛 as the vector space

k𝑚+𝑛 with the ℤ2-grading

(k𝑚|𝑛)0 = k𝑚 × {0}, (k𝑚|𝑛)1 = {0} × k𝑛.

Example 3.1.4. Let 𝑉 ,𝑊 be two super vector spaces. Denote by Hom(𝑉 ,𝑊 ) the set of

all linear maps from 𝑉 to 𝑊 . This vector space is a super vector space with the grading

Hom(𝑉 ,𝑊 )0 = {𝑇 ∶ 𝑉 → 𝑊 ∣ 𝑇 (𝑉𝑖) ⊂ 𝑊𝑖 for all 𝑖 ∈ ℤ2} ;
Hom(𝑉 ,𝑊 )1 = {𝑇 ∶ 𝑉 → 𝑊 ∣ 𝑇 (𝑉𝑖) ⊂ 𝑊𝑖+1 for all 𝑖 ∈ ℤ2} .

Definition 3.1.5. A morphism from a super vector space 𝑉 to a super vector space 𝑊 is

an element of Hom(𝑉 ,𝑊 )0, which will be denoted by Hom(𝑉 ,𝑊 )

Thus we defined the category of super vector spaces that we denote by SVect. The

category SVect admits tensor product. For super vector spaces 𝑉 ,𝑊 we give 𝑉 ⊗𝑊 the

ℤ2-grading

(𝑉 ⊗𝑊 )0 = (𝑉0 ⊗𝑊0) ⊕ (𝑉1 ⊕𝑊1) ,
(𝑉 ⊗𝑊 )1 = (𝑉0 ⊗𝑊1) ⊕ (𝑉1 ⊕𝑊0) .

This tensor product is associative, i.e. (𝑈 ⊗ 𝑉 ) ⊗ 𝑊 ≅ 𝑈 ⊗ (𝑉 ⊗ 𝑊 ). The object k1|0

is the unit element with respect to tensor multiplication. Furthermore, the linear map

𝑐𝑉1,𝑉2 ∶ 𝑉1 ⊗ 𝑉2 → 𝑉2 ⊗ 𝑉1 given by 𝑐𝑉1,𝑉2(𝑣1 ⊗ 𝑣2) = (−1)|𝑣1 ||𝑣2 |𝑣2 ⊗ 𝑣1 is an isomorphism of

super vector spaces.

Definition 3.1.6. For a super vector space 𝑉 define the parity shift of 𝑉 to be Π𝑉 ∈ SVect
defined as (Π𝑉 )0 = 𝑉1 and (Π𝑉 )1 = 𝑉0.

A superalgebra is an object 𝑆 ∈ SVect with a multiplication even map 𝜏 ∶ 𝑆 ⊗ 𝑆 → 𝑆,

usually denoted by 𝜏(𝑎 ⊗ 𝑏) = 𝑎𝑏 . It said to be commutative (or supercommutative) if

𝜏 = 𝜏 ◦ 𝑐𝑆,𝑆 , that is, 𝑎𝑏 = (−1)|𝑎||𝑏 |𝑏𝑎. Similarly we say that 𝑆 is associative if 𝜏 ◦ (𝜏 ⊗ id) =
𝜏 ◦ (id ⊗ 𝜏) on 𝑆 ⊗ 𝑆 ⊗ 𝑆. In other words 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐. We say that 𝑆 is unital if there

exists an even element 1 so that 𝜏(1 ⊗ 𝑎) = 𝜏(𝑎 ⊗ 1)𝑎 for all 𝑎 ∈ 𝑆, i.e., 𝑎 ⋅ 1 = 1 ⋅ 𝑎 = 𝑎.

The tensor product 𝑆1 ⊗ 𝑆2 of two superalgebras 𝑆1 and 𝑆2 is a superalgebra as well, with

the multiplication map defined by

(𝑎 ⊗ 𝑏)(𝑐 ⊗ 𝑑) = (−1)|𝑏 ||𝑐|𝑎𝑐 ⊗ 𝑏𝑑.

For a superalgebra 𝑆, the soul 𝐽𝑆 of 𝑆 is the ideal of 𝑆 generated by its odd part 𝑆1. The

body of the superalgebra 𝑆 is the quotient 𝑆/𝐽𝑆 .

Example 3.1.7. Let 𝑉 be a super vector space and consider End(𝑉 ) = Hom(𝑉 , 𝑉 ) the set

of linear endomorphisms of 𝑉 . Example 3.1.4 shows that End(𝑉 ) is a super vector space.

The composition of endomorphisms makes End(𝑉 ) an associative superalgebra.
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Example 3.1.8. If 𝑉 is a super vector space, then we may define the free associative

algebra generated by 𝑉 . Define 𝑇 0𝑉 = k and 𝑇 𝑘𝑉 = 𝑉 ⊗𝑘
for positive integer 𝑘. The tensor

superalgebra 𝑇 (𝑉 ) is the super vector space

𝑇 (𝑉 ) = ⨁
𝑘≥0

𝑇 𝑘𝑉

with multiplication map given by concatenation, that is,

(𝑣1 ⊗⋯ ⊗ 𝑣𝑟) ⋅ (𝑤1 ⊗⋯ ⊗ 𝑤𝑠) = 𝑣1 ⊗⋯ ⊗ 𝑣𝑟 ⊗ 𝑤1 ⊗⋯ ⊗ 𝑤𝑠.

Thus, 𝑇 (𝑉 ) is an unital associative superalgebra, but it is commutative if and only if 𝑉 is

even and one-dimensional.

If {𝑥1,… , 𝑥𝑚} is a basis of 𝑉0 and {𝜃1,… , 𝜃𝑠} is basis of 𝑉1, we denote 𝑇 (𝑉 ) by

𝑇 (𝑉 ) = k⟨𝑥1,… , 𝑥𝑟 ∣ 𝜃1,… , 𝜃𝑠⟩.

Example 3.1.9. Let 𝑆(𝑚|𝑛) = k[𝑥1,… , 𝑥𝑚 ∣ 𝜃1,… , 𝜃𝑛] denote the superalgebra given as the

quotient of k⟨𝑥1,… , 𝑥𝑟 ∣ 𝜃1,… , 𝜃𝑠⟩ by the ideal generated by

𝑥𝑖𝑥𝑗 − 𝑥𝑗𝑥𝑖, 𝜃𝑘𝜃𝑙 + 𝜃𝑘𝜃𝑙, 𝑥𝑖𝜃𝑘 − 𝜃𝑘𝑥𝑖

with 𝑖, 𝑗 = 1,… , 𝑚, and 𝑘, 𝑙 = 1,… , 𝑛. The superalgebra 𝑆(𝑚|𝑛) is commutative and its

ℤ2-graded structure is

𝑆(𝑚|𝑛)0 = spank
{
𝑥𝑟11 ⋯ 𝑥𝑟𝑚𝑚 𝜃𝑖1 ⋯ 𝜃𝑖2𝑘 ∣ 𝑟1,… , 𝑟𝑚 ≥ 0, 𝑖1 < 𝑖2 < ⋯ < 𝑖2𝑘

}
,

𝑆(𝑚|𝑛)1 = spank
{
𝑥𝑟11 ⋯ 𝑥𝑟𝑛𝑚 𝜃𝑖1 ⋯ 𝜃𝑖2𝑘+1 ∣ 𝑟1,… , 𝑟𝑚 ≥ 0, 𝑖1 < 𝑖2 < ⋯ < 𝑖2𝑘+1

}
.

Note that 𝑆(𝑚|𝑛) is isomorphic as a vector space to the tensor product of k[𝑥1,… , 𝑥𝑚]
with the exterior algebra Λ(𝜃1,… , 𝜃𝑛). Furthermore, the soul 𝐽𝑆(𝑚|𝑛) of 𝑆(𝑚|𝑛) is the ideal

generated by 𝜃1,… , 𝜃𝑛, and its body 𝑆(𝑚|𝑛)/𝐽𝑆(𝑚|𝑛) is isomorphic to k[𝑥1,… , 𝑥𝑚].

A Lie superalgebra is an object g ∈ SVect with linear even map g ⊗ g → g, the Lie

(super)bracket, such that 𝜏 = −𝜏 ◦ 𝑐g,g and

𝜏 ◦ (id ⊗ 𝜏) = 𝜏 ◦ (𝜏 ⊗ id) + 𝜏 ◦ (id ⊗ 𝜏) ◦ (𝑐g,g ⊗ id).

These two properties mean that if 𝜏(𝑥 ⊗ 𝑦) = [𝑥, 𝑦] for each 𝑥, 𝑦 ∈ g, then [𝑥, 𝑦] =
−(−1)|𝑥 ||𝑦 |[𝑦, 𝑥] and

[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + (−1)|𝑥 ||𝑦 |[𝑦, [𝑥, 𝑧]]

for every 𝑥, 𝑦, 𝑧 ∈ g. A map 𝛼 ∶ g1 → g2 between two Lie superalgebras is a morphism

of Lie superalgebras if 𝛼([𝑥, 𝑦]) = [𝛼(𝑥), 𝛼(𝑦)]. Common notions, such as subalgebras

and ideals, are defined in this setting accordingly. A Lie superalgebra g is called simple if

[g, g] ≠ 0 and it has exactly two ideals, 0 and g.
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Example 3.1.10. Let 𝑆 be an associative superalgebra, then 𝑆 is a Lie superalgebra with

the bracket given by the supercommutator

[𝑎, 𝑏] = 𝑎𝑏 − (−1)|𝑎||𝑏 |𝑏𝑎.

If 𝑉 is a super vector space and 𝑆 = End(𝑉 ), we denote by gl(𝑉 ) the associated Lie

superalgebra.

Example 3.1.11. Let 𝑆 be a an associative superalgebra. A (super)derivation of 𝑆 is an

element 𝐷 ∈ gl(𝑆) such that 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏 + (−1)|𝐷||𝑎|𝑎𝐷(𝑏) for each 𝑎, 𝑏 ∈ 𝐷. The set

Der(𝑆) of all derivations of 𝑆 is a Lie subalgebra of gl(𝑆). If 𝑆 is commutative, then Der(𝑆)
is also an 𝑆-module, and these structures are compatible following the rule

[𝑓 𝜂, 𝑔𝜇] = 𝑓 𝜂(𝑔)𝜇 − (−1)(|𝑓 |+|𝜂|)(|𝑔 |+|𝜇|)𝑔𝜇(𝑓 )𝜂 + (−1)|𝜂||𝑔 |𝑓 𝑔[𝜂, 𝜇] (3.1)

where 𝑓 , 𝑔 ∈ 𝑆, and 𝜂, 𝜇 ∈ Der(𝑆).

3.2 Supervarieties

In this section, we assume that all superalgebras are associative, commutative and

unital. We denote their category by 𝐒𝐀𝐥𝐠. For an introduction to supergeometry, we refer to

the book [CCF11]. For the basics of algebraic geometry, we refer to the Appendix A.

For 𝑆 ∈ 𝐒𝐀𝐥𝐠, recall that 𝐽𝑆 = (𝑆1) is the ideal generated by the odd elements. Write 𝑆𝑟
for the quotient 𝑆/𝐽𝑆 . We say that 𝑆 is reduced or super reduced if 𝑆𝑟 is commutative algebra

with no nilpotents elements. Note that 𝑆 may still contain some (even) nilpotents.

A superspace 𝑋 = (|𝑋 |,𝑋 ) is a topological space |𝑋 | together with a sheaf of superal-

gebras 𝑋 ∶ |𝑋 | → 𝐒𝐀𝐥𝐠 such that the stalk 𝑋,𝑥 is a local superalgebra for every point

𝑥 in |𝑋 |, i.e., 𝑋,𝑥 has a unique maximal homogeneous ideal. We define the sheaves 𝑋,0
and 𝑋,1 by Γ(𝑈,𝑋,0) = Γ(𝑈,𝑋 )0 and Γ(𝑈,𝑋,1) = Γ(𝑈,𝑋 )1 for each open set 𝑈 ⊂ |𝑋 |,
respectively. Note that 𝑋,0 ∶ |𝑋 | → 𝐒𝐀𝐥𝐠 is a sheaf of commutative algebras. Furthermore,

both 𝑋 and 𝑋,1 are sheaves of 𝑋,0-modules.

A superscheme 𝑋 is a superspace (|𝑋 |,𝑋 ) such that 𝑋,1 is a quasi-coherent sheaf of

𝑋,0-modules. 𝑋 is called structure sheaf of 𝑋 . Given a superscheme 𝑋 = (|𝑋 |,𝑋 ), let

𝑟
𝑋 denote the sheaf of algebras

𝑟
𝑋 (𝑈 ) = (𝑋/𝐽𝑋 )(𝑈 )

where 𝐽𝑋 is the ideal sheaf 𝑈 ↦ 𝐽𝑋 (𝑈 ). We will call 𝑋 𝑟
the reduced space associated to the

superspace 𝑋 = (|𝑋 |,𝑋 ).

Example 3.2.1 (Affine Superscheme). Let 𝑆 be a superalgebra, then consider the affine

scheme Spec (𝑆0) with structure sheaf 𝑆0 . There exists a correspondence between prime

ideals of 𝑆 and prime ideals of 𝑆𝑟 that contains 𝐽𝑆 . Since every element of 𝐽𝑆 is nilpotent,

Spec (𝑆𝑟) and Spec (𝑆0) are essentially the same and homeomorphic as topological spaces.

The stalk of 𝑆0 at a prime p is given by localization 𝑆0,p = (𝑆0)p. The super vector
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space 𝑆 is a module over 𝑆0, thus there exists a quasi-coherent sheaf 𝑆 on Spec (𝑆0) as-

sociated with it. Explicitly, the stalk of 𝑆 at prime ideal p of 𝑆0 is the localization of the

(𝑆0)p-module at p

𝑆p =
{
𝑓
𝑔
∣ 𝑓 ∈ 𝑆, 𝑔 ∈ 𝑆0 ⧵ p

}
.

This is a sheaf of superalgebras and we will denote it by Spec (𝑆). In particular,

Γ (𝐷(𝑓 ), Spec (𝑆)) =
{
𝑔
𝑓 𝑛

∣ 𝑔 ∈ 𝑆, 𝑛 ≥ 0
}
.

if 𝐷(𝑓 ) = {p ∈ Spec (𝑆0) ∣ 𝑓 ∉ p} is a basic open set of Spec (𝑆0) with 𝑓 ∈ 𝑆0.

A superscheme 𝑋 that is isomorphic to Spec (𝑆) for some commutative superalgebra 𝑆
is called affine superscheme.

Example 3.2.2 (Affine superspace 𝔸𝑚|𝑛
). Consider the polynomial superalgebra

𝑆(𝑚|𝑛) = k[𝑥1,… , 𝑥𝑚 ∣ 𝜃1,… , 𝜃𝑛]

over an algebraically closed field k, where 𝑥1,… , 𝑥𝑚 are even variables and 𝜃1,… , 𝜃𝑛 are odd

variables. We define 𝔸𝑚|𝑛 = Spec (𝑆(𝑚|𝑛)) to be the affine superspace of superdimension

𝑚|𝑛 and denote it by 𝔸𝑚|𝑛
.

The topological space underlying 𝔸𝑚|𝑛
is Spec (𝑆(𝑚|𝑛)0), which is essentially the same

as Spec (k[𝑥1,… , 𝑥𝑚]). It consists of the even maximal ideals

(𝑥𝑖 − 𝑎𝑖, 𝜃𝑗𝜃𝑘 ∣ 𝑖 = 1,… , 𝑚, 𝑗 , 𝑘 = 1,… , 𝑛)

and the even prime ideals

(𝑝1,… , 𝑝𝑟 , 𝜃𝑗𝜃𝑘 ∣ 𝑗 , 𝑘 = 1,… , 𝑛)

where (𝑝1,… , 𝑝𝑟) is a prime ideal in k[𝑥1,… , 𝑥𝑚].

Example 3.2.3 (Superscheme on the sphere 𝑆2). Consider the polynomial superalgebra

k[𝑥1, 𝑥2, 𝑥3 ∣ 𝜃1, 𝜃2, 𝜃3, 𝜉1, 𝜉2, 𝜉3] generated over an algebraically closed field k and the ideal

𝐼 = (𝑥21 + 𝑥
2
2 + 𝑥

2
3 − 𝜉1𝜃1 − 𝜉2𝜃2 − 𝜉3𝜃3 − 1, 𝑥1𝜃1 + 𝑥2𝜃2 + 𝑥3𝜃3) .

Let k[𝑋] = k[𝑥1, 𝑥2, 𝑥3, 𝜃1, 𝜃2, 𝜃3]/𝐼 and 𝑋 = Speck[𝑋]. Then 𝑋 is a supervariety whose

reduced variety 𝑋 𝑟
is the sphere 𝑆2.

Example 3.2.4. Let 𝑋0 be a scheme and  a coherent sheaf on 𝑋0. Then Λ∙ is a

superscheme. Explicitly, if 𝑈 = Spec (𝐵) ⊂ 𝑋0 is an affine open subset, then the exterior

algebra of the 𝐵-module 𝑁 = Γ(𝑈, )

Γ(𝑈,Λ∙ ) = Λ∙
𝐵𝑁 = 𝐵 ⊕ 𝑁 ⊕

2

⋀
𝐵
𝑁 ⊕

3

⋀
𝐵
𝑁 ⊕⋯
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is a commutative superalgebra. The product of 𝑥 ∈ ⋀𝑘
𝐵 𝑁 with 𝑦 ∈ ⋀𝑙

𝐵 𝑁 is 𝑥 ∧ 𝑦 ∈ ⋀𝑘+𝑙
𝐵 𝑁 .

Definition 3.2.5. A superscheme 𝑋 is called graded if there exists a coherent sheaf  on

𝑋 𝑟
such that 𝑋 ≅ (|𝑋 |,Λ∙). This isomorphism is called grading. If there exists a cover of

𝑋 consisting of graded open subschemes, then we say that 𝑋 is locally graded.

Remark 3.2.6. It was proved in [Kos94] that any connection on a supermanifold defines

a grading on it, thus a graded superscheme may have many different gradings.

A superalgebra 𝑆 is a superdomain if 𝑆 ⧵ 𝐽𝑆 does not have zero divisors. We say that

a superscheme 𝑋 is integral if the topological space |𝑋 | is connected and 𝑋 = ∪𝑋𝑖 with

𝑋𝑖 = Spec (𝑆𝑖) such that all 𝑆𝑖 are superdomains. A generic point is a point 𝑥 ∈ |𝑋 | such

that the closure of {𝑥} is 𝑋 . If 𝑋 is irreducible, then it admits an unique generic point. If 𝑋
admits an unique generic point 𝑥 , we denote by k(𝑋) = 𝑋,𝑥 the stalk of 𝑋 at 𝑥 . For any

open affine subscheme Spec (𝑆) ⊂ 𝑋 , there exists a map Γ(𝑈,𝑋 ) → k(𝑋). If 𝑋 = Spec (𝑆)
is an integral superscheme, then the soul 𝐽𝑆 of 𝑆 is the generic point of 𝑋 .

A morphism of superschemes 𝑓 ∶ 𝑋 → 𝑌 between the superschemes 𝑋 and 𝑌 is a pair

of maps 𝑓 = (|𝑓 |, 𝑓 #) such that |𝑓 | ∶ |𝑋 | → |𝑌 | is a continuous map, 𝑓 # ∶ 𝑌 → 𝑓∗𝑌
is a sheaf morphism and the map 𝑓 #

𝑝 ∶ 𝑌 ,|𝑓 |(𝑝) → 𝑋,𝑝 is a morphism of superalgebras

such that the image of the maximal ideal of 𝑌 ,|𝑓 |(𝑝) is contained in the maximal ideal of

𝑋,𝑝. The sheaf 𝑓∗𝑌 is the sheaf on |𝑌 | defined by (𝑓∗𝑋 ) (𝑈 ) = 𝑌 (|𝑓 |−1(𝑈 )). Thus, the

category 𝐒𝐒𝐜𝐡 of superschemes is defined.

Definition 3.2.7. Let 𝑋 be a superscheme and 𝑆 is a commutative superalgebra. The set

ℎ𝑋 (𝑆) ∶= ℎ𝑋 (Spec (𝑆)) = Hom𝐒𝐒𝐜𝐡(Spec (𝑆), 𝑋) ≅ Hom𝐒𝐀𝐥𝐠 (Γ(𝑋,𝑋 ), 𝑆)

is called the set of S-points of 𝑋 .

There is a relation between points of the topological space |𝑋 | and k-points of 𝑋 . Take

a point 𝑥 ∈ |𝑋 | such that 𝑋,𝑥/m𝑋,𝑥 ≅ k where m𝑋,𝑥 is the maximal ideal of 𝑋,𝑥 . Then, we

define a morphism 𝑓 ∶ Spec (k) → 𝑋 with 𝑓 # ∶ 𝑋,𝑥 → 𝑋,𝑥/m𝑋,𝑥k given by the canonical

projection and |𝑓 | ∶ Spec (k) → |𝑋 | that sends the unique point of Spec (k) to 𝑥 . Hence,

𝑓 = (|𝑓 |, 𝑓 ∗) ∈ ℎ𝑋 (k). On the other hand, if 𝑓 = (|𝑓 |, 𝑓 #) ∈ ℎ𝑋 (k), then 𝑓 # ∶ 𝑋,|𝑓 |(0) → k
defines an isomorphism 𝑋,|𝑓 |(0)/m𝑋,|𝑓 |(0) ≅ k where m𝑋,|𝑓 |(0) is the maximal ideal of the local

algebra 𝑋,|𝑓 |(0). Therefore, there is a correspondence between k-points of 𝑋 and points

𝑥 ∈ |𝑋 | with 𝑋,𝑥/m𝑋,𝑥 ≅ k. This correspondence will be used freely in this text.

Definition 3.2.8. A k-point 𝑥 is closed if the corresponding prime ideal in Spec (𝑆0) is

maximal for each affine open neighbourhood Spec (𝑆) ⊂ 𝑋 of 𝑥 .

Conversely, a k-point 𝑥 ∈ ℎ𝑋 (k) is closed if the corresponding point 𝑥 ∈ |𝑋 | is closed.

If 𝑥 is closed and Spec (𝑆) is an affine open neighborhood of 𝑥 , then the quotient of 𝑆 by

the corresponding maximal ideal of 𝑥 has finite dimension. Thus, it is a finite algebraic

extension of k, hence isomorphic to k. In particular, 𝑋,𝑥/m𝑋,𝑥 ≅ k. Therefore, every

closed point corresponds to a k-point.

Let 𝑋, 𝑌 , 𝑍 be superschemes. If 𝑓 ∶ 𝑋 → 𝑍 and 𝑔 ∶ 𝑌 → 𝑍 are morphism of

superschemes, then the fibre product is a superscheme 𝑋 ×𝑍 𝑌 together with morphisms
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𝑝1 ∶ 𝑋 ×𝑍 𝑌 → 𝑋 and 𝑝1 ∶ 𝑋 ×𝑍 𝑌 → 𝑌 such that the diagram

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍

𝑝1

𝑝2

𝑔

𝑓

commutes and it is universal with that property. If 𝑋 = Spec (𝐴), 𝑌 = Spec (𝐵) and

𝑍 = Spec (𝑆) are affine superschemes, then

𝑋 ×𝑍 𝑌 = Spec (𝐴 ⊗𝑆 𝐵).

Consider the superscheme 𝑋 ×𝑍 𝑋 . The diagonal map Δ ∶ 𝑋 → 𝑋 ×𝑍 𝑋 will play a role

in a few definitions. This is a morphism of superschemes such that Δ ◦ 𝑝1 = Δ ◦ 𝑝2 = 1𝑋 ,

where 𝑝1 and 𝑝2 are the projections maps that come with 𝑋 ×𝑍 𝑋 .

There exists a unique map 𝑋 → Spec (k). If Spec (𝑆) ⊂ 𝑋 is an affine open subscheme,

then this map comes from the unique morphism of (unital) commutative superalgebras

k → 𝑆. We denote 𝑋 ×Spec (k) 𝑋 by simply 𝑋 × 𝑋 . The superscheme 𝑋 is called separated if

Δ ∶ 𝑋 → 𝑋 × 𝑋 is a closed embedding, that is, |Δ| ∶ |𝑋 | → |𝑋 × 𝑋 | is a homeomorphism

onto its image, the pullback morphism 𝑋×𝑋 → Δ∗𝑋 is surjective and its kernel is locally

generated by its sections as a module over 𝑋×𝑋 . Similar to what happens in the usual

algebraic geometry, any affine superscheme is separated. Furthermore, if 𝑈, 𝑉 ⊂ 𝑋 are

affine subschemes of a separated superscheme 𝑋 , then 𝑈 ∩ 𝑉 is affine as well, see [Sha94b,

Section V.4.3, Proposition 3]. This is the superscheme theoretical analog of a Hausdorff

space in topology. For more on separated morphisms and schemes, see [Har77, Section

II.4] or [Sha94b, Section V.4.3]. Schemes were originally required to be separated by

Grothendick [Gro60] and the special class of superschemes studied by us will be separated

as well.

We wish to consider a type of scheme that mimics the properties of algebraic vari-

eties.

Definition 3.2.9. A supervariety 𝑋 is an irreducible separated superscheme such that

1. 𝑋 admits a finite open cover of affine superschemes of the form Spec (𝑆), where 𝑆 is

a finitely generated superalgebra,

2. Γ(𝑈,𝑋 ) → k(𝑋) is injective for any open subscheme 𝑈 ⊂ 𝑋 ,

3. k(𝑋) is an integral super domain.

If there exists a superalgebra 𝑆 such that 𝑋 = Spec (𝑆), then we say that 𝑋 is an affine
supervariety.

Remark 3.2.10. 1. An integral irreducible separated scheme of finite type over

Spec (k) is an algebraic variety, thus a supervariety 𝑋 with structure sheaf 𝑋
is an algebraic variety if 𝑋,1 is trivial.

2. Suppose that 𝑋0 is a quasi-projective variety and  is a coherent sheaf of 𝑋0-

modules, then 𝑋 = Λ∙ is a supervariety.
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3. Our definition of a supervariety is the definition given in [She21]. By [She21, Re-

mark 2.2], there exist supervarieties that are not integral. Furthermore, if 𝑋 is a

supervariety, then 𝑋 𝑟
is not necessarily a variety. However, if 𝑋 = Spec (𝑆) is an

affine supervariety, then zero divisors of 𝑆0 are nilpotent elements.

4. If each 𝑆 that appears in the open cover of the supervariety 𝑋 is a super domain,

then 𝑋 is integral.

3.3 Infinitesimal theory
In this section, we study the infinitesimal theory of supervarieties. The main goal

of this section is to introduce smooth supervarieties and give basic local properties of

them.

Definition 3.3.1. Let 𝑋 be a supervariety with dimension 𝑟 |𝑠 and 𝑝 ∈ 𝑋 a closed point.

We say that 𝑋 is smooth at 𝑝 if there exists an affine open neighbourhood 𝑝 ∈ 𝑈 = Spec (𝑆)
such that 𝑋 𝑟

is smooth at 𝑝 and 𝑆 ≅ Λ∙
𝑆𝑆
𝑠

where 𝑆 = 𝑆/𝐽𝑆 . We say that 𝑋 is smooth if it is

smooth at every closed point.

Remark 3.3.2. Every smooth supervariety is locally graded. By [She21, Remark 2.8],

locally graded affine supervarieties are graded. Thus, if 𝑋 is a smooth supervariety, there

exists an open cover {𝑈𝑖 ∣ 𝑖 = 1,… , 𝑘} of 𝑋 such that 𝑈𝑖 = Spec (𝑆𝑖) with 𝑆𝑖 ≅ Λ∙
𝑆𝑖
𝑀𝑖, where

𝑀𝑖 is a free module over the body algebra 𝑆𝑖 and Spec (𝑆𝑖) is a smooth variety. Furthermore,

if 𝑋 = Spec (𝑆) is a smooth affine supervariety, then 𝑆 ≅ Λ∙
𝑆(𝑀) for some projective

module over the body 𝑆.

If 𝑋 = Spec (𝑆) is affine, then the 𝑆-module  = Der(𝑆) defines a quasi-coherent sheaf

̃ on 𝑋 . If 𝑆 is finitely generated, this sheaf is coherent and

Γ(𝐷(𝑓 ), ̃) = Der(𝑆𝑓 ) for each 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 .

This extends naturally to any supervariety.

Definition 3.3.3. Let 𝑋 be a supervariety. The tangent sheaf Θ𝑋 is the sheaf whose

sections on an affine super subspace 𝑈 ⊂ 𝑋 satisfies Γ(𝑈,Θ𝑋 ) = Der(Γ(𝑈,𝑋 )).

The sheaf Θ𝑋 is a coherent sheaf on 𝑋 as we noted before. Moreover, 𝑋 acts on Θ𝑋 by

left multiplication and Θ𝑋 acts on 𝑋 by derivations. If 𝑋 is smooth, we know more about

Θ𝑋 . For instance, we will see that Θ𝑋 is a locally free 𝑋 -module, and we will show how

to construct an 𝑋,𝑥-basis for Θ𝑋,𝑥 , and prove that Γ(𝑋,Θ𝑋 ) is a simple Lie superalgebra if

𝑋 is affine. These are super analogues of the results in [BF18].

Example 3.3.4. Let 𝑋 = 𝔸𝑚|𝑛
, then 𝑋 = Spec (𝑆(𝑚|𝑛)) where 𝑆(𝑚|𝑛) = k[𝑥1,… , 𝑥𝑚 ∣

𝜃1,… , 𝜃𝑛]. The Lie algebra 𝑊 (𝑚|𝑛) = Der(𝑆(𝑚|𝑛)) is a free 𝑆(𝑚|𝑛)-module generated by

the partial derivations

𝜕𝑥𝑟
𝜕𝑥𝑖

= 𝛿𝑖𝑟 ,
𝜕𝜃𝑠
𝜕𝑥𝑖

= 0
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𝜕𝑥𝑟
𝜕𝜃𝑗

= 0,
𝜕𝜃𝑠
𝜕𝜃𝑗

= 𝛿𝑠𝑗

for 𝑟 = 1,… , 𝑚 and 𝑠 = 1,… , 𝑛. Thus, Θ𝑋 = 𝑊 (𝑚|𝑛) is a vector bundle over 𝑋 .

Let 𝑝 ∈ 𝑋 be a closed point of the supervariety 𝑋 . The projection 𝜋 ∶ 𝑋,𝑥 →
𝑋,𝑝/m𝑋,𝑝 ≅ k is a map on k. We define the value 𝑓 (𝑝) of 𝑓 at 𝑥 to be 𝑓 (𝑝) = 𝜋(𝑝) ∈ k.

Because 𝜋(𝑓 − 𝑓 (𝑝)) = 0, we have that 𝑓 − 𝑓 (𝑝) ∈ m𝑋,𝑝 ⊂ 𝑋,𝑝.

Definition 3.3.5. Let 𝑝 be a k-point of a supervariety 𝑋 , then the tangent space of 𝑋 at 𝑝
is the super vector space

𝑇𝑝𝑋 = Der(𝑋,𝑝,k),

that is, 𝑇𝑝𝑋 is the set of point derivations 𝛿 ∶ 𝑋,𝑝 → k such that 𝛿(𝑓 𝑔) = 𝛿(𝑓 )𝑔(𝑝) +
𝑓 (𝑝)𝛿(𝑔).

Lemma 3.3.6. Let 𝑋 be a supervariety and 𝑝 ∈ 𝑋 a closed point, then

𝑇𝑝𝑋 ≅ (m𝑝/m2
𝑝)

∗.

Proof. Define the map 𝐿 ∶ 𝑇𝑝𝑋 → (m𝑝/m2
𝑝)∗ by 𝐿(𝛿)(𝑓 ) = 𝛿(𝑓 ). If 𝑓 , 𝑔 ∈ m𝑝, then

𝐿(𝛿)(𝑓 𝑔) = 𝛿(𝑓 )𝑔(𝑝) + 𝑓 (𝑝)𝛿(𝑔) = 0. Thus, 𝐿 is well-defined. Since 𝑝 is a closed point,

the exact sequence

0 → m𝑝 → 𝑋,𝑝 → k → 0

splits, and 𝑋,𝑝 = k ⊕m𝑝. Take 𝛼 ∈ (m𝑝/m2
𝑝)∗, then we may see it as a map 𝛼 ∶ m𝑝 → k

with 𝛼(m2
𝑝) = 0. Using that 𝑋,𝑝 = k ⊕m𝑝, we may extend 𝛼 to 𝑋,𝑝 by setting 𝛼(𝑘) = 0

for each 𝑘 ∈ k. This defines the inverse map of 𝐿.

Remark 3.3.7. If 𝑋 = Spec (𝑆) ⊂ 𝔸𝑚|𝑛
is an affine algebraic supervariety with

𝑆 ≅ k[𝑥1,… , 𝑥𝑚 ∣ 𝜃1,… , 𝜃𝑛]/(𝑓1,… , 𝑓𝑟 , 𝜙1,… , 𝜙𝑠)

with 𝑓1,… , 𝑓𝑟 even and 𝜙1,… , 𝜙𝑠 odd. Let 𝑝 ∈ 𝑋 be a closed point and consider the matrix

Jac(𝑝) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓1
𝜕𝑥𝑚

(𝑝) 𝜕𝑓1
𝜕𝜃1

(𝑝) ⋯ 𝜕𝑓1
𝜕𝜃𝑛

(𝑝)
⋮ ⋮ ⋮ ⋮

𝜕𝑓𝛼
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓𝛼
𝜕𝑥𝑚

(𝑝) 𝜕𝑓𝛼
𝜕𝜃1

(𝑝) ⋯ 𝜕𝑓𝛼
𝜕𝜃𝑛

(𝑝)
𝜕𝜙1
𝜕𝑥1

(𝑝) ⋯ 𝜕𝜙1
𝜕𝑥𝑚

(𝑝) 𝜕𝜙1
𝜕𝜃1

(𝑝) ⋯ 𝜕𝜙1
𝜕𝜃𝑛

(𝑝)
⋮ ⋮ ⋮ ⋮

𝜕𝜙𝛽
𝜕𝑥1

(𝑝) ⋯ 𝜕𝜙𝛽
𝜕𝑥𝑚

(𝑝) 𝜕𝜙𝛽
𝜕𝜃1

(𝑝) ⋯ 𝜕𝜙𝛽
𝜕𝜃𝑛

(𝑝)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By [CCF11, Remark 10.6.16],

𝑇𝑝𝑋 ≅
{
𝑣 ∈ k𝑚|𝑛 ∣ Jac(𝑝)𝑣 = 0

}
.

That is, 𝑇𝑝𝑋 is isomorphic to the kernel of Jac(𝑝) as a super vector space.

If 𝐷 ∶ 𝑋,𝑝 → 𝑋,𝑝 is a derivation of 𝑋,𝑝, then we may define an element of the

tangent space 𝐷𝑝 ∶ 𝑋,𝑝 → k given by 𝐷𝑝(𝑓 ) = 𝐷(𝑓 )(𝑝). This gives a linear map
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Θ𝑋,𝑝 → 𝑇𝑝𝑋 by 𝐷 ↦ 𝐷𝑝. This map is not always surjective.

Example 3.3.8. Let 𝑋 ⊂ 𝔸2|2
be defined by the ideal 𝐼 = (𝑥1𝜃1 + 𝑥2𝜃2) ⊂ k[𝑥1, 𝑥2|𝜃1, 𝜃2].

Assume 𝑝 = (0, 0), then the maps 𝜕𝑖 ∶ 𝑋,𝑝 → k defined by 𝜕𝑖(𝑗) = 𝛿𝑖𝑗 , 𝑖, 𝑗 ∈ {𝑥1, 𝑥2, 𝜃1, 𝜃2},
are well-defined elements of Der(𝑋,𝑝,k), therefore dim 𝑇𝑝𝑋 = 2|2. If 𝐷 ∈ Der(𝑋,𝑥)1 is

an odd derivation such that 𝐷(𝜃1) = 1 + 𝑓 with 𝑓 (𝑝) = 0, then

0 = 𝐷(𝑥1𝜃1 + 𝑥2𝜃2) ⟺ 𝑥2𝐷(𝑥2) = −𝑥1 − 𝑥1𝑓 + 𝐷(𝑥1)𝜃1 + 𝐷(𝑥2)𝜃2.

Since 𝐷 is odd, 𝑥2𝐷(𝜃2) = −𝑥1 − 𝑓 𝑥1 + 𝑔𝜃1𝜃2 for some 𝑔 ∈ 𝑋,𝑝. However, there is no even

element 𝐷(𝜃2) ∈ 𝑋,𝑝 which makes this equality true. Therefore, there is no derivation

𝐷 ∈ Der(𝑋,𝑝) such that 𝐷𝑝 = 𝜕𝜃1 .

Consider the diagonal map Δ ∶ 𝑋 → 𝑋 × 𝑋 with Δ∗ ∶ 𝑋×𝑋 → Δ∗𝑋 . We have that

Δ(𝑋) is isomorphic to 𝑋 which is a closed subscheme of 𝑋 ×𝑋 because 𝑋 is separated. Let

 be the sheaf of ideals of Δ(𝑋). We define the sheaf of differentials of 𝑋 (over Spec (k)) as

the sheaf

Ω𝑋 = Δ∗ (/2) = Δ−1 (/2) ⊗Δ−1𝑋×𝑋 𝑋 .

Because /2
is an Δ(𝑋)-module and Δ ∶ 𝑋 → Δ(𝑋) is an isomorphism, Ω𝑋 is a sheaf of

𝑋 -module.

Remark 3.3.9. In the literature, one usually defines the sheaf of relative differentials of 𝑋
over 𝑌 for a morphism 𝑓 ∶ 𝑋 → 𝑌 . For an explanation of sheaves of relatives differentials

for the usual case, we refer to [Har77, Chapter II, Section 8].

Example 3.3.10. Suppose that 𝑋 = Spec (𝑆) is an affine supervariety, then 𝑋 × 𝑋 is

isomorphic to Spec (𝑆 ⊗k 𝑆), and Δ(𝑋) ⊂ 𝑋 × 𝑋 is the closed subscheme defined by the

kernel 𝐼 of the multiplication map

𝑆 ⊗ 𝑆 → 𝑆
𝑓 ⊗ 𝑔 ↦ 𝑓 𝑔.

Thus, the super vector space Ω𝑆 = 𝐼/𝐼 2 is an 𝑆-module by left multiplication. If 𝑑 ∶ 𝑆 → Ω𝑆
is the map defined by 𝑑𝑔 = 1 ⊗ 𝑔 − 𝑔 ⊗ 1 ∈ 𝐼 , then

𝑑(𝑓 𝑔) = 1 ⊗ 𝑓 𝑔 − 𝑓 𝑔 ⊗ 1 = 1 ⊗ 𝑓 𝑔 − 𝑓 𝑔 ⊗ 1 − (1 ⊗ 𝑓 − 𝑓 ⊗ 1)(1 ⊗ 𝑔 − 𝑔 ⊗ 1)
= 1 ⊗ 𝑓 𝑔 − 𝑓 𝑔 ⊗ 1 − 1 ⊗ 𝑓 𝑔 + (−1)|𝑓 ||𝑔 |𝑔 ⊗ 𝑓 + 𝑓 ⊗ 𝑔 − 𝑓 𝑔 ⊗ 1
= 𝑓 (1 ⊗ 𝑔 − 𝑔 ⊗ 1) + (−1)|𝑓 ||𝑔 |𝑔(1 ⊗ 𝑓 − 𝑓 ⊗ 1) = 𝑓 𝑑𝑔 + (−1)|𝑓 ||𝑔 |𝑔𝑑𝑓 .

Elements 𝑑𝑓 , 𝑓 ∈ 𝑆, generate Ω𝑆 , and they satisfy 𝑑(𝑓 + 𝑔) = 𝑑𝑓 + 𝑑𝑔 , 𝑑(𝑓 𝑔) = 𝑓 𝑑𝑔 +
(−1)|𝑓 ||𝑔 |𝑔𝑑𝑓 , 𝑑𝑐𝑓 = 𝑐𝑑𝑓 for each 𝑓 , 𝑔 ∈ 𝑆 and 𝑐 ∈ k. We have that Ω𝑋 ≅ Ω̃𝑆 , thus the

definition of the sheaf of differentials of 𝑋 could have been done by covering 𝑋 with

affine open subvarieties Spec (𝑆𝑖) and gluing the corresponding Ω̃𝑆𝑖 . In this case, the maps

𝑑 ∶ 𝑆𝑖 → Ω𝑆𝑖 defines a map 𝑑 ∶ 𝑋 → Ω𝑋 of sheaves on 𝑋 .

For any 𝑆-module 𝑀 , Hom𝑆(Ω𝑆 , 𝑀) ≅ Derk(𝑆,𝑀) where

Derk(𝑆,𝑀) =
{
𝐷 ∶ 𝐴 → 𝑀 ∣ 𝐷 is linear and 𝐷(𝑓 𝑔) = 𝐷(𝑓 )𝑔 + (−1)|𝑓 ||𝐷|𝑓 𝐷(𝑔) ∀𝑓 , 𝑔 ∈ 𝑆

}
.
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Similarly, if  is a sheaf of 𝑋 -modules, then there is an isomorphism

Hom𝑋 (Ω𝑋 ,) ≅ DerSpec (k) (𝑋 ,) ,

where DerSpec (k) (𝑋 ,) is defined naturally.

Theorem 3.3.11. Let 𝑋 be a supervariety with dim𝑋 = 𝑚|𝑛 and 𝑝 ∈ 𝑋 a closed point. The
following are equivalent

1. There exists an affine open neighbourhood 𝑈 = Spec (𝑆) ⊂ 𝑋 of 𝑝 such that 𝑋 𝑟 is
smooth at 𝑥 ∈ Spec (𝑆) and 𝑆 ≅ Λ∙

𝑆𝑆
𝑛 where 𝑆 = 𝑆/𝐽𝑆 .

2. Θ𝑋,𝑝 → 𝑇𝑝𝑋 is surjective.

3. Ω𝑋,𝑝 is a free 𝑋,𝑝-module.

Proof. See [She21, Theorem B.3] for a more general version of this result.

This theorem implies that a k-point 𝑝 of 𝑋 is smooth if one item (hence all) of Theo-

rem 3.3.11 is satisfied.

3.4 System of local parameters at a smooth point

Let 𝑋 be a smooth integral supervariety. We start our chapter investigating further

the local structure of 𝑋 , analyzing the sheaves  = 𝑋 and Θ = Θ𝑋 . For a closed point

𝑝 ∈ 𝑋 , we denote by m𝑝 the unique maximal ideal of the local algebra 𝑝.

Definition 3.4.1. Let 𝑈 ⊂ 𝑋 be an open affine subset and 𝑝 ∈ 𝑈 be a smooth closed

point. We say that 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑟 ∈ Γ(𝑈,) form a system of local parameters at 𝑝 if the

sections 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑟 ∈ 𝑝 form a basis of m𝑝/m2
𝑝.

Lemma 3.4.2. Let 𝑝 be a smooth closed point of 𝑋 and dim 𝑇𝑝𝑋 = 𝑟 |𝑠. Then,
𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠 ∈ Γ(𝑋,) form a system of parameters at 𝑝 if and only if 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠
generate m𝑝.

Proof. If 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠 generate m𝑝, then the classes 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠 ∈ m𝑝/m2
𝑝 gener-

ate the super vector space m𝑝/m2
𝑝 that has dimension 𝑟 |𝑠. Therefore, they form a basis for

it. On the other hand, m𝑝 = m2
𝑝 +𝑀 if 𝑀 = (𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑟) ⊂ 𝑝. Hence, 𝑀 = m𝑝 by

Nakayama’s lemma (see [CCF11, Lemma B.3.3]).

Since 𝑋 is a smooth integral supervariety, there exists a projective 𝑝-module 𝑀
such that 𝑝 ≅ Λ∙

𝑝
𝑀 by definition of smoothness. By Nakayama’s lemma, 𝑀 is free

and has dimension 𝑠 as an 𝑝-module, and, consequently, 𝑝 ≅ Λ∙
𝑝
𝑝

⊕𝑠
. Hence, there

exists an injective homomorphism of superalgebras 𝜓 ∶ 𝑝 → 𝑝 such that 𝜓(𝑓 ) = 𝑓
and odd elements 𝜉1,… , 𝜉𝑠 ∈ m𝑝 such that 𝑝 = 𝜓(𝑝)[𝜉1,… , 𝜉𝑠]. If 𝑡1,… , 𝑡𝑟 is a system

of parameters for 𝑝, then their images 𝜓(𝑡1),… , 𝜓(𝑡𝑟) ∈ 𝑝 are elements of m𝑝 and
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𝜓(𝑡1),… , 𝜓(𝑡𝑟), 𝜃1,… , 𝜃𝑠 is a system of parameters at 𝑝. From now on, we denote𝜓(𝑓0) ∈ 𝑝
by 𝑓0 for each 𝑓0 ∈ 𝑝. Any element 𝑓 ∈ 𝑝 may be written as

𝑓 = 𝑓0 + ∑
𝐼⊂{1,…,𝑠}

𝑓𝐼𝜉 𝐼 (3.2)

where 𝑓0, 𝑓𝐼 ∈ 𝑝 and 𝜉 𝐼 = 𝜉𝑖1𝜉𝑖2 ⋯ 𝜉𝑖𝑘 with 𝐼 = {𝑖1,… , 𝑖𝑘} and 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘.

Since 𝑋 𝑟
is smooth at 𝑝, there exists derivations 𝜕𝑡1 ,… , 𝜕𝑡𝑟 ∶ 𝑝 → 𝑝 such that

𝜕𝑡𝑖(𝑡𝑗) = 𝛿𝑖𝑗 and

Der (𝑝) =
𝑟

⨁
𝑖=1

𝑝𝜕𝑡𝑖

is a free 𝑝-module generated by 𝜕𝑡𝑖 . Using the expansion given on 3.2, we extend

𝜕𝑡𝑖 (
𝑓0 + ∑

𝐼⊂{1,…,𝑠}

𝑓𝐼𝜉 𝐼)
= 𝜕𝑡𝑖(𝑓0) + ∑

𝐼⊂{1,…,𝑠}

𝜕𝑡𝑖 (𝑓𝐼 ) 𝜉
𝐼 .

Similarly, we define the odd derivation 𝜕𝜉𝑖 ∶ 𝑝 → 𝑝 by 𝜕𝜉𝑖(𝜉𝑗) = 𝛿𝑖𝑗 and 𝜕𝜉𝑖 (𝑓 ) = 0 for

each 𝑓 ∈ 𝑝. Explicitly,

𝜕𝜉𝑖 (
𝑓0 + ∑

𝐼⊂{1,…,𝑠}

𝑓𝐼𝜉 𝐼)
= ∑

𝐼⊂{1,…,𝑠}

𝑓𝐼𝜕𝑡𝑖 (𝜉
𝐼) .

Note that

𝜕𝜉𝑙 (𝜉
𝐼) = (−1)|𝐼1 |𝜉 𝐼1𝜉 𝐼2

if 𝐼1 = {𝑖1,… , 𝑖𝑎} ⊂ {1,… , 𝑙 − 1}, 𝐼2 = {𝑖1,… , 𝑖𝑏} ⊂ {𝑙 + 1,… , 𝑠} and 𝐼 = 𝐼1 ∪ 𝐼2 ∪ {𝑙}, and

𝜕𝜉𝑙 (𝜉 𝐼) = 0 if 𝑙 ∉ 𝐼 .

Lemma 3.4.3. If 𝑝 ∈ 𝑋 is a smooth closed point, then

Θ𝑝 = Der(𝑝) =
𝑟

⨁
𝑖=1

𝑝𝜕𝑡𝑖 ⊕
𝑠

⨁
𝑗=1

𝑝𝜕𝜉𝑗 .

Proof. It follows from 𝑝 ≅ 𝑝[𝜉1,… , 𝜉𝑠] and Der (𝑝) =
𝑟

⨁
𝑖=1

𝑝𝜕𝑡𝑖 .

Remark 3.4.4. By Theorem 3.3.11, the map Θ𝑋,𝑝 → 𝑇𝑝𝑋 is surjective if 𝑝 is a smooth

closed point of 𝑋 . If 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠 is a system of parameters at 𝑝, then its dual basis on

𝑇𝑝𝑋 ≅ (m𝑝/m2
𝑝)∗ is the image of the derivations 𝜕𝑡1,… , 𝜕𝑡𝑟 , 𝜕𝜉1 ,… , 𝜕𝜉𝑠 .

Corollary 3.4.5. There exists an affine open neighbourhood 𝑈 = Spec (𝐵) of 𝑝 and a system
of parameters 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠 ∈ Γ(𝑈,) at 𝑝 such that 𝜕𝑡1 ,… , 𝜕𝑡𝑟 , 𝜕𝜉1 ,… , 𝜕𝜉𝑠 ∈ Γ(𝑈,Θ𝑋 )
are well-defined and form a basis of the Γ(𝑈,)-module Γ(𝑈,Θ𝑋 ).

Example 3.4.6. When 𝑋 ⊂ 𝔸𝑚|𝑛
, it is possible to explicitly construct a basis of Θ𝑝 and

also find an open neighborhood 𝑈 of 𝑝 such that Γ(𝑈,Θ) is free as a module over Γ(𝑈,).
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Suppose that 𝑋 = Spec 𝑆 is an affine integral smooth variety with

𝑆 = k[𝑥1,… , 𝑥𝑚, 𝜃1,… , 𝜃𝑛]/(𝑓1,… , 𝑓𝛼 , 𝜙1,… , 𝜙𝛽).

Thus, Γ(𝑋,Θ) is a projective module over 𝑆 and can be seen as the submodule of the free

𝑆-module
𝑚

⨁
𝑖=1
𝑆
𝜕
𝜕𝑥𝑖

⊕
𝑛

⨁
𝑗=1

𝑆
𝜕
𝜕𝜃𝑗

where 𝜂 =
𝑚

∑
𝑖=1
𝑔𝑖
𝜕
𝜕𝑥𝑖

+
𝑛

∑
𝑗=1
𝜓𝑗

𝜕
𝜕𝜃𝑗

∈ Γ(𝑋,Θ) if and only if

𝑚

∑
𝑖=1
𝑔𝑖
𝜕𝑓1
𝜕𝑥𝑖

+
𝑛

∑
𝑗=1
𝜓𝑗
𝜕𝑓𝑘
𝜕𝜃𝑗

= 0 and

𝑚

∑
𝑖=1
𝑔𝑖
𝜕𝜙𝑙
𝜕𝑥𝑖

+
𝑛

∑
𝑗=1
𝜓𝑗
𝜕𝜙𝑙
𝜕𝜃𝑗

= 0 (3.3)

for each 𝑘 = 1,… , 𝛼, 𝑙 = 1,… , 𝛽. We may see this as a system of linear equations with

coefficients on 𝑆. The associated matrix to this system is

Jac =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑥1

⋯ 𝜕𝑓1
𝜕𝑥𝑚

𝜕𝑓1
𝜕𝜃1

⋯ 𝜕𝑓1
𝜕𝜃𝑛

⋮ ⋮ ⋮ ⋮
𝜕𝑓𝛼
𝜕𝑥1

⋯ 𝜕𝑓𝛼
𝜕𝑥𝑚

𝜕𝑓𝛼
𝜕𝜃1

⋯ 𝜕𝑓𝛼
𝜕𝜃𝑛

𝜕𝜙1
𝜕𝑥1

⋯ 𝜕𝜙1
𝜕𝑥𝑚

𝜕𝜙1
𝜕𝜃1

⋯ 𝜕𝜙1
𝜕𝜃𝑛

⋮ ⋮ ⋮ ⋮
𝜕𝜙𝛽
𝜕𝑥1

⋯ 𝜕𝜙𝛽
𝜕𝑥𝑚

𝜕𝜙𝛽
𝜕𝜃1

⋯ 𝜕𝜙𝛽
𝜕𝜃𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Take a closed point 𝑝 ∈ 𝑋 , then the following matrix (with coefficients in k ≅ 𝑝/m𝑝)

Jac(𝑝) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓1
𝜕𝑥𝑚

(𝑝) 𝜕𝑓1
𝜕𝜃1

(𝑝) ⋯ 𝜕𝑓1
𝜕𝜃𝑛

(𝑝)
⋮ ⋮ ⋮ ⋮

𝜕𝑓𝛼
𝜕𝑥1

(𝑝) ⋯ 𝜕𝑓𝛼
𝜕𝑥𝑚

(𝑝) 𝜕𝑓𝛼
𝜕𝜃1

(𝑝) ⋯ 𝜕𝑓𝛼
𝜕𝜃𝑛

(𝑝)
𝜕𝜙1
𝜕𝑥1

(𝑝) ⋯ 𝜕𝜙1
𝜕𝑥𝑚

(𝑝) 𝜕𝜙1
𝜕𝜃1

(𝑝) ⋯ 𝜕𝜙1
𝜕𝜃𝑛

(𝑝)
⋮ ⋮ ⋮ ⋮

𝜕𝜙𝛽
𝜕𝑥1

(𝑝) ⋯ 𝜕𝜙𝛽
𝜕𝑥𝑚

(𝑝) 𝜕𝜙𝛽
𝜕𝜃1

(𝑝) ⋯ 𝜕𝜙𝛽
𝜕𝜃𝑛

(𝑝)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

has rank 𝑚|𝑛 − 𝑟 |𝑠 by [Fio08, Lemma 3.5], where dim𝑋 = 𝑟 |𝑠 = dim(m𝑝/m2
𝑝) = dim 𝑇𝑝𝑋 .

Assume that its principal submatrix has rank (𝑚 − 𝑟 |𝑛 − 𝑠).

Consider [
𝐽1 𝐽2
𝐽3 𝐽4]

, where

𝐽1 = (
𝜕𝑓𝑖
𝜕𝑥𝑗)

𝑚−𝑟

𝑖,𝑗=1
, 𝐽2 = (

𝜕𝑓𝑖
𝜕𝜃𝑗)

𝑚−𝑟,𝑛−𝑠

𝑖=1,𝑗=1
, 𝐽3 = (

𝜕𝜙𝑖
𝜕𝑥𝑗)

𝑛−𝑠,𝑚−𝑟

𝑖=1,𝑗=1
, 𝐽4 = (

𝜕𝜙𝑖
𝜕𝜃𝑗)

𝑛−𝑠

𝑖,𝑗=1
.

Since that 𝐽1(𝑝) and 𝐽4(𝑝) are invertible, then det(𝐽1(𝑝)), det(𝐽4(𝑝)) are nonzero in 𝑝/m𝑝,

which implies det(𝐽1), det(𝐽4) are invertible in 𝑝. Therefore, 𝐽1 and 𝐽4 are invertible, and

it follows from [CCF11, Proposition 1.5.1] that [
𝐽1 𝐽2
𝐽3 𝐽4]

∈ GL𝑚−𝑟 |𝑛−𝑠(𝑝). Furthermore, its
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inverse is

[
𝐽1 𝐽2
𝐽3 𝐽4]

−1

= [
(𝐽1 − 𝐽2𝐽 −14 𝐽3)−1 −𝐽 −11 𝐽2(𝐽4 − 𝐽3𝐽 −11 𝐽2)−1

−𝐽 −14 𝐽3(𝐽1 − 𝐽2𝐽 −14 𝐽3)−1 (𝐽4 − 𝐽3𝐽 −11 𝐽2)−1 ]

by [CCF11, Proposition 1.5.1, Proposition 1.5.9].

We can use this to solve the system (3.3) in 𝑝, and we may write its solution space

over 𝑝 by choosing the first 𝑚 − 𝑟 |𝑛 − 𝑠 variables as leading and the last 𝑟 |𝑠 as free:

{
𝑚−𝑟

∑
𝑖=1

𝑎𝑖𝑘
ℎ
𝜕
𝜕𝑥𝑖

+
𝑛−𝑠

∑
𝑗=1

𝑏𝑗𝑘
ℎ

𝜕
𝜕𝜃𝑗

+
𝜕

𝜕𝑥𝑚−𝑟+𝑘

}𝑟

𝑘=1

∪

{
𝑚−𝑟

∑
𝑖=1

𝑎′𝑖𝑘
ℎ
𝜕
𝜕𝑥𝑖

+
𝑛−𝑠

∑
𝑗=1

𝑏 ′
𝑗𝑘

ℎ
𝜕
𝜕𝜃𝑗

+
𝜕

𝜕𝜃𝑛−𝑠+𝑘

}𝑠

𝑘=1

where 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑎′𝑖𝑗 , 𝑏 ′
𝑖𝑗 ∈ 𝑆 and ℎ ∈ 𝑝 is invertible. In particular, ℎ ∉ m𝑝 and hence ℎ ∉ 𝐽𝑆 .

Therefore,

𝑝 ∈ 𝐷(ℎ) = {p ∈ Spec(𝑆0) ∣ ℎ ∉ p} ⊂ 𝑋

is an open neighborhood of 𝑝. The global sections

𝑡1 = 𝑥𝑚−𝑟+1 − 𝑥𝑚−𝑟+1(𝑝), … , 𝑡𝑟 = 𝑥𝑚 − 𝑥𝑚(𝑝), 𝜉1 = 𝜃𝑛−𝑠+1,… , 𝜉𝑠 = 𝜃𝑠

form a system of parameters at 𝑝, and the derivatives

𝜕𝑡𝑘 =
𝑚−𝑟

∑
𝑖=1

𝑎𝑖𝑘
ℎ
𝜕
𝜕𝑥𝑖

+
𝑛−𝑠

∑
𝑗=1

𝑏𝑗𝑘
ℎ

𝜕
𝜕𝜃𝑗

+
𝜕

𝜕𝑥𝑚−𝑟+𝑘
, 𝑘 = 1,… , 𝑟 ,

𝜕𝜉𝑙 =
𝑚−𝑟

∑
𝑖=1

𝑎′𝑖𝑘
ℎ
𝜕
𝜕𝑥𝑖

+
𝑛−𝑠

∑
𝑗=1

𝑏 ′
𝑗𝑘

ℎ
𝜕
𝜕𝜃𝑗

+
𝜕

𝜕𝜃𝑛−𝑠+𝑘
, 𝑙 = 1,… , 𝑠,

are a basis of Γ(𝐷(ℎ),Θ) as a Γ(𝐷(ℎ),)-module. Note that these are also a basis of Θ𝑝 as

an 𝑝-module.

Let us apply the technique of Example 3.4.6 in the following example.

Example 3.4.7. Consider 𝑋 = Spec (𝑆) = (Spec (k [𝑆1]) ,) with

𝑆 = k[𝑥1, 𝑥2, 𝜃1, 𝜃2]/(𝑥2 + 𝑦2 − 1 − 𝜃1𝜃2, 𝑥1𝜃1 + 𝑥2𝜃2).

Set 𝑓 = 𝑥2 + 𝑦2 − 1 − 𝜃1𝜃2, 𝜓 = 𝑥1𝜃1 + 𝑥2𝜃2 and 𝑝 = (𝑥1 − 1, 𝑥2) ⊂ 𝑆 = k[𝑆1]. In this case,

we have that

Jac = [
2𝑥1 2𝑥2 𝜃1 −𝜃2
𝜃1 𝜃2 −𝑥1 −𝑥2]

and Jac(𝑝) = [
1 0 0 0
0 0 −1 0] .

The submatrix is [
2𝑥1 𝜃1
𝜃1 −𝑥1]

is invertible over 𝑝, and its inverse is

[

1
2𝑥1

𝜃1
2𝑥21

𝜃1
2𝑥21

− 1
𝑥1 ]

. Hence,

the derivations

𝜏 =
𝜕
𝜕𝑥1

−(
𝑥2
𝑥1

+
𝜃1𝜃2
2𝑥21 )

𝜕
𝜕𝑥1

+(
𝜃2
𝑥1

−
𝑥2𝜃1
𝑥21 )

𝜕
𝜕𝜃1
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𝜎 =
𝜕
𝜕𝜃2

+(
𝜃2
2𝑥1

+
𝑥2𝜃1
2𝑥21 )

𝜕
𝜕𝑥1

+(
𝜃1𝜃2
2𝑥21

−
𝑥2
𝑥1)

𝜕
𝜕𝜃1

form a basis of Der (𝑆𝑥1) inside of the free module 𝑆𝑥1
𝜕
𝜕𝑥1

⊕ 𝑆𝑥1
𝜕
𝜕𝑥2

⊕ 𝑆𝑥1
𝜕
𝜕𝜃1

⊕ 𝑆𝑥1
𝜕
𝜕𝜃2

.

Although 𝜎 and 𝜏 are not global sections of Θ, 𝑥21𝜏, 𝑥21𝜎 ∈ Der(𝑆) are. If we set

𝑡 = 𝑥2 − 𝑥2(𝑝) = 𝑥2 and 𝜉 = 𝜃2,

then 𝑡, 𝜉 form a system of parameters at 𝑝 on 𝐷(𝑥1). Moreover, 𝜏 and 𝜎 corresponds to

𝜕𝑡 and 𝜕𝜉 , respectively. Consequently, Θ𝑝 = 𝑝𝜏 ⊕ 𝑝𝜎 and Γ(𝐷(𝑥1),Θ) = Der(𝑆𝑥1) =
𝑆𝑥1𝜏 ⊕ 𝑆𝑥1𝜎.

3.5 Completions and power series

A topological superalgebra is a ring that is a topological space such that the multiplica-

tion and addition maps are continuous. If 𝐼 is an ideal of a commutative superalgebra 𝑆,

then the filtration

𝑆 ⊃ 𝐼 ⊃ 𝐼 2 ⊃ 𝐼 3 ⊃ …

defines a topology on 𝑆. In this case, the filtration gives a basis of open neighborhoods

of 0 ∈ 𝑆. Similarly, open neighborhoods of 𝑓 ∈ 𝑆 are given by cosets 𝑓 + 𝐼 𝑘, 𝑘 ≥ 0. This

topology is often called 𝐼 -adic topology on 𝑆. The inverse limit

𝑆 = lim
⟵
𝑆/𝐼 𝑛

is a superalgebra and it is the completion of 𝑆 with respect to this topology. There is a

canonical map 𝑆 → 𝑆, and its kernel is the intersection of ⋂
𝑘≥0

𝐼 𝑘. This topology is Hausdorff

if ⋂
𝑘≥0

𝐼 𝑘 = 0. For more on topological rings and completions of rings, we refer to [AM69,

Chapter 10].

Assume that 𝑋 = Spec (𝑆) is an integral affine supervariety with dim𝑋 = 𝑟 |𝑠. Let

𝑝 ∈ 𝑋 be a smooth closed point of 𝑋 . We consider the m𝑝-adic topology on 𝑝 by its

maximal ideal m𝑝, which defines the completion ̂𝑝. We fix 𝑡1, … , 𝑡𝑟 , 𝜉1, … , 𝜉𝑠 a system of

parameters at 𝑝. Since 𝑋 is affine, we may assume that this system is formed by global

sections by Example 3.4.6.

Proposition 3.5.1 ([Fio08, Proposition 3.16]). ̂𝑝 ≅ k[[𝑇1,… , 𝑇𝑟 |Ξ1,… ,Ξ𝑛]], where 𝑡𝑖 ↦ 𝑇𝑖
and 𝜉𝑗 ↦ Ξ𝑗 .

Since 𝑆 = Γ(𝑋,) is an integral superdomain, the localization map 𝑆 → 𝑝 is an

embedding. Thus, there is an embedding

𝜋 ∶ 𝑆 ↪ k[[𝑇1,… , 𝑇𝑟 |Ξ1,…Ξ𝑠]]
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such that 𝜋(𝑡𝑖) = 𝑇𝑖 and 𝜋(𝜉𝑖) = Ξ𝑖. Let𝑊 (𝑟, 𝑠) = Der (k[[𝑇1,… , 𝑇𝑟 |Ξ1,… ,Ξ𝑠]]), then

𝜕
𝜕Θ1

, … ,
𝜕
𝜕Θ𝑟

,
𝜕
𝜕Ξ1

, … ,
𝜕
𝜕Ξ𝑠

form a basis of𝑊 (𝑟, 𝑠) as a module over 𝑆(𝑟, 𝑠) = k[[𝑇1,… , 𝑇𝑟 |Ξ1,… ,Ξ𝑠]]. The superalgebra

𝑆(𝑟, 𝑠) is local, and its maximal ideal m0 is the one generated by 𝑇1,… , 𝑇𝑟 ,Ξ1,… ,Ξ𝑠, which

is exactly the image of m𝑝 by the isomorphism ̂𝑝 on Proposition 3.5.1. If 𝐷 ∈ 𝑊 (𝑟, 𝑠) is

any derivation, then 𝐷(m𝑘
0) ⊂ m𝑘−1

0 . Hence, any element of 𝑊 (𝑟, 𝑠) is a continuous map

under the m0-adic topology. Similarly, if m is the maximal ideal of 𝑆 associated with 𝑝,

any derivation of 𝑆 is continuous on the m-adic topology. Finally, both topologies are

Hausdorff because ⋂
𝑘≥0

m𝑘
0 = 0 and ⋂

𝑘≥0

m𝑘 = 0. These imply that if two continuous maps

between 𝑆 and 𝑆(𝑟, 𝑠) agree on a dense subset of 𝑆, they are identically equal.

Proposition 3.5.2. Let 𝑋 = Spec (𝑆) be an integral affine supervariety with structure sheaf
 and tangent sheaf Θ. There exists an unique embedding of Lie algebras 𝜋 ∶ Γ(𝑋,Θ) →
𝑊 (𝑟, 𝑠) such that 𝜋(𝜂)𝜋(𝑓 ) = 𝜋(𝜂(𝑓 )) for all 𝑓 ∈ 𝑆 and 𝜂 ∈ Γ(𝑋,Θ).

Proof. There is an unique way to define 𝜋, which is

𝜋(𝜂) =
𝑟

∑
𝑗=1
𝜋(𝜂(𝑡𝑖))

𝜕
𝜕𝑇𝑖

+
𝑠

∑
𝑗=1
𝜋(𝜂(𝜉𝑗))

𝜕
𝜕Ξ𝑗

for each 𝜂 ∈ Der(𝑆). We have that k[𝑡1,… , 𝑡𝑟 |𝜃1,… , 𝜃𝑠] ⊂ 𝑆 is a dense subset of the Haus-

dorff space 𝑆. Since the continuous maps 𝜋(𝜂) ◦ 𝜋 and 𝜋 ◦ 𝜂 agree on k[𝑡1,… , 𝑡𝑟 , 𝜃1,… , 𝜃𝑠],
they must be equal. Therefore, 𝜋(𝜂)(𝜋(𝑓 )) = 𝜋(𝜂(𝑓 )) for each 𝜂 ∈ Der(𝑆) and 𝑓 ∈ 𝑆. This

identity implies that 𝜋 is a Lie algebra homomorphism, because

[𝜋(𝜂), 𝜋(𝜂)] (𝑓 ) = 𝜋 (𝜂(𝜇(𝑓 )) − (−1)|𝜇||𝜂|𝜇(𝜂(𝑓 ))) = 𝜋([𝜂, 𝜇] (𝑓 )) = 𝜋([𝜂, 𝜇])(𝑓 ).

Lastly, each derivation 𝜇 in the kernel of 𝜋 yields 𝜇 (k[𝑡1,… , 𝑡𝑟 |𝜉1,… , 𝜉𝑠]) = 0, therefore 𝜇
is the trivial map because it is continuous in the m-adic topology.

3.6 Simplicity of the Lie superalgebra of vector
fields

In this section, we assume that 𝑋 = Spec (𝑆) is an integral affine supervariety. Let

𝑝 ∈ 𝑋 be a smooth closed point of 𝑋 with a system of parameters 𝑡1, … , 𝑡𝑟 , 𝜉1, … ,

𝜉𝑠. To prove Lemma 3.4.3, we constructed partial derivatives 𝜕𝑡1 ,… , 𝜕𝑡𝑟 , 𝜕𝜉1 ,… , 𝜕𝜉𝑠 that

form a basis of Θ𝑝. These may not be global, but there exists a basic open neighborhood

𝐷(ℎ) containing 𝑝 such that 𝜕𝑡1 ,… , 𝜕𝑡𝑟 , 𝜕𝜉1 ,… , 𝜕𝜉𝑠 ∈ Γ(𝐷(ℎ),Θ). If this is the case, then

ℎ𝑘𝜕𝑡1 ,… , ℎ𝑘𝜕𝑡𝑟 , ℎ𝑘𝜕𝜉1 ,… , ℎ𝑘𝜕𝜉𝑠 ∈ Der(𝑆) for some 𝑘 ≥ 0. Take 𝑘′ as the smallest integer

such that this happens, set ℎ′ = ℎ𝑘′ , and define

𝜏𝑖 = ℎ′𝜕𝑡𝑖 , 𝜎𝑗 = ℎ′𝜕𝜉𝑗
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for 𝑖 = 1,… , 𝑟 , 𝑗 = 1,… , 𝑠. With this notation, we have that

𝜋(𝜏𝑖) = 𝜋(ℎ′)
𝜕
𝜕𝑇𝑖

, 𝜋(𝜎𝑗) = 𝜋(ℎ′)
𝜕
𝜕Ξ𝑗

.

The Lie superalgebra 𝑊 (𝑟, 𝑠) has a descending filtration

𝑊 (𝑟, 𝑠) = 𝑊 (𝑟, 𝑠)−1 ⊃ 𝑊 (𝑟, 𝑠)0 ⊃ 𝑊 (𝑟, 𝑠)1 ⊃ 𝑊 (𝑟, 𝑠)2 ⊃ …

induced by the one in 𝑆(𝑟, 𝑠) and it is defined by 𝑊 (𝑟, 𝑠)𝑘−1 = m𝑘
0𝑊 (𝑟, 𝑠). Explicitly,

a derivation 𝑓
𝜕
𝜕𝑌

∈ 𝑊 (𝑟, 𝑠)𝑘−1 if the lowest degree of a monomial that occurs in 𝑓 ∈

𝑆(𝑟, 𝑠) is greater or equal to 𝑘, where 𝑌 ∈ {𝑇1,… , 𝑇𝑟 ,Ξ1,… ,Ξ𝑠}. This filtration satisfies

[𝑊 (𝑟, 𝑠)𝑘,𝑊 (𝑟, 𝑠)𝑙] ⊂ 𝑊 (𝑟, 𝑠)𝑘+𝑙 if 𝑘 + 𝑙 ≥ −1. Moreover, there is an associated graded

Lie algebra

Gr𝑊 (𝑟, 𝑠) = 𝑊 (𝑟, 𝑠)−1/𝑊 (𝑟, 𝑠)0 ⊕𝑊 (𝑟, 𝑠)0/𝑊 (𝑟, 𝑠)1 ⊕𝑊 (𝑟, 𝑠)1/𝑊 (𝑟, 𝑠)2 ⊕… ,

which is isomorphic to 𝑊 (𝑟, 𝑠). Define 𝜔 ∶ 𝑊 (𝑟, 𝑠) → Gr𝑊 (𝑟, 𝑠) by 𝜔(𝜇) = 𝜇 +
𝑊 (𝑟, 𝑠)𝑗+1 ∈ 𝑊 (𝑟, 𝑠)𝑗/𝑊 (𝑟, 𝑠)𝑗+1 for 𝜇 ∈ 𝑊 (𝑟, 𝑠)𝑗/𝑊 (𝑟, 𝑠)𝑗+1 for each 𝜇 ∈ 𝑊 (𝑟, 𝑠)𝑗 ⧵
𝑊 (𝑟, 𝑠)𝑗+1. The map 𝜔 is not linear, however [𝜔(𝜂), 𝜔(𝜇)] = 𝜔([𝜂, 𝜇]) if [𝜔(𝜂), 𝜔(𝜇)] ≠ 0.

Note that 𝜔 (𝜋(𝜏𝑖)) is a non-zero multiple of
𝜕
𝜕𝑇𝑖

and 𝜔 (𝜋(𝜎𝑗)) is non-zero multiple of

𝜕
𝜕Ξ𝑗

.

Proposition 3.6.1. Suppose 𝑟 |𝑠 ≥ 1|0. Let 𝑝 be a smooth closed point of the affine supervariety
𝑋 with dim𝑋 = 𝑟 |𝑠, and 𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠 be a system of parameters as before. If  is a
nonzero ℤ2-graded ideal of Der(𝑆), then

1. There exists 𝑦 ∈ {𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠} and 𝜇 ∈ |𝑦 | such that 𝜇(𝑦)(𝑝) ≠ 0.

2. For all 𝑦 ∈ {𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠}, there exists 𝜇 ∈ |𝑦 | such that 𝜇(𝑦)(𝑝) ≠ 0. In particular,
0 ≠ 0.

3. There exists 𝑔 ∈ 𝐴0 and 𝜇 ∈ 0 such that 𝜇(𝜇(𝑔))(𝑝) ≠ 0.

Proof. Let 𝜂 ∈  be a homogeneous element. Then, there exists 𝑢1,… , 𝑢𝑟+𝑠 ∈
k[𝑇1,… , 𝑇𝑟 |Ξ1,… ,Ξ𝑠] homogeneous polynomials with the same degree such that

𝜔 (𝜋(𝜂)) =
𝑟

∑
𝑖=1
𝑢𝑖
𝜕
𝜕𝑇𝑖

+
𝑟

∑
𝑗=1
𝑢𝑟+𝑗

𝜕
𝜕Ξ𝑗

≠ 0,

by the definition of 𝜔. Note that 𝑢1,… , 𝑢𝑟 have all the same parity, which is different from

the parity of 𝑢𝑟+1,… , 𝑢𝑟+𝑠. Choose a nonzero polynomial 𝑢𝑗0 ∈ {𝑢1,… , 𝑢𝑟+𝑠}, and set 𝑌 = 𝑇𝑗0
if 𝑗0 ≤ 𝑟 or 𝑌 = Ξ𝑗0−𝑟 if 𝑗0 > 𝑟 . Take 𝑇 𝑘11 ⋯ 𝑇 𝑘𝑟𝑟 Ξ𝑖1 ⋯Ξ𝑖𝑙 a monomial that occurs in 𝑢𝑗0 so

(
𝜕
𝜕𝑇1)

𝑘1

⋯(
𝜕
𝜕𝑇1)

𝑘𝑠

(
𝜕
𝜕Ξ𝑖1)

⋯(
𝜕
𝜕Ξ𝑖𝑙)

𝑢𝑗0 ∈ k ⧵ {0}.



3.6 | SIMPLICITY OF THE LIE SUPERALGEBRA OF VECTOR FIELDS

69

Consider

𝜇 = ad(𝜏1)𝑘1 ⋯ ad(𝜏𝑟)𝑘𝑟ad(𝜎𝑖1)⋯ ad(𝜎𝑖𝑙)𝜂 ∈  .

Then, 𝜇 is homogeneous and it has the same parity of 𝑌 . Since 𝜔 preserves brackets, we

see that

𝜔(𝜋(𝜇)) = ad(𝜔(𝜋(𝜏1)))𝑘1 ⋯ ad(𝜔(𝜋(𝜏𝑠)))𝑘𝑠ad(𝜔(𝜋(𝜎𝑖1)))⋯ ad(𝜔(𝜋(𝜎𝑖𝑙)))𝜔(𝜂)

is an element of 𝑊 (𝑟, 𝑠)−1 ⧵ 𝑊 (𝑟, 𝑠)0 and it contains
𝜕
𝜕𝑌 because ℎ′(𝑝) ≠ 0. Hence,

𝜔(𝜋(𝜇))𝑌 ≠ 0, which implies that 𝜇(𝑦)(𝑝) ≠ 0 where 𝑦 ∈ {𝑡1,… , 𝑡𝑟 , 𝜉1,… , 𝜉𝑠} is the

parameter such that 𝜋(𝑦) = 𝑌 .

If 𝑖 ∈ {1,… , 𝑟}, then 𝜔(𝜋([𝑦𝜏𝑖, 𝜇])) = [𝜔(𝜋(𝑦𝜏𝑖)), 𝜔(𝜋(𝜇))] contains
𝜕
𝜕𝑇𝑖

. Hence,

𝜔(𝜋([𝑦𝜏𝑖, 𝜇]))𝑇𝑖 ≠ 0, thus [𝑦𝜏𝑖, 𝜇](𝑡𝑖)(𝑝) ≠ 0. By the same argument [𝑦𝜎𝑗 , 𝜇](𝜉𝑗)(𝑝) ≠ 0.

Take 𝜇′ = [𝑦𝜏𝑖, 𝜇] ∈ 0. If 𝜇′(𝜇′(𝑡𝑖))(𝑝) ≠ 0, it is done. If 𝜇′(𝜇′(𝑡𝑖))(𝑝) = 0, then 𝑡2𝑖 ≠ 0
and

𝜇′(𝜇′(𝑡2𝑖 ))(𝑝) = 2𝜇′(𝑡𝑖𝜇′(𝑡𝑖))(𝑝) = 2𝜇′(𝑡𝑖)(𝑝)𝜇′(𝑡𝑖)(𝑝) + 2𝑡𝑖𝜇′(𝜇′(𝑡′𝑖 )) = 2(𝜇′(𝑡𝑖)(𝑝))2 ≠ 0.

Corollary 3.6.2. If  is a nonzero ideal of Der(𝑆) and 𝑝 is a smooth closed point, then the
map  → 𝑇𝑝𝑋 given by 𝐷 ↦ (𝑓 ↦ 𝐷(𝑓 )(𝑝)) is surjective.

Proof. The image of the vector fields [𝑦𝜏𝑖, 𝜇], [𝑦𝜎𝑗 , 𝜇] ∈  , 𝑖 = 1,… , 𝑟 , 𝑗 = 1,… , 𝑠, span

𝑇𝑝𝑋 .

Corollary 3.6.3. Suppose that 𝑋 is smooth and integral. If 𝑓 ∈ 𝑆0 ⧵ (k + 𝐽𝑆), there exists
𝜇 ∈ Der(𝑆)0 such that 𝜇(𝑓 ) ∉ 𝐽𝑆 .

Proof. There exists a closed point 𝑝 ∈ 𝑋 such that 𝑓 (𝑝) ≠ 0. Since 𝑓 is even and it is not

in 𝐽𝑆 , then 𝑓 is not a zero divisor. Hence, there exists a neighborhood 𝑈 of 𝑝 such that

𝑓 = 𝑔 + ∑
∅≠𝛽⊂{1…,𝑠}

𝑓𝛽𝜉𝛽 ∈ Γ(𝑈,),

where the Taylor series expansion of 𝑔 does not have odd variables and 𝑔 ∉ k. Therefore,

there exists 𝑖 ∈ {1,… , 𝑟} such that 𝜏𝑖(𝑔) ∉ 𝐽Γ(𝑈,). In particular,

𝜏𝑖(𝑓 ) = 𝜏𝑖(𝑔) + ∑
∅≠𝛽⊂{1…,𝑠}

𝜏𝑖(𝑓𝛽)𝜉𝛽 ,

thus 𝜏𝑖(𝑓 ) ∉ 𝐽𝑆 .

Lemma 3.6.4. Let  be an nonzero ideal of Der(𝑆), then

1. If 𝜇 ∈ 0, then 𝜇(𝑓 )𝜇 ∈  for all 𝑓 ∈ 𝑆.

2. If 𝑔 ∈ 𝑆0 and 𝜇 ∈ 0, then 𝜇(𝑓 )𝜇(𝑔)𝜇 ∈  for all 𝑓 ∈ 𝑆.
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3. If 𝑔 ∈ 𝑆0 and 𝜇 ∈ 0, then 𝑓 𝜇(𝜇(𝑔))𝜇 ∈  for all 𝑓 ∈ 𝑆.

Proof. Let 𝜇 ∈ 0 and 𝑓 ∈ 𝑆, then [𝜇, 𝑓 𝜇] = 𝜇(𝑓 )𝜇 + (−1)|𝑓 ||𝜇|𝑓 [𝜇, 𝜇] = 𝜇(𝑓 )𝜇 ∈  and

item (1) follows. For each 𝑔 ∈ 𝐴0, [𝜇, 𝑓 𝜇(𝑔)𝜇] − [𝑓 𝜇, 𝜇(𝑔)𝜇] = 2𝜇(𝑔)𝜇(𝑓 ) ∈  , hence (1)

is proved. By (1), 𝜇(𝑓 𝜇(𝑔))𝜇 ∈  . By (2), 𝜇(𝑓 )𝜇(𝑔)𝜇 ∈  . Since 𝑓 𝜇(𝜇(𝑔)) = 𝜇(𝑓 𝜇(𝑔)) −
𝜇(𝑔)𝜇(𝑓 ), we have that 𝑓 𝜇(𝜇(𝑔))𝜇 ∈  .

Lemma 3.6.5. Let 𝑓 , 𝑔 ∈ 𝑆0, 𝜇 ∈ 0. Let 𝐼𝑓 ,𝑔,𝜇 be the principal ideal of 𝑆 generated by
𝜇(𝑓 )𝜇(𝜇(𝑔)). Then for every 𝑎 ∈ 𝐼𝑓 ,𝑔,𝜇 and every 𝜏 ∈ Der(𝑆), 𝑎𝜏 ∈  .

Proof. If 𝑎 = 𝑏𝜇(𝑓 )𝜇(𝜇(𝑔)), then 𝑏𝜇(𝜇(𝑔))𝜇, 𝑓 𝑏𝜇(𝜇(𝑔))𝜇, 𝜇(𝑓 )𝑏𝜇(𝜇(𝑔))𝜇 ∈  by

Lemma 3.6.4. Therefore, if ℎ = 𝑏𝜇(𝜇(𝑔))

[𝑏𝜇(𝜇(𝑔))𝜇, 𝑓 𝜏] − [𝑓 𝑏𝜇(𝜇(𝑔))𝜇, 𝜏] − (−1)|𝜏||𝑏 |𝜏(𝑓 )𝑏𝜇(𝜇(𝑔))𝜇
=ℎ𝜇(𝑓 )𝜏 − (−1)|𝑏 ||𝜏|𝑓 𝜏(ℎ)𝜇 + ℎ𝑓 [𝜇, 𝜏] + (−1)|𝜏||𝑏 |𝜏(𝑓 ℎ)𝜇 − 𝑓 ℎ[𝜇, 𝜏] − (−1)|𝜏||𝑏 |𝜏(𝑓 )ℎ𝜇
=ℎ𝜇(𝑓 )𝜏 − (−1)|𝜏||𝑏 |𝑓 𝜏(ℎ)𝜇 + (−1)|𝜏||𝑏 |𝜏(𝑓 )ℎ𝜇 + (−1)|𝜏||𝑏 |𝑓 𝜏(ℎ)𝜇 − (−1)|𝜏||𝑏 |𝜏(𝑓 )ℎ𝜇
=ℎ𝜇(𝑓 )𝜏 = 𝑏𝜇(𝑓 )𝜇(𝜇(𝑔))𝜏 = 𝑎𝜏 ∈ 

With all technical results proved, we may prove the main theorem of this section.

Theorem 3.6.6. If 𝑋 = Spec (𝑆) is a smooth integral affine supervariety and dim𝑋 = 𝑟 |𝑠 ≥
1|0, then Der(𝑆) = Γ(𝑋,Θ𝑋 ) is a simple Lie superalgebra.

Proof. Let  be a ℤ2-graded ideal of Der(𝑆) and 𝐽 = {𝑎 ∈ 𝑆 ∣ 𝑎Der(𝑆) ⊂  }. For each closed

point 𝑝 ∈ 𝑋 there exists 𝜇 ∈ 0 and 𝑓 , 𝑔 ∈ 𝑆0 such that 𝜇(𝑓 )(𝑝) ≠ 0 and 𝜇(𝜇(𝑔))(𝑝) ≠ 0
by Proposition 3.6.1. Thus, 𝜇(𝑓 )𝜇(𝜇(𝑔)) ≠ 0 and the principal ideal 𝐼𝑓 ,𝑔,𝜇 of 𝑆 generated by

𝜇(𝑓 )𝜇(𝜇(𝑔)) is nonzero. By Lemma 3.6.5, 𝐼𝑓 ,𝑔,𝜇 ⊂ 𝐽 . Thus, 𝐽 is a nonzero Der(𝑆)-ideal of

𝑆. Furthermore, for each maximal ideal m of 𝑆, there exists an ℎ ∈ 𝐽 such that ℎ(𝑝) ≠ 0
where 𝑝 ∈ 𝑋 is the corresponding closed point. Hence, ℎ +m ≠ 0, and 𝐽 is not contained

in m. Since every proper ideal of 𝑆 is contained in a maximal ideal, we conclude that 𝐽 = 𝑆.

Thus, Der(𝑆) = 𝑆Der(𝑆) = 𝐽Der(𝑆) ⊂  ⊂ Der(𝑆), which implies that  = Der(𝑆).

Corollary 3.6.7. Let 𝑋 = Spec (𝑆) be a smooth integral affine supervariety and dim𝑋 =
𝑟 |𝑠 ≥ 1|0 and 𝐼 ≠ 0 be a nonzero ideal of 𝑆. If 𝐼 is a Der(𝑆)-submodule of 𝑆, then 𝐼 = 𝑆.

Proof. If 𝑓 ∈ 𝐼 and 𝜂, 𝜇 ∈ Der(𝑆), then

[𝜂, 𝑓 𝜇] = 𝜂(𝑓 )𝜇 + (−1)|𝜂||𝑓 |𝑓 [𝜂, 𝜇] ∈ 𝐼Der(𝑆).

Hence, 𝐼Der(𝑆) is a nonzero ideal of Der(𝑆). By Theorem 3.6.6, 𝐼Der(𝑆) = Der(𝑆). However,

this is only possible if 𝐼 = 𝑆.
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3.7 Infinitesimally equivariant sheaves on
supervarieties

From now on, 𝑋 = Spec (𝑆) is a smooth integral affine supervariety with structure

sheaf  and tangent sheaf Θ. An Infinitesimally Equivariant sheaf, or infeq sheaf for short,

 over 𝑋 is a sheaf on 𝑋 of -modules and Θ-modules that satisfies the Leibniz rule

𝜂 ⋅ (𝑓 𝑚) = 𝜂(𝑓 )𝑚 + (−1)|𝜂||𝑓 |𝑓 (𝜂 ⋅ 𝑚) for each 𝜂 ∈ Γ(𝑈,Θ), 𝑓 ∈ 𝐵, 𝑚 ∈ Γ(𝑈,𝑀)

for each affine open set 𝑈 = Spec (𝐵) ⊂ 𝑋 . Any infeq sheaf  comes with a map

𝐿 ∶ Θ → Endk() given by the action of Θ and it will be called the Lie map.

Suppose that 𝑋 is affine. Let 𝑆 denote the finitely generated integral commutative

superalgebra such that 𝑋 = Spec (𝑆). An infinitesimally equivariant 𝑆-module, or infeq

𝑆-module for short, 𝑀 is a 𝑆-module 𝑀 which is also a module over the Lie superalgebra

Der(𝑆) and satisfies the Leibniz rule. An 𝑆-infeq module is finite if it is a finitely generated

𝑆-module. We say that 𝑉 ⊂ 𝑀 is an infeq 𝑆-submodule of 𝑀 if 𝑉 is a both a 𝑆-submodule

of 𝑀 and Der(𝑆)-submodule of 𝑀 .

The main objective of this section is to prove that if 𝑀 is a finite infinitesimally

equivariant 𝑆-module, then the coherent sheaf �̃� on 𝑋 = Spec (𝑆) is an infinitesimally

equivariant sheaf.

We want to extend the main results of Chapter 2 to the super setting and we will use

the calculations done there to achieve this.

Example 3.7.1. The module of Kahler differentials Ω1
𝑆 is an infeq 𝑆-module as well as

Der(𝑆) and 𝑆. By Corollary 3.6.7, 𝑆 is a simple infeq 𝑆-module, in the sense that if 𝐼 is an

ideal of 𝑆 such that 𝐼 is a Der(𝑆)-module, then 𝐼 = 𝑆 or 𝐼 = 0.

Example 3.7.2. If 𝑀 is an infeq 𝑆-module, then the 𝑛th tensor product ⊗𝑛𝑆𝑀 of 𝑀 , the

tensor algebra

T𝐴(𝑀) = 𝐴 ⊕
∞

⨁
𝑛=1

⊗𝑛𝑆𝑀,

𝑀∗ = Homk(𝑀,k) and𝑀 ◦ = Hom𝑆(𝑀, 𝑆) are infeq 𝑆-modules. The exterior 𝑛-power Λ𝑛𝑆𝑀
and the exterior algebra

Λ∙
𝑆(𝑀) = 𝑆 ⊕

∞

⨁
𝑛=1

𝑛

⋀
𝑆
𝑀

are infeq 𝑆-modules as well. The exterior 𝑛-powerΛ𝑛𝑆𝑀 is the tensor 𝑛-power⊗𝑛𝑆𝑀 quotient

by the 𝑆-submodule generated by

𝑣1 ⊗⋯ ⊗ 𝑣𝑛 − 𝑣𝜎−1(1) ⊗⋯ ⊗ 𝑣𝜎−1(𝑛), 𝑣1,… , 𝑣𝑛 ∈ 𝑀 and 𝜎 ∈ S𝑛,

where S𝑛 denotes the permutation group of {1,… , 𝑛}.

Similarly to the non-super case, infeq 𝑆-modules are equivalent to modules over the

smash product 𝑆#𝑈 (Der(𝑆)).
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Remark 3.7.3. The associative superalgebra 𝑆#𝑈 (Der(𝑆)) is a superalgebra defined on the

super space 𝑆⊗𝑈 (Der(𝑆)) by the coproduct of𝑈 (Der(𝑆)). Explicitly, ifΔ(𝑢) = ∑
(𝑢)

𝑢(1)⊗𝑢(2),

then

(𝑓 ⊗ 𝑢)(𝑔 ⊗ 𝑣) = ∑
(𝑢)

(−1)|𝑢(2) ||𝑔 |𝑓 𝑢(1)(𝑔) ⊗ 𝑢(2)𝑣.

The commutator makes 𝑆#𝑈 (Der(𝑆)) a Lie superalgebra, and the subspace 𝑆#Der(𝑆) is a

Lie subalgebra of 𝑆#𝑈 (Der(𝑆)) with the Lie bracket given by

[𝑓 #𝜂, 𝑔#𝜇] = 𝑓 𝜂(𝑔)#𝜇 − (−1)(|𝑓 |+|𝜂|)(|𝑔 |+|𝜇|)𝑔𝜂(𝑓 )#𝜇 + (−1)|𝜂||𝑔 |𝑓 𝑔#[𝜂, 𝜇].

Lemma 3.7.4. Let 𝑀 be a finite infeq 𝑆-module. If 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 and 𝑚 ∈ 𝑀 , then 𝑓 𝑚 = 0
implies 𝑓 = 0.

Proof. The argument is similar to [BIN23, Lemma 4.2]. Denote by 𝜌 ∶ Der(𝑆) → glk(𝑀) the

Der(𝑆)-representation associated to 𝑀 . We will use the same notation for the associated

map 𝑈 (Der(𝑆)) → Endk(𝑀). Let 𝑉 = {𝑚 ∈∣ ∃𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 such that 𝑓 𝑚 = 0}. Take 𝑚 ∈ 𝑀
and 𝑓 ∉ 𝐽𝑆 such that 𝑓 𝑚 = 0. We have that 𝑓 2 ∉ 𝐽𝑆 and

𝑓 2𝜌(𝜂)(𝑚) = −𝜂(𝑓 2)𝑚 + 𝜌(𝜂)(𝑓 2𝑚) = −2𝜂(𝑓 )𝑓 𝑚 = 0

for every 𝜂 ∈ Der(𝑆). Thus, 𝜌(𝜂)(𝑚) ∈ 𝑉 for every 𝜂 ∈ 𝑀 .

Since 𝑀 is finitely generated, 𝑉 is finitely generated. Suppose 𝑉 is generated by

𝑣1,… , 𝑣𝑙 and 𝑓1,… , 𝑓𝑙 ∈ 𝑆 ⧵ 𝐽𝑆 satisfy 𝑓𝑖𝑣𝑖 = 0 for each 𝑖 = 1,… , 𝑙. Take 𝑓 = 𝑓1 ⋯ 𝑓𝑙, then

𝑓 𝑉 = 0. As we saw in Example 3.7.1, 𝑆 is a simple infeq 𝑆-module, thus there exists

𝑘

∑
𝑖=1
𝑔𝑖#𝑢𝑖 ∈ 𝑆#𝑈 (Der(𝑆)) such that

(

𝑘

∑
𝑖=1
𝑔𝑖#𝑢𝑖)

𝑓 = 1. Therefore, for every 𝑣 ∈ 𝑉 ,

0 =
𝑘

∑
𝑖=1
𝑔𝑖𝜌(𝑢𝑖)(𝑓 𝑣) =

𝑘

∑
𝑖=1

(𝑔𝑢𝑖(𝑓 )) 𝑣 + (−1)|𝑢𝑖 ||𝑓 |𝑔𝑖𝑓 𝜌(𝑢𝑖)(𝑣) = (

𝑘

∑
𝑖=1
𝑔𝑢𝑖(𝑓 ))

𝑣 = 𝑣

Note that 𝑆 ⊗ 𝑆 is a superalgebra as well. Let 𝛿 ∶ 𝑆 → 𝑆 ⊗ 𝑆 be the map defined

𝛿(𝑓 ) = 1 ⊗ 𝑓 − 𝑓 ⊗ 1 for each 𝑓 ∈ 𝑆. For each 𝑓 ∈ 𝑆, we define

Ω𝑝(𝑓 , 𝜂) = 𝛿(𝑓 )𝑝𝜂 ∈ 𝑆#𝑈 (Der(𝑆))

In particular, if 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 , then

Ω𝑝(𝑓 , 𝜂) =
𝑝

∑
𝑘=0

(−1)𝑙(
𝑝
𝑘)
𝑓 𝑝−𝑘#𝑓 𝑘𝜂 ∈ 𝑆#Der(𝑆) ⊂ 𝑆#𝑈 (Der(𝑆)) .

We want to show that there exists 𝑁 such that Ω𝑝(𝑓 , 𝜂) = 0 for every 𝑝 > 𝑁 as an endo-

morphism of a finite infeq 𝑆-module. For each infeq 𝑆-module, we denote the annihilator
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of 𝑀 as the set

Ann(𝑀) = {𝑢 ∈ 𝑆#𝑈 (Der(𝑆)) ∣ 𝑢𝑀 = 0} .

Lemma 3.7.5. Let 𝑓 ∈ 𝑆0, 𝜂, 𝜇 ∈ Der(𝑆), then

[Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝜇)] = Ω𝑝+𝑞(𝑓 , [𝜂, 𝜇]) + (−1)|𝜂||𝜇|𝑝Ω𝑝+𝑞−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑞Ω𝑝+𝑞−1(𝑓 , 𝜂(𝑓 )𝜇).

Additionally, Ω𝑝(𝑓 , 𝜂)(𝑔#1) = (−1)|𝑔 ||𝜂|(𝑔#1)Ω𝑝(𝑓 , 𝜂) for every 𝑔 ∈ 𝑆. Furthermore, if 𝜂 is
even and 𝑔, ℎ ∈ 𝑆 then

1. [Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔𝜇)] − [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , 𝜇)] = Ω𝑝+𝑞 (𝑓 , 𝜂(𝑔)𝜇 + (−1)|𝜇||𝑔 |𝜇(𝑔)𝜂);

2. [Ω𝑝(𝑓 , 𝜂),Ω𝑞(𝑓 , 𝑔ℎ𝜂)] − [Ω𝑝(𝑓 , 𝑔𝜂),Ω𝑞(𝑓 , ℎ𝜂)] = Ω𝑝+𝑞(𝑓 , 𝜂(𝑔)ℎ𝜂);

Proof. The proof follows the same steps as in Lemma 2.2.2, Lemma 2.2.4 and Lemma 2.2.5,

Proposition 3.7.6. Let 𝑀 be a finite infeq 𝑆-module and 𝑓 ∈ 𝑆 ⧵ (k + 𝐽𝑆), then there exists
𝜂 ∈ Der(𝑆)0 with 𝜂(𝑓 ) ≠ 0 and 𝑁 > 0 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for all 𝑝 > 𝑁 .

Proof. Let 𝑟 be the rank of𝑀 . By Lemma 3.6.3, there exists 𝜇 ∈ Der(𝑆)0 such that 𝜇(𝑓 )𝑘 ≠ 0
for all 𝑘 > 0. By Lemma 3.7.5, we may see each Ω𝑘(𝜂, 𝜇) as an element of gl𝑆(𝑀). Since 𝑀
is finitely generated as an 𝐴-module, there exists 𝑎1,… , 𝑎𝑟2 , 𝑎𝑟2+1 ∈ 𝑆 with 𝑎𝑟2+1 ≠ 0 such

that

𝑟2+1

∑
𝑖=1
𝑎𝑖Ω𝑝𝑖(𝑓 , 𝜇) ∈ Ann(𝑀),

where 𝑝𝑖 = 𝑖 if 𝑖 ≤ 𝑟2 and 𝑝𝑖 = 𝑝 > 𝑟2 + 1. Since both 𝜇 and 𝑓 are even, we may apply the

proof of Lemma 2.3.3 to get that 𝑎𝑝𝑟2+1Ω𝑝(𝑓 , 𝜇(𝑓 )
𝑟2𝜇) ∈ Ann(𝑀) for every 𝑝 > 𝑁 , where

𝑁 depends solely on the rank of 𝑀 . Since 𝜇(𝑓 )𝑟2(𝑓 ) ≠ 0, we have that Ω𝑝(𝑓 , 𝜇(𝑓 )𝑟
2𝜇) ∈

Ann(𝑀) by Lemma 3.7.4.

Proposition 3.7.7. Let 𝑀 be a finite infeq 𝑆-module, 𝑓 ∈ 𝑆 ⧵ (k + 𝐽𝑆). Let 𝜂 ∈ Der(𝑆)0
with 𝜂(𝑓 ) ≠ 0 and 𝑁 > 0 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for all 𝑝 > 𝑁 . If 𝑔, ℎ ∈ 𝑆, then
Ω𝑘(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝜏 ∈  , 𝑘 > 3𝑁 + 4 and 𝑞 ∈ (𝜂(𝑔)𝜂(𝜂(ℎ))).

Proof. Note that 𝜂 is even. By Lemma 3.7.5,

[Ω𝑁+1(𝑓 , 𝜂),Ω𝑁+𝑘(𝑓 , 𝑔𝜂)] − [Ω𝑁+1(𝑓 , 𝑔𝜂),Ω𝑁+𝑘(𝑓 , 𝜂)] = Ω2𝑁+𝑘+1(𝑓 , 𝜂(𝑔)𝜂) ∈ Ann(𝑀)

for all 𝑘 > 1 and 𝑔 ∈ 𝑆. Therefore, by Lemma 3.7.5 again,

[Ω𝑁+1(𝑓 , 𝜂),Ω2𝑁+𝑘+1(𝑓 , 𝑔𝜂(ℎ)𝜂)] − [Ω𝑁+1(𝑓 , 𝑔𝜂),Ω2𝑁+𝑘+1(𝑓 , 𝜂(ℎ)𝜂)]
=Ω3𝑁+𝑘+2(𝑓 , 𝜂(𝑔)𝜂(ℎ)𝜂) ∈ Ann(𝑀)

for all 𝑘 ≥ 1 and 𝑔, ℎ ∈ 𝑆. We conclude that

Ω3𝑁+𝑘+2(𝑓 , 𝜂(𝑔𝜂(ℎ))𝜂) − Ω3𝑁+𝑘+2(𝑓 , 𝜂(𝑔𝜂(ℎ))𝜂) = Ω3𝑁+𝑘+2(𝑓 , 𝜂(𝑔𝜂(ℎ))𝜂) ∈ Ann(𝑀)
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for all 𝑘 ≥ 1.

Let 𝑝 ∈ 𝑆 and set 𝑞 = 𝑝𝜂(𝑔)𝜂(𝜂(ℎ)), then

[Ω3𝑁+2+𝑘(𝑓 , 𝑝𝜂(𝜂(ℎ))𝜂),Ω𝑙(𝑓 , 𝑔𝜏)] − [Ω3𝑁+2+𝑘(𝑓 , 𝑔𝑝𝜂(𝜂(ℎ))𝜂),Ω𝑙(𝑓 , 𝜏)]
− (−1)|𝑔 ||𝜏|Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝜏(𝑔)𝑝𝜂(𝜂(ℎ))𝜂)

=Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝑝𝜂(𝜂(ℎ))𝜂(𝑓 )𝜏 + (−1)|𝑔 ||𝜏|𝜏(𝑔)𝑝𝜂(𝑔)𝜂(𝜂(ℎ))𝜏)
− (−1)|𝑔 ||𝜏|Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝜏(𝑔)𝑝𝜂(𝜂(ℎ))𝜂)

=Ω3𝑁+2+𝑘+𝑙(𝑓 , 𝑞𝜏) ∈ Ann(𝑀).

We conclude that Ω3𝑁+3+𝑘(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝑞 in the principal ideal generated by

𝜂(𝑔)𝜂(𝜂(ℎ)) and 𝑘 ≥ 1.

Lemma 3.7.8. Let 𝑀 be a finite infeq 𝑆-module and 𝑓 ∈ 𝑆. If 𝑓 ∈ k + 𝐽𝑆 , then there exists 𝑁
that depends on 𝑆 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann𝑆(𝑀) for each 𝑝 > 𝑁 .

Proof. If 𝑓 ∈ 𝐽𝑆 , then 𝑓 is nilpotent and its degree of nilpotency depends solely on the odd

dimension of 𝑋 , which is fixed. Thus, Ω𝑞(𝑓 , 𝜏) = 0 for every 𝜏 ∈ Θ and 𝑞 greater than

some number that depends on 𝑆.

On the other hand, assume 𝑓 ∈ k + 𝐽𝑆 . Without loss of generality, we may assume that

𝑓 = 1 + 𝑔 with 𝑔 ∈ 𝐽𝑆 ∩ 𝑆0. Since 𝑔 is nilpotent and

𝛿(𝑓 )𝑘 = 𝛿(1 + 𝑔)𝑘 =
𝑘

∑
𝑙=0

(
𝑘
𝑙)
𝛿(1)𝑙𝛿(𝑔)𝑘−𝑙,

thus Ω𝑞(𝑓 , 𝜏) = 0 if 𝑞 is greater than some number that depends on 𝑆 for every 𝜏 ∈  .

Similar to what we have done for the non-super case, for an ideal 𝐼 of 𝑆, we define

𝐼 (0) = 𝐼 and 𝐼 (𝑘) as the ideal of 𝑆 generated by {𝑔, 𝜇(𝑔) ∣ 𝑔 ∈ 𝐼 (𝑘−1), 𝜇 ∈ }.

Lemma 3.7.9. Let𝑀 be a infeq 𝑆-module, and 𝑓 ∈ 𝑆0 ⧵ (k+ 𝐽𝑆). Suppose that 𝐼 is an ideal of
𝐴 such that Ω𝑝(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 for some 𝑁 > 0. Then for each 𝑝 > 𝑁 + 𝑘,
Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for all 𝑔 ∈ 𝐼 (𝑘) and 𝜏 ∈  .

Proof. By an argument close to Lemma 2.2.6, we have that

[Ω𝑝(𝑓 , 𝜂), 1#𝜇] = Ω𝑝(𝑓 , [𝜂, 𝜇]) + 𝑝(−1)|𝜂||𝜇|Ω𝑝−1(𝑓 , 𝜇(𝑓 )𝜂) − (−1)|𝜂||𝜇|𝜇(𝑓 )Ω𝑝−1(𝑓 , 𝜂)

for every 𝜂, 𝜇 ∈ Der(𝑆). Therefore, as endomorphisms of 𝑀 ,

0 = [Ω𝑝+1(𝑓 , 𝑔𝜏), 1#𝜇]
= Ω𝑝+1(𝑓 , [𝑔𝜏, 𝜇]) + (−1)(|𝑔 |+|𝜏|)|𝜇|(𝑝 + 1)Ω𝑝(𝑓 , 𝜇(𝑓 )𝑔𝜏) − (−1)|𝜂||𝜇|(𝑝 + 1)𝜇(𝑓 )Ω𝑝(𝑓 , 𝑔𝜏)
= −(−1)(|𝑔 |+|𝜏|)|𝜇|Ω𝑝+1(𝑓 , 𝜇(𝑔)𝜏) + Ω𝑝+1(𝑓 , 𝑔[𝜏, 𝜇])
= −(−1)(|𝑔 |+|𝜏|)|𝜇|Ω𝑝+1(𝑓 , 𝜇(𝑔)𝜏)
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for every 𝑔 ∈ 𝐼 , 𝜇, 𝜏 ∈  , and 𝑝 > 𝑁 . Thus, Ω𝑝+1(𝑓 , 𝜇(𝑔)𝜏) ∈ Ann(𝑀) for every 𝑔 ∈ 𝐼 and

𝜇 ∈  .

Furthermore, for every 𝑔 ∈ 𝐼 and ℎ ∈ 𝐴, we have that 𝑔ℎ ∈ 𝐼 and

Ω𝑝(𝑓 , ℎ𝜇(𝑔)𝜏) = Ω𝑝(𝑓 , 𝜇(𝑔ℎ)𝜏) − (−1)|𝜇||ℎ|Ω𝑝(𝑓 , 𝑔𝜇(ℎ)𝜏) ∈ Ann(𝑀).

Hence, for every 𝑔 ∈ 𝐼 (1), we have that Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 + 1. Since

𝐼 (𝑘) = (𝐼 (𝑘−1))(1), we conclude by induction that Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 + 𝑘,

𝜏 ∈  and 𝑔 ∈ 𝐼 (𝑘).

Theorem 3.7.10. Let 𝑀 be a finite infeq 𝑆-module, and 𝑓 ∈ 𝑆. Then there exists 𝑁𝑓 , that
depends on 𝑓 , such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for each 𝑝 > 𝑁𝑓 , and 𝜂 ∈  .

Proof. If 𝑓 ∈ k1 + 𝐽𝑆 , then Ω𝑝(𝑓 , 𝜂) = 0 for all 𝑝 greater than a number that depends on

the odd dimension of 𝑆 by Lemma 3.7.8. Suppose 𝑓 ∉ k + 𝐽𝑆 . By Proposition 3.7.6, there

exists 𝜂 ∈ Der(𝑆)0 with 𝜂(𝑓 ) ≠ 0 and 𝑁 > 0 such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀) for all 𝑝 > 𝑁 .

Since 𝜂(𝑓 ) ≠ 0, there exists 𝑔 ∈ {𝑓 , 𝑓 2} such that 𝜂(𝑓 )𝜂(𝜂(𝑔)) ≠ 0. By Proposition 3.7.7,

Ω𝑝(𝑓 , 𝑞𝜏) ∈ Ann(𝑀) for every 𝑞 ∈ 𝐼 = (𝜂(𝑓 )𝜂(𝜂(𝑔))) ≠ 0, 𝜏 ∈  and 𝑝 > 3𝑁 + 4. Since 𝑆
is Noetherian and

𝐼 ⊂ 𝐼 (1) ⊂ 𝐼 (2) ⊂ ⋯

is an ascending chain of ideals of 𝐴, we have that 𝐼 (𝑘) = 𝐼 (𝑙) for every 𝑙 ≥ 𝑘 for some

𝑘 ≥ 1. Hence, 𝐼 (𝑘) is an infeq 𝑆-submodule of 𝑆. But 𝑆 is a simple infeq 𝑆-module, thus

𝐼 (𝑘) = 𝑆 by Corollary 3.6.7. By Lemma 3.7.9, for every 𝑔 ∈ 𝐼 (𝑘) and 𝑝 > 3𝑁 + 4 + 𝑘,

Ω𝑝(𝑓 , 𝑔𝜏) ∈ Ann(𝑀) for every 𝜏 ∈  . In particular, Ω𝑝(𝑓 , 𝜏) ∈ Ann(𝑀) for each 𝑝 > 𝑁𝑓
where 𝑁𝑓 = 3𝑁 + 4 + 𝑘.

For each 𝜂 ∈ Der(𝑆), set Ω0(𝑓 , 𝜂) = 1#𝜂.

Corollary 3.7.11. Let 𝑀 be a finite infeq 𝑆-module, and 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 . Then,

∞

∑
𝑖=0

1
𝑓 𝑘(𝑝+1)

Ω𝑝(𝑓 , 𝜂) (3.4)

is a well-defined endomorphism of 𝑀𝑓 for every 𝜂 ∈ Der(𝑆) and 𝑘 ≥ 1.

Proof. As an endomorphism of 𝑀𝑓 ,

∞

∑
𝑖=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂) =
𝑁𝑓

∑
𝑖=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)

converges to a well-defined map of 𝑀𝑓 , where Ω0(𝑓 , 𝜂) = 1#𝜂, 𝜂 ∈ Der(𝑆), 𝑓 ∈ 𝑆0 ⧵ 𝐽𝑆 and

𝑁𝑓 is given by Theorem 3.7.10.

Proposition 3.7.12. Let𝑀 be a finite infeq 𝑆-module with associated Der(𝑆)-representation
𝜌 ∶ Der(𝑆) → glk(𝑀), and 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 . Then, there exists a representation 𝜌𝑓 ∶ Der(𝑆)𝑓 →
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glk(𝑀) such that 𝜌𝑓 |Der(𝑆) = 𝜌 and

𝜌𝑓 (
𝜂
𝑓 𝑘)

=
∞

∑
𝑖=0

1
𝑓 𝑘(𝑝+1)

Ω𝑝(𝑓 , 𝜂) =
∞

∑
𝑝=0

𝑝

∑
𝑙=0

(−1)𝑙(
𝑝
𝑙)

1
𝑓 𝑘𝑙+𝑘

𝜌(𝑓 𝑘𝑙𝜂)

for each 𝜂 ∈ Der(𝑆) and 𝑘 ≥ 1

Proof. We want to use the representation 𝜌 ∶ Der(𝑆) → glk(𝑀) and Corollary 3.7.11 to

define a representation 𝜌𝑓 ∶ Der(𝑆)𝑓 → glk(𝑀𝑓 ) of Der(𝑆)𝑓 ≅ Der(𝑆𝑓 ). If 𝜂 ∈ Der(𝑆) ⊂
Der(𝑆)𝑓 , then we set

𝜌𝑓 (𝜂)(
𝑚
𝑓 𝑘)

= −𝑘
𝜂(𝑓 )𝑚
𝑓 𝑘−1

+
1
𝑓 𝑘

(𝜌(𝜂)𝑚)

for each 𝑚 ∈ 𝑀 . Because 𝑓 ∈ 𝑆0 ⧵ 𝐽𝑆 is even, Lemma 2.4.2 is true in this context. Therefore

the map 𝜌𝑓 given by

𝜌𝑓 (
𝜂
𝑓 𝑘)

=
∞

∑
𝑖=0

1
𝑓 𝑘(𝑝+1)

Ω𝑝(𝑓 , 𝜂) =
∞

∑
𝑝=0

𝑝

∑
𝑙=0

(−1)𝑙(
𝑝
𝑙)

1
𝑓 𝑘𝑙+𝑘

𝜌(𝑓 𝑘𝑙𝜂)

is a well-defined map from Der(𝑆)𝑓 .

It remains to show that [𝜌𝑓 (𝜂) , 𝜌𝑓 (𝜇)] = 𝜌𝑓 ([𝜂, 𝜇]) for every 𝜂, 𝜇 ∈ Der(𝑆)𝑓 . This

holds for elements of Der(𝑆) ⊂ Der(𝑆)𝑓 , hence if we show that

[𝜌𝑓 (
𝜂
𝑓 )

, 𝜌𝑓 (
𝜇
𝑓 )]

= 𝜌𝑓 ([
𝜂
𝑓
,
𝜇
𝑓 ])

for every 𝜂, 𝜇 ∈ Der(𝑆)𝑓 , then the result follows by recursion. Since 𝑓 is even, Lemma 2.4.3

holds in this context as written. Thus, by this lemma and Lemma 3.7.5,

[𝜌𝑓 (
𝜂
𝑓 )

, 𝜌𝑓 (
𝜇
𝑓 )]

=
[

∞

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂),
∞

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜇)]

=
∞

∑
𝑘=0

∞

∑
𝑙=0

1
𝑓 𝑘+𝑙+2 [

Ω𝑘(𝑓 , 𝜂),Ω𝑝(𝑓 , 𝜇)]

=
∞

∑
𝑘=0

∞

∑
𝑙=0

1
𝑓 𝑘+𝑙+2 (

(−1)|𝜂||𝜇|𝑘Ω𝑘+𝑙−1(𝑓 , 𝜇(𝑓 )𝜂) − 𝑙Ω𝑘+𝑙−1(𝑓 , 𝜂(𝑓 )𝜇) + Ω𝑘+𝑙(𝑓 , [𝜂, 𝜇]))

=
∞

∑
𝑢=0

((−1)
|𝜂||𝜇| (𝑢 + 1)(𝑢 + 2)/2

𝑓 𝑢+3
Ω𝑢(𝑓 , 𝜇(𝑓 )𝜂) −

(𝑢 + 1)(𝑢 + 2)/2
𝑓 𝑢+3

Ω𝑢(𝑓 , 𝜂(𝑓 )𝜇))

+
∞

∑
𝑢=0

𝑢 + 1
𝑓 𝑢+2

Ω𝑢(𝑓 , [𝜂, 𝜇])

=
∞

∑
𝑢=0

((−1)|𝜂||𝜇|
(𝑢 + 1)(𝑢 + 2)/2

𝑓 𝑢+3
Ω𝑢(𝑓 , 𝜇(𝑓 )𝜂) −

(𝑢 + 1)(𝑢 + 2)/2
𝑓 𝑢+3

Ω𝑢(𝑓 , 𝜂(𝑓 )𝜇))
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+
[𝜂, 𝜇]
𝑓 2

=(−1)|𝜂||𝜇|
𝜇(𝑓 )
𝑓 3 𝜂 −

𝜂(𝑓 )
𝑓 3 𝜇 +

[𝜂, 𝜇]
𝑓 2 = [

𝜂
𝑓
,
𝜇
𝑓 ]

as endomorphisms of 𝑀𝑓 . Therefore, 𝜌𝑓 is indeed a representation of 𝑓 .

Theorem 3.7.13. If 𝑋 = Spec (𝑆) is an affine smooth integral supervariety and𝑀 be a finite
infeq 𝑆-module, then �̃� is an infinitesimally equivariant sheaf on 𝑋 . In particular, for every
basic open set 𝐷(𝑓 ) ⊂ 𝑋 , 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 ,

(1#
𝜂
𝑓 𝑘)

𝑣 =
∞

∑
𝑝=0

1
𝑓 𝑘(𝑝+1)

Ω𝑝(𝑓 , 𝜂)

for every 𝑣 ∈ 𝑀𝑓 and 𝜂 ∈ Der(𝑆)𝑓 .

Proof. Let 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 . By Proposition 3.7.12, there is a presentation 𝜌𝑓 ∶ Der(𝑆) → glk(𝑀𝑓 )
such that 𝜌𝑓 |Der(𝑆) = Der(𝑆) and

𝜌𝑓 (
𝜂
𝑓 𝑘)

=
∞

∑
𝑖=0

1
𝑓 𝑘(𝑝+1)

Ω𝑝(𝑓 , 𝜂) =
∞

∑
𝑝=0

𝑝

∑
𝑙=0

(−1)𝑙(
𝑝
𝑙)

1
𝑓 𝑘𝑙+𝑘

𝜌(𝑓 𝑘𝑙𝜂).

It remains to show that 𝜌𝑓 (𝜂) (𝑔𝑣) = 𝜂(𝑔)𝑣 + (−1)|𝜂||𝑔 |𝑔𝜌𝑓 (𝜂) (𝑣) for every 𝜂 ∈ Der(𝑆)𝑓 ,

𝑣 ∈ 𝑀𝑓 and 𝑔 ∈ 𝑆. For every 𝜂 ∈ Der(𝑆)𝑓 and 𝑔 ∈ 𝑆,

𝜌𝑓 (
𝜂
𝑓 )

(𝑔𝑣) =
∞

∑
𝑝=0

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)(𝑔#1)𝑣

=
((

1
𝑓
#𝜂) (𝑔#1) +

∞

∑
𝑝=1

1
𝑓 𝑝+1

Ω𝑝(𝑓 , 𝜂)(𝑔#1))
𝑣

=
(
𝜂(𝑔)
𝑓

#1 + (−1)|𝜂||𝑔 |(𝑔#1)(
1
𝑓
#𝜂) + (−1)|𝜂||𝑔 |

∞

∑
𝑝=1

1
𝑓 𝑝+1

(𝑔#1)Ω𝑝(𝑓 , 𝜂))
𝑣

=
𝜂(𝑔)
𝑓
𝑣 + (−1)|𝜂||𝑔 |𝑔𝜌𝑓 (

𝜂
𝑓 )

(𝑣),

hence 𝜌𝑓 turns 𝑀𝑓 an infeq 𝑆-module.

Let 𝑓 , 𝑔 ∈ 𝑆 ⧵ 𝐽𝑆 and 𝜂, 𝜇 ∈ Der(𝑆) such that

𝜂
𝑓 𝑘

=
𝜇
𝑔 𝑙

. Take ℎ = 𝑓 𝑘𝑔 𝑙 ∈ 𝑆 ⧵ 𝐽𝑆 , then

𝑔 𝑙𝜂
ℎ

=
𝑓 𝑘𝜇
ℎ

and ℎ𝑐(ℎ𝑓 𝑘𝜇 − ℎ𝑔 𝑙𝜂) = 0 for some 𝑐 > 0. Since ℎ𝑐+1 ∈ 𝑆0 ⧵ 𝐽𝑆 , we have that

𝑔 𝑙𝜂 = 𝑓 𝑘𝜇 by Lemma 3.7.4. Therefore, as an endomorphism of 𝑀ℎ,

𝜌𝑔 (
𝜇
𝑔 𝑙)

= 𝜌ℎ(
𝑓 𝑘𝜇
ℎ ) =

∞

∑
𝑝=0

1
ℎ𝑝+1

𝑝

∑
𝑎=0

(−1)𝑎(
𝑝
𝑎)
ℎ𝑝−𝑎#ℎ𝑎𝑓 𝑘𝜇
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=
∞

∑
𝑝=0

1
ℎ𝑝+1

𝑝

∑
𝑎=0

(−1)𝑎(
𝑝
𝑎)
ℎ𝑝−𝑎#ℎ𝑎𝑔 𝑙𝜂

= 𝜌ℎ(
𝑔 𝑙𝜂
ℎ ) = 𝜌𝑓 (

𝜂
𝑓 𝑙)

.

We conclude that 𝜌 ∶ Der(𝑆) → glk(𝑀) sheafifies to 𝜌 ∶ Θ𝑋 → glk(�̃�)with 𝜌𝐷(𝑓 ) = 𝜌𝑓 .

3.8 Infinitesimally equivariant sheaves are differential
operators

We wish to prove that the Lie map 𝐿 ∶ Θ → Endk() of an infinitesimally equivariant

sheaf  is a differential operator. Let 𝑆 be a commutative superalgebra. Recall that a map

𝑀 → 𝑁 between two 𝑆-modules is a differential operator if it is an element of

Diff(𝑀,𝑁 ) = ⋃
𝑛≥0

Diff𝑛𝑆(𝑀,𝑁 ),

where Diff0(𝑀,𝑁 ) = Hom𝑆(𝑀,𝑁 ) and

Diff𝑛+1(𝑀,𝑁 ) = {𝐷 ∈ Homk(𝑀,𝑁 ) ∣ [𝐷, 𝑓 ] ∈ Diff𝑛(𝑀,𝑁 ) ∀𝑓 ∈ 𝑆} .

If 𝐷 ∈ Diff𝑛(𝑀,𝑁 ), we say that 𝐷 is a differential operator of order less or equal to 𝑛. In

this case,

𝐷(𝑓 𝑚) − (−1)|𝑓 ||𝐷|𝑓 (𝐷(𝑚))

is a differential operator of order less or equal to 𝑛 − 1 for each 𝑓 ∈ 𝑆. Note that each

element of Der(𝑆) is a differential operator 𝑆 → 𝑆 of order less or equal to 1 because

𝐷(𝑓 ) = 𝐷 ◦ 𝑓 − (−1)|𝑓 ||𝐷|𝑓 ◦ 𝐷 for each 𝑓 ∈ 𝑆, 𝐷 ∈ Der(𝑆).

A map  →  between the vector bundles  and  on 𝑋 is a differential operator

of order less or equal to 𝑛 if and only if sections Γ(𝑈,) → Γ(𝑈, ) are differential

operators for each affine open set 𝑈 ⊂ 𝑋 .

Since being a differential operator is a local property, we may assume that 𝑋 = Spec (𝑆)
is affine.

For a linear map 𝑇 ∈ Homk(Der(𝑆),End(𝑀)), we define

𝛿(𝑓1)⋯ 𝛿(𝑓𝑘)𝑇 (𝜂)𝑚 = 𝛿(𝑓1)⋯ 𝛿(𝑓𝑘)(1#𝜂)𝑚

for each 𝑚 ∈ 𝑀 , 𝜂 ∈ Der(𝑆), 𝑓1,… , 𝑓𝑘 ∈ 𝑆, where 𝛿(𝑓 ) = 1 ⊗ 𝑓 − 𝑓 ⊗ 1. Note that

𝛿(𝑓 )𝑇 (𝜂) = 𝑇 (𝑓 𝜂) − (−1)|𝑓 ||𝐿|𝑓 𝑇 (𝜂).

Lemma 3.8.1. 𝐿 ∶ Der(𝑆) → End(𝑀) is a differential operator of order less or equal to 𝑘 if
and only if 𝛿(𝑓1)⋯ 𝛿(𝑓𝑘+1)𝐿(𝜂) = 0 for each 𝑓1,… 𝑓𝑘+1 ∈ 𝑆 and 𝜂 ∈ Der(𝑆).

Proof. We will prove this lemma by induction on the order of the differential operator. 𝐿
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will be a differential operator of order less or equal to 0 if and only if

0 = 𝐿(𝑓 𝜂)𝑚 − 𝑓 𝐿(𝜂)𝑚 = (1#𝑓 𝜂 − 𝑓 #𝜂)𝑚 = 𝛿(𝑓 )(1#𝜂)𝑚

for each 𝑓 ∈ 𝑆, 𝜂 ∈ Der(𝑆), and 𝑚 ∈ 𝑀 . Assume that 𝐿 is a differential operator of order

𝑘, then 𝐿𝑓 (𝜂) = 𝛿(𝑓 )(𝜂) = 𝐿(𝑓 𝜂) − 𝑓 𝐿(𝜂) defines a differential operator of order less or

equal to 𝑘 − 1. By induction, 𝐿𝑓 is a differential operator of order less or equal to 𝑘 − 1 if

and only if there exist 𝑓1,… , 𝑓𝑘 ∈ 𝑆 such that

0 = 𝛿(𝑓1)⋯ 𝛿(𝑓𝑘)𝐿𝑓 (𝜂) = 𝛿(𝑓1)⋯ 𝛿(𝑓𝑘)𝛿(𝑓 )𝐿(𝜂)

for each 𝜂 ∈ Der(𝑆). Thus, the lemma follows.

Example 3.8.2. Similar to Example 2.3.1, the adjoint representation ad ∶ Der(𝑆) →
End(Der(𝑆)) is a differential operator of degree less or equal to 1 since

𝛿(𝑔)𝛿(𝑓 )ad(𝜂)(𝜇)

= (ad(𝑔𝑓 𝜂) − 𝑔ad(𝑓 𝜂) − 𝑓 ad(𝑔𝜂) + (−1)|𝑓 ||𝑔 |𝑔𝑓 ad(𝜂)) (𝜇)

=[𝑔𝑓 𝜂, 𝜇] − 𝑔[𝑓 𝜂, 𝜇] − 𝑓 [𝑔𝜂, 𝜇] + (−1)|𝑓 ||𝑔 |𝑔𝑓 [𝜂, 𝜇]
= − (−1)(|𝑔 |+|𝑓 |+|𝜂|)|𝜇|𝜇(𝑔𝑓 )𝜂 + 𝑔𝑓 [𝜂, 𝜇] + (−1)(|𝑓 |+|𝜂|)|𝜇|𝑔𝜇(𝑓 )𝜂 − 𝑔𝑓 [𝜂, 𝜇]
+ (−1)(|𝑔 |+|𝜂|)𝜇𝑓 𝜇(𝑔)𝜂 − 𝑓 𝑔[𝜂, 𝜇] + (−1)|𝑓 ||𝑔 |𝑔𝑓 [𝜂, 𝜇]

=(−1)(|𝑔 |+|𝑓 |+|𝜂|)|𝜇| (−𝜇(𝑓 𝑔)𝜂 + 𝜇(𝑓 )𝑔𝜂 + (−1)|𝑔 ||𝜇|𝑓 𝜇(𝑔)𝜂) = 0

for every 𝑓 , 𝑔 ∈ 𝑆 and 𝜂, 𝜇 ∈ Der(𝑆) by (3.1).

Lemma 3.8.3. Let𝑀 be an infeq 𝑆-module and 𝑓 ∈ 𝑆⧵𝐽𝑆 . Assume that there exist 𝜂 ∈ Der(𝑆)
with 𝜂(𝑓 ) = 1. If there exists 𝑁 such that Ω𝑘(𝑓 , 𝜂) ∈ Ann(𝑀) for every 𝑘 > 𝑁 , then
Ω𝑘(𝑓 , 𝜏) ∈ Ann(𝑀) for every 𝑘 > 3𝑁 + 4 and 𝜏 ∈ Der(𝑆).

Proof. The argument is analogous to the one given on Proposition 2.3.6. Note that we may

assume 𝜂 homogeneous. In this case, 𝜂must be an even element, since 𝜂(𝑓 ) = 1 and 𝑓 ∈ 𝑆0.
Using Lemma 3.7.5 and the assumption that 𝜂(𝑓 ) = 1, we get that Ω𝑘(𝑓 , 𝜂) ∈ Ann(𝑀) for

every 𝑘 ≥ 𝑁 .

We apply Lemma 3.7.5 again to get that Ω𝑝(𝑓 , 𝜂(𝑟)𝜂) ∈ Ann(𝑀) for 𝑝 > 2𝑁 + 1 and

for every 𝑟 ∈ 𝑆. Similarly, Ω𝑝(𝑓 , 𝜂(𝑟)𝜂(𝑠)𝜂) ∈ Ann(𝑀) for 𝑝 > 3𝑁 + 2 by taking 𝑔 = 𝑟 ,
ℎ = 𝜂(𝑠) on Lemma 3.7.5. Since

Ω𝑝(𝑓 , 𝑔𝜂(𝜂(ℎ))𝜂) = Ω𝑝(𝑓 , 𝜂(𝑔𝜂(ℎ))𝜂) − Ω𝑝(𝑓 , 𝜂(𝑔)𝜂(ℎ)𝜂),

we have that Ω𝑝(𝑓 , 𝑟𝜂(𝜂(𝑠))𝜂) ∈ Ann(𝑀) for every 𝑝 > 3𝑁 +2 and 𝑟 ∈ 𝑆. Hence, Ω𝑘(𝑓 , 𝜏) ∈
Ann(𝑀) for every 𝑘 > 3𝑁 + 4 because

[Ω𝑝(𝑓 , 𝜂(𝜂(𝑓 2))𝜂),Ω𝑞(𝑓 , 𝑓 𝜏)] − [Ω𝑝(𝑓 , 𝑓 𝜂(𝜂(𝑓 2))𝜂),Ω𝑞(𝑓 , 𝜏)]
− (−1)|𝜏||𝑔 |Ω𝑝+𝑞(𝑓 , 𝜏(𝑓 )𝜂(𝜂(𝑓 2))𝜂)
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=Ω𝑝+𝑞(𝑓 , 𝜂(𝑓 )𝜂(𝜂(𝑓 2))𝜏) = 2Ω𝑝+𝑞(𝑓 , 𝜏)

by Lemma 3.7.5 for 𝑝 > 3𝑁 + 2 and 𝑞 ≥ 1.

Lemma 3.8.4. Let 𝑀 be a finite infeq 𝑆-module and 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 . If there exist 𝜂 ∈ Der(𝑆)
such that 𝜂(𝑓 ) = 1, then there exists 𝑁 that depends on the rank of 𝑀 such that Ω𝑝(𝑓 , 𝜏) ∈
Ann𝑆(𝑀) for each 𝑝 > 𝑁 and 𝜏 ∈ Der(𝑆).

Proof. Let 𝑓 ∈ 𝑆0 ⧵ 𝐽𝑆 with 𝑓 + 𝐽𝑆 ∉ k + 𝐽𝑆 . Suppose rank𝑆(𝐴) = 𝑎|𝑏 and take 𝜂 ∈ Der(𝑆)
with 𝜂(𝑓 ) = 1. Then,

[Ω1(𝑓 , 𝜂),Ω𝑝(𝑓 , 𝜂)] = (1 − 𝑝)Ω𝑝(𝑓 , 𝜂)

by Lemma 3.7.5. The element Ω1(𝑓 , 𝜂) acts on End𝑆(𝑀) by the superbracket of endomor-

phisms. With this action, {Ω𝑝(𝑓 , 𝜂) ∣ 𝑝 = 1,… , 𝑎2 + 𝑏2 + 1} is a set of even eigenvectors

on End𝑆(𝑀) for Ω1(𝑓 , 𝜂) with distinct eigenvalues. Since the number of eigenvalues of an

operator cannot exceed the dimension of the space, there exists 𝑝 ∈ {1,… , 𝑎2 + 𝑏2 + 1}
such that Ω𝑝(𝑓 , 𝜂) ∈ Ann(𝑀), thus Ω𝑞(𝑓 , 𝜂) ∈ Ann(𝑀) for each 𝑞 > 𝑝 since

[Ω𝑘(𝑓 , 𝜂),Ω𝑙(𝑓 , 𝜂)] = (𝑙 − 𝑘)Ω𝑘+𝑙−1(𝑓 , 𝜂).

By Lemma 3.8.3, Ω𝑞(𝑓 , 𝜏) for every 𝑞 > 3(𝑎2 + 𝑏2) + 4 and 𝜏 ∈ Der(𝑆).

Lemma 3.8.5. Let 𝑁 > 0 be such that Ω𝑝(𝑓 , 𝜏) ∈ Ann𝑆(𝑀) for each 𝑝 > 𝑁 , 𝑓 ∈ 𝑆 and
𝜏 ∈ Der(𝑆). Then,

Ω((𝑓1,… , 𝑓𝑝), 𝜏) ∈ Ann(𝑀)

for every 𝑓1,… , 𝑓𝑝 ∈ 𝑆 and for each 𝑝 > 𝑁 + 𝑠, where 𝑠 is the odd dimension of 𝑆.

Proof. Suppose dim 𝑆 = 𝑟 |𝑠. Then the product of 𝑠 + 1 homogeneous elements of 𝐽𝑆 is zero,

thus 𝛿(𝑓1)⋯ 𝛿(𝑓𝑠+1)𝜂 = 0 for each 𝑓1,… , 𝑓𝑠+1 ∈ 𝐽𝑆 . Suppose 𝑝 ≥ 𝑁 and take 𝑓1,… , 𝑓𝑝 ∈ 𝑆⧵ 𝐽𝑆
then

Ω𝑝(

𝑝

∑
𝑖=1
𝑎𝑖𝑓𝑖, 𝜏)

= ∑
𝑙1+⋯+𝑙𝑝=𝑝

(
𝑝

𝑙1,… , 𝑙𝑝)
𝛿(𝑓1)𝑙1 ⋯ 𝛿(𝑓𝑝)𝑙𝑝(1#𝜏) ∈ Ann(𝑀)

for every 𝑎1,… , 𝑎𝑝 ∈ k. Similarly to Corollary 2.6.5, we may apply Lemma 2.6.4 to get

that Ω((𝑓𝑖1 ,… , 𝑓𝑖𝑝), 𝜏) for every 1 ≤ 𝑖1,… , 𝑖𝑝 ≤ 𝑝. Combining both cases, we get that

Ω((𝑔1,… , 𝑔𝑝), 𝜏) ∈ Ann(𝑀) for every 𝑝 > 𝑁 + 𝑠 and 𝑔1,… , 𝑔𝑝 ∈ 𝑆.

The main theorem of this section shows that, similarly to what was proved in the

non-super case, infeq coherent sheaves are given by differential operators.

Theorem 3.8.6. If  is an infeq coherent sheaf on a smooth supervariety 𝑋 with Lie map
𝜌 ∶ Θ → Endk(𝑀), then 𝜌 is a differential operator.

Proof. Being a differential operator is a local property, so it is sufficient to prove the

restriction 𝜌|𝑈 ∶ Γ(𝑈,) → Γ(𝑈, ) is a differential operator for each small enough

affine open set 𝑈 = Spec (𝑆) of 𝑋 . By Lemma 3.8.1, we only need to prove there exists

𝑁 such that Ω((𝑓1,… , 𝑓𝑝), 𝜏) ∈ Ann(𝑀) for every 𝑓1,… , 𝑓𝑝 ∈ 𝑆, 𝑝 > 𝑁 , and 𝜏 ∈ Γ(𝑈,Θ).
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Take a closed point 𝑥 ∈ 𝑈 and 𝑓 ∈ Γ(𝑈,) with 𝑓 (𝑥) ≠ 0 and 𝑓 + 𝐽𝑆 ∉ k + 𝐽𝑆 . Since 𝑋
is smooth, there exist 𝜇 ∈ Der(𝑆)0 such that 𝜇(𝑓 )(𝑥) ≠ 0. We may assume 𝑈 is a small

enough neighborhood of 𝑥 to 𝜇(𝑓 ) to be invertible. Take 𝜂 = 𝜇
𝜇(𝑓 ) ∈ Der(𝑆) so 𝜂(𝑓 ) = 1.

Thus, the claim of the theorem follows by Lemma 3.8.4 and Lemma 3.8.5.

3.9 Grassmann algebras and their infinitesimally
equivariant modules

In the previous section, we studied infeq modules associated with affine supervarieties

with dimensions greater than 1|0. In this section, we investigate the case where the

dimension is 0|𝑛. Take a finitely generated superalgebra 𝑆 that is an integral superdomain

with dimension 0|𝑛. The algebra 𝑆/𝐽𝑆 is both a finitely generated algebra and a field, thus

𝑆/𝐽𝑆 is an algebraic extension of the algebraically closed field k. It follows from the weak

Nullstellensatz theorem that 𝑆/𝐽𝑆 ≅ k, thus 𝑋 = Spec (𝑆) is a point. Assuming that 𝑋 is a

smooth affine supervariety, there is a vector space 𝑉 such that 𝑆 ≅ Λ∙
k𝑉 by definition, i.e., 𝑆

is a Grassmann algebra. Consequently, we may study solely the infinitesimally equivariant

modules over a Grassmann algebra. The main objective of this section is to demonstrate

that there is an equivalence of categories between infeq modules and modules over the

Lie algebra of vector fields vanishing at the single point of 𝑋 . To accomplish this, we will

use an algebraic approach following the ideas presented in [BIN23].

Let Λ(𝑛) the Grassmann algebra in variables 𝜃1,… , 𝜃𝑛. Explicitly, if k⟨𝜃1,… , 𝜃𝑛⟩ is the

free associative algebra in the variables 𝜃1,… , 𝜃𝑛, then

Λ(𝑛) = k⟨𝜃1,… , 𝜃𝑛⟩/(𝜃𝑖𝜃𝑗 + 𝜃𝑗𝜃𝑖|𝑖, 𝑗 = 1,… , 𝑛).

The algebra Λ(𝑛) is a finite-dimensional associative algebra generated by the monomials

of the form 𝜃𝑘11 ⋯ 𝜃𝑘𝑛𝑛 , 𝑘1,… , 𝑘𝑛 ∈ {0, 1}. It inherits a compatible ℤ-grading from the free

associative algebra given by the degree of the monomials, i.e.

Λ(𝑛)𝑘 = spank
{
𝜃𝑖1 ⋯ 𝜃𝑖𝑘 ∣ 𝑖1 < … 𝑖𝑘

}

for each 𝑘 ∈ ℤ+. We will denote deg (𝜃𝑘11 ⋯ 𝜃𝑘𝑛𝑛 ) = 𝑘1 + ⋯ + 𝑘𝑛. With this grading,

Λ(𝑛)𝑘Λ(𝑛)𝑙 ⊂ Λ(𝑛)𝑘+𝑙 for each 𝑘, 𝑙 ∈ ℤ, and Λ(𝑛)𝑟 = 0 for all 𝑟 > 𝑛. Furthermore,

dimk Λ(𝑛)𝑘 = (𝑛𝑘) for each 𝑘 = 0, 1,… , 𝑛, which implies that dimk Λ(𝑛) = 2𝑛. Its ℤ-grading

and its relations demonstrate that Λ(𝑛) = Λ(𝑛)0 ⊕ Λ(𝑛)1 is a commutative superalgebra

where

Λ(𝑛)0 = spank
{
𝜃𝑘11 ⋯ 𝜃𝑘𝑛𝑛 ∣ 𝑘𝑖 ∈ {0, 1}, 𝑘1 + 𝑘2 +⋯ + 𝑘𝑛 ∈ 2ℤ

}
= ⨁

𝑘 is even

Λ(𝑛)𝑘,

Λ(𝑛)1 = spank
{
𝜃𝑘11 ⋯ 𝜃𝑘𝑛𝑛 ∣ 𝑘𝑖 ∈ {0, 1}, 𝑘1 + 𝑘2 +⋯ + 𝑘𝑛 ∈ 1 + 2ℤ

}
= ⨁

𝑘 is odd

Λ(𝑛)𝑘.

We denote by J(𝑛) the soul of Λ(𝑛), which is the ideal generated by its odd part Λ(𝑛)1.
We note that its body Λ(𝑛)/J(𝑛) is isomorphic to k. Thus, J(𝑛) is the only prime ideal on

Λ(𝑛). Moreover, if 𝑥 ∈ J(𝑛), then 𝑥 is nilpotent, and 1 − 𝑥 is invertible. Therefore, every
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element of Λ(𝑛) ⧵ J(𝑛) is invertible.

It is well-known that the Lie superalgebra of superderivations

W(𝑛) = Der(Λ(𝑛)) = {𝐷 ∈ End(Λ(𝑛)) ∣ 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏 + (−1)|𝐷||𝑎|𝑎𝐷(𝑏)}

is simple if 𝑛 ≥ 2 (see [Kac77]). Denote by

𝜕
𝜕𝜃𝑖

∶ Λ(𝑛) → Λ(𝑛) the odd derivation of Λ(𝑛)

given by

𝜕
𝜕𝜃𝑖

(𝜃𝑗) = 𝛿𝑖𝑗 .

Then, W(𝑛) can be realized as a free Λ(𝑛)-module,

W(𝑛) =
𝑛

⨁
𝑖=1

Λ(𝑛)
𝜕
𝜕𝜃𝑖
.

Therefore, dim(W(𝑛)) = 𝑛2𝑛, and dim(W(𝑛)0) = dim(W(𝑛)1). The ℤ-grading of Λ(𝑛)
induces a ℤ-grading on W(𝑛) by

W(𝑛)𝑘 =

{
𝑛

∑
𝑖=1
𝑓𝑖
𝜕
𝜕𝜃𝑖

∣ 𝑓1,… , 𝑓𝑛 ∈ Λ(𝑛)𝑘+1

}

.

This ℤ-grading satisfies

W(𝑛) =
𝑛−1

⨁
𝑘=−1

W(𝑛)𝑘, [W(𝑛)𝑘,W(𝑛)𝑙] ⊂ 𝑊 (𝑛)𝑘+𝑙.

The subspace W(𝑛)0 is a subalgebra of W(𝑛) and it is isomorphic to glk(𝑛), with the

isomorphism given by 𝜃𝑖
𝜕
𝜕𝜃𝑗

↦ 𝐸𝑖𝑗 . Another important subalgebra of W(𝑛) is

W(𝑛)+ =
𝑛−1

⨁
𝑘=0

W(𝑛)𝑘.

Alternatively, this subalgebra may be defined as W(𝑛)+ = J(𝑛)W(𝑛).

From now on, 𝑛 is fixed, and we will denote Λ(𝑛), W(𝑛), W(𝑛)+, J(𝑛) by Λ, W, W+,

and J, respectively. We denote by 𝑛 the set {1,… , 𝑛}.

3.9.1 Isomorphism of superalgebras

Consider the smash product Λ#𝑈 (W) of Λ with 𝑈 (W). It is an associative superalgebra,

and its product comes from the coproduct of 𝑈 (W) and its action on Λ. As a vector space,

Λ#𝑈 (W) is isomorphic to Λ ⊗k 𝑈 (W), and the following relation holds

(𝑓 #𝜂)(𝑔#𝜇) = 𝑓 𝜂(𝑔)#𝜇 + (−1)|𝜂||𝑔 |𝑓 𝑔#𝜂𝜇 (3.5)
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for each 𝑓 , 𝑔 ∈ Λ, and 𝜂, 𝜇 ∈ W. In this section, we will use the ideas introduced on [BIN23]

to construct an isomorphism between Λ#𝑈 (W) and the tensor product of two other

associative superalgebras.

The first associative superalgebra that will appear in the isomorphism is the algebra of

differential operators. Consider D = D(𝑛), the associative subalgebra of Endk (Λ(𝑛)) gen-

erated by Λ(𝑛) and W(𝑛). The assignment 𝜃𝑖 ↦ 𝜉𝑖 and

𝜕
𝜕𝜃𝑗

↦ 𝜕𝑗 defines an isomorphism

of superalgebras

D(𝑛) ≅ k⟨𝜉1,… , 𝜉𝑛, 𝜕1,… , 𝜕𝑛⟩/ (𝜉𝑖𝜉𝑗 + 𝜉𝑗𝜉𝑖, 𝜕𝑖𝜕𝑗 + 𝜕𝑗𝜕𝑖, 𝜕𝑗𝜉𝑖 + 𝜉𝑖𝜕𝑗 − 𝛿𝑖𝑗) .

Thus, the set {
𝜃𝑖1 ⋯ 𝜃𝑖𝑘

𝜕
𝜕𝜃𝑗1

⋯
𝜕
𝜕𝜃𝑗𝑙

∣ 𝑖1 < ⋯ < 𝑖𝑘, 𝑗1 < ⋯ < 𝑗𝑘
}

is a basis of D(𝑛), and its dimension is 22𝑛 = dimEnd(Λ). Therefore, D = Endk(Λ) as

associative algebras, but we will keep its realization with the differential operators to

define the isomorphism.

The second associative superalgebra will be the universal enveloping algebra of a Lie

superalgebra isomorphic toW(𝑛)+. Let L = L(𝑛) be the Lie superalgebra of superderivations

of the Grassmann algebra in the variables Θ1,… ,Θ𝑛, and L+ = L(𝑛)+ the subalgebra of

derivations with non-negative degree. It is naturally isomorphic to W+, but we will show

that there is another Lie subalgebra of Λ#W that is isomorphic to L+.

To define the isomorphism, we will fix some notation. For a subset 𝑃 ⊂ {𝑖1,… , 𝑖𝑘} =
𝐼 ⊂ 𝑛, set 𝑃 = {𝑖𝑟1 ,… , 𝑖𝑟𝑎} with 𝑟1 < ⋯ < 𝑟𝑎, 𝑃 𝑐 = 𝐼 ⧵ 𝑃 = {𝑖𝑠1 ,… , 𝑖𝑠𝑘−𝑎} with 𝑠1 < ⋯ < 𝑠𝑘−𝑎.
Moreover, we denote

𝑠(𝑃, 𝐼 ) = (−1)𝑟1+⋯+𝑟𝑎− 𝑎(𝑎+1)
2 = (−1)(𝑘−𝑎)𝑘−𝑠1−⋯−𝑠𝑘−𝑎− (𝑎−1)𝑎

2 ,

𝜃𝑃 = 𝜃𝑖𝑟1 ⋯ 𝜃𝑖𝑟𝑎 , Θ𝑃 = Θ𝑖𝑟1 ⋯Θ𝑖𝑟𝑘 .

The definition above depends on the order of 𝑖1,… , 𝑖𝑘. It may be useful to consider orders

different from the natural order inherited from 𝑛. However, unless otherwise stated, we

will take the inherited order 𝑛. With this notation,

Λ(𝑛) = spank
{
𝜃𝑃 ∣ 𝑃 ⊂ 𝑛

}

W(𝑛) = spank

{
𝜃𝑃

𝜕
𝜕𝜃𝑞

∣ 𝑞 ∈ 𝑛, 𝑃 ⊂ 𝑛
}

L(𝑛)+ = spank

{
𝜃𝑃

𝜕
𝜕𝜃𝑞

∣ 𝑞 ∈ 𝑛, ∅ ≠ 𝑃 ⊂ 𝑛
}

If we assume that 𝑃 ⊂ 𝐼 ′ for some 𝐼 ′ ⊂ 𝐼 , we define 𝑃 𝑐 = 𝐼 ′ ⧵ 𝑃 .

Theorem 3.9.1. The map

𝜑 ∶ Λ#𝑈 (W) → D ⊗ 𝑈 (L+)
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is an isomorphism of associative algebras, where 𝜑(𝑓 #𝜂) = (𝑓 ⊗ 1)𝜑(𝜂) for every 𝑓 ∈ Λ,
𝜂 ∈ W, and

𝜑(1#𝜃𝐼
𝜕
𝜕𝜃𝑝)

= 𝜃𝐼
𝜕
𝜕𝜃𝑝

⊗ 1 +∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )𝜃𝑃 ⊗ Θ𝑃

𝑐 𝜕
𝜕Θ𝑝

for every 𝐼 ⊂ {1,… , 𝑛}.

Explicitly, the definition of 𝜑 is given by

𝜑(𝜃𝑖1 ⋯ 𝜃𝑖𝑘
𝜕
𝜕𝜃𝑗)

=𝜃𝑖1 ⋯ 𝜃𝑖𝑘
𝜕
𝜕𝜃𝑗

+ ∑
0≤𝑎<𝑘

{𝑟1,…,𝑟𝑎,𝑠1,…,𝑠𝑘−𝑎}={1,…,𝑘}
𝑟1<⋯<𝑟𝑙 , 𝑠1<⋯<𝑠𝑘−𝑙

(−1)𝑟1+⋯+𝑟𝑎+ 𝑎(𝑎+1)
2 𝜃𝑖𝑟1 ⋯ 𝜃𝑖𝑟𝑎 ⊗ Θ𝑖𝑠1 ⋯Θ𝑖𝑠𝑘−𝑎

𝜕
𝜕𝜃𝑗

This formula implies that

𝜑(𝜃
𝐼𝜃𝐽

𝜕
𝜕𝜃𝑞)

=𝜃𝐼𝜃𝐽
𝜕
𝜕𝜃𝑞

⊗ 1 +∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 )𝜃𝐼𝜃𝑄 ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

+∑
𝑃⊊𝐼
𝑄⊂𝐽

(−1)|𝑃
𝑐 ||𝑄|𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

.

for every 𝐼 , 𝐽 ⊂ {1,… , 𝑛}.

We will split the proof of Theorem 3.9.1 into several lemmas.

Lemma 3.9.2. Let 𝐼 , 𝐽 ⊂ {1,… , 𝑛}, then

[𝜑(𝜃
𝐼 𝜕
𝜕𝜃𝑝)

, 𝜑(𝜃
𝐽 𝜕
𝜕𝜃𝑞)]

= [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ]

⊗ 1 +∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 ) [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝑄] ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

− (−1)(|𝐼 |+1)(|𝐽 |+1) ∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 ) [𝜃

𝐽 𝜕
𝜕𝜃𝑞

, 𝜃𝑃] ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

+∑
𝑃⊊𝐼
𝑄⊊𝐽

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )(−1)(|𝑃
𝑐 |+1)|𝑄|𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

Proof. Using the definition of the supercommutator and the product of D ⊗ 𝑈 (L+), we

have

[𝜑(𝜃
𝐼 𝜕
𝜕𝜃𝑝)

, 𝜑(𝜃
𝐽 𝜕
𝜕𝜃𝑞)]

= [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ]

⊗ 1

+∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 )((𝜃
𝐼 𝜕
𝜕𝜃𝑝)

𝜃𝑄 − (−1)(|𝐼 |+1)(|𝐽 |+1)+(|𝐼 |+1)(|𝑄
𝑐 |+1)𝜃𝑄𝜃𝐼

𝜕
𝜕𝜃𝑝)

⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞



3.9 | GRASSMANN ALGEBRAS AND THEIR INFINITESIMALLY EQUIVARIANT MODULES

85

+∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )((−1)

(|𝐽 |+1)(|𝑃 𝑐 |+1)𝜃𝑃𝜃𝐽
𝜕
𝜕𝜃𝑞

− (−1)(|𝐼 |+1)(|𝐽 |+1)(𝜃
𝐽 𝜕
𝜕𝜃𝑞)

𝜃𝑃) ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

+∑
𝑃⊊𝐼
𝑄⊊𝐽

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )𝜃𝑃𝜃𝑄 ⊗ ((−1)(|𝑃
𝑐 |+1)|𝑄|

(Θ𝑃
𝑐 𝜕
𝜕Θ𝑝)(Θ

𝑄𝑐 𝜕
𝜕Θ𝑞)

− (−1)|𝑃 ||𝑄|+(|𝐼 |+1)(|𝐽 |+1)+|𝑃 |(|𝑄
𝑐 |+1)

(Θ
𝑄𝑐 𝜕
𝜕Θ𝑞)(Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝)

)

= [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ]

⊗ 1

+∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 )((𝜃
𝐼 𝜕
𝜕𝜃𝑝)

𝜃𝑄 − (−1)(|𝐼 |+1)|𝑄|𝜃𝑄𝜃𝐼
𝜕
𝜕𝜃𝑝)

⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

+∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )(−1)(|𝐽 |+1)(|𝑃

𝑐 |+1)
(𝜃

𝑃𝜃𝐽
𝜕
𝜕𝜃𝑞

− (−1)|𝑃 |(|𝐽 |+1)(𝜃
𝐽 𝜕
𝜕𝜃𝑞)

𝜃𝑃) ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

+∑
𝑃⊊𝐼
𝑄⊊𝐽

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )(−1)(|𝑃
𝑐 |+1)|𝑄|𝜃𝑃𝜃𝑄 ⊗ ((Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝)(Θ

𝑄𝑐 𝜕
𝜕Θ𝑞)

− (−1)(|𝑃
𝑐 |+1)(|𝑄𝑐 |+1)

(Θ
𝑄𝑐 𝜕
𝜕Θ𝑞)(Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝)

)

= [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ]

⊗ 1 +∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 ) [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝑄] ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

− (−1)(|𝐼 |+1)(|𝐽 |+1) ∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 ) [𝜃

𝐽 𝜕
𝜕𝜃𝑞

, 𝜃𝑃] ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

+∑
𝑃⊊𝐼
𝑄⊊𝐽

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )(−1)(|𝑃
𝑐 |+1)|𝑄|𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

.

Lemma 3.9.3. 𝜑 is a homomorphism of associative superalgebras.

Proof. We want to prove that the formulas provided can be used to extend 𝜑|W to 𝑈 (W).
Thus, it is sufficient to prove that (D ⊗ 𝑈 (L+), 𝜑) is an enveloping algebra for W, i.e.

𝜑|W ∶ W → D ⊗ 𝑈 (L+) is a homomorphism of Lie algebras. We have that 𝜑|W is a

homomorphism of Lie algebras if and only if

𝜑([𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ])

= [𝜑(𝜃
𝐼 𝜕
𝜕𝜃𝑝)

, 𝜑(𝜃
𝐽 𝜕
𝜕𝜃𝑞)]

(3.6)

for every 𝑝, 𝑞 ∈ {1,… , 𝑛}, 𝐼 , 𝐽 ⊂ {1,… , 𝑛}.

Let 𝑝, 𝑞 ∈ {1,… , 𝑛}, 𝐼 , 𝐽 ⊂ {1,… , 𝑛}. If 𝑞 ∉ 𝐼 , and 𝑝 ∉ 𝐽 , then the bracket in the right-

hand side of (3.6) is zero. The left-hand side is zero since all brackets on Lemma 3.9.2 are

zero in this case.
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Suppose 𝑞 ∉ 𝐼 and 𝑝 ∈ 𝐽 . Without loss of generality, we may assume that 𝑝 is the first

element of 𝐽 . Thus, 𝜃𝐽 = 𝜃𝑝𝜃𝐽
′
, and

𝑠(𝑄, 𝐽 ) =

{
𝑠(𝑄 ⧵ {𝑝}, 𝐽 ′) if 𝑝 ∈ 𝑄,
(−1)|𝑄|𝑠(𝑄 ⧵ {𝑝}, 𝐽 ′) if 𝑝 ∉ 𝑄

where 𝐽 ′ = 𝐽 ⧵ {𝑝}. First, we have that [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ]

= 𝜃𝐼𝜃𝐽
′ 𝜕
𝜕𝑞

. Secondly,

∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 ) [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝑄] ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

= ∑
𝑄⊂𝐽 ′

(−1)|𝑄|𝑠(𝑄, 𝐽 ′) [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝑄] ⊗ Θ𝑝Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

+ ∑
𝑄⊊𝐽 ′

𝑠(𝑄, 𝐽 ′) [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝑝𝜃𝑄] ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

= ∑
𝑄⊊𝐽 ′

𝑠(𝑄, 𝐽 ′)𝜃𝐼𝜃𝑄 ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

Moreover,

∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 ) [𝜃

𝐽 𝜕
𝜕𝜃𝑞

, 𝜃𝑃] ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

= 0,

because 𝑞 ∉ 𝑃 . Finally,

∑
𝑃⊊𝐼
𝑄⊊𝐽

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )(−1)(|𝑃
𝑐 |+1)|𝑄|𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

= ∑
𝑃⊊𝐼
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)(|𝑃
𝑐 |+1)|𝑄|+|𝑄|𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃𝑐 𝜕
𝜕Θ𝑝

,Θ𝑝Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

+ ∑
𝑃⊊𝐼
𝑄⊊𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)(|𝑃
𝑐 |+1)(|𝑄|+1)𝜃𝑃𝜃𝑝𝜃𝑄 ⊗ [Θ

𝑃𝑐 𝜕
𝜕Θ𝑝

,Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

= ∑
𝑃⊊𝐼
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

= ∑
𝑃⊊𝐼
𝑄⊊𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

+∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )(−1)|𝑃

𝑐 ||𝐽 ′ |𝜃𝑃𝜃𝐽
′
⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

Therefore, the right hand side of equation 3.6 by Lemma 3.9.2 is

[𝜑(𝜃
𝐼 𝜕
𝜕𝜃𝑝)

, 𝜑(𝜃
𝐽 𝜕
𝜕𝜃𝑞)]

=𝜃𝐼𝜃𝐽
′ 𝜕
𝜕𝑞

⊗ 1 + ∑
𝑄⊊𝐽 ′

𝑠(𝑄, 𝐽 ′)𝜃𝐼𝜃𝑄 ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞



3.9 | GRASSMANN ALGEBRAS AND THEIR INFINITESIMALLY EQUIVARIANT MODULES

87

+ ∑
𝑃⊊𝐼
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

.

On the other hand, the left-hand side of equation 3.6

𝜑(𝜃
𝐼𝜃𝐽

′ 𝜕
𝜕𝑞)

=𝜃𝐼𝜃𝐽
′ 𝜕
𝜕𝜃𝑞

⊗ 1 + ∑
𝑄⊊𝐽 ′

𝑠(𝑄, 𝐽 ′)𝜃𝐼𝜃𝑄 ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

+∑
𝑃⊊𝐼

(−1)|𝑃
𝑐 ||𝐽 ′ |𝑠(𝑃, 𝐼 )𝜃𝑃𝜃𝐽 ⊗ Θ𝑃

𝑐 𝜕
𝜕Θ𝑞

+ ∑
𝑃⊊𝐼
𝑄⊊𝐽 ′

(−1)|𝑃
𝑐 ||𝑄|𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

.

We conclude (3.6) is satisfied if 𝑞 ∉ 𝐼 and 𝑝 ∈ 𝐽 . Analogously, equation (3.6) is true when

𝑞 ∈ 𝐼 and 𝑝 ∉ 𝐽 .

It remains to prove that equation (3.6) is true when 𝑞 ∈ 𝐼 , and 𝑝 ∈ 𝐽 . Suppose that 𝑞 is

the first element of 𝐼 and 𝑝 is the first element of 𝐽 . Denote 𝐼 ′ = 𝐼 ⧵ {𝑞}, and 𝐽 ′ = 𝐽 ⧵ {𝑝}.
Hence, 𝜃𝐼 = 𝜃𝑞𝜃𝐽

′
, 𝜃𝐽 = 𝜃𝑝𝜃𝐽

′
, and

𝑠(𝑃, 𝐼 ) =

{
𝑠(𝑃 ⧵ {𝑞}, 𝐼 ′) if 𝑞 ∈ 𝑃,
(−1)|𝑃 |𝑠(𝑃, 𝐼 ′) if 𝑞 ∉ 𝑃 ;

𝑠(𝑄, 𝐽 ) =

{
𝑠(𝑄 ⧵ {𝑝}, 𝐽 ′) if 𝑝 ∈ 𝑄,
(−1)|𝑄|𝑠(𝑄, 𝐽 ′) if 𝑝 ∉ 𝑄.

Furthermore,

[𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ]

= 𝜃𝐼𝜃𝐽
′ 𝜕
𝜕𝜃𝑝

− (−1)(|𝐼 |+1)(|𝐽 |+1)𝜃𝐽𝜃𝐼
′ 𝜕
𝜕𝜃𝑝

.

With this notation, we use the calculations we did in the last case to infer that

∑
𝑄⊊𝐽

𝑠(𝑄, 𝐽 ) [𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝑄] ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

= ∑
𝑄⊊𝐽 ′

𝑠(𝑄, 𝐽 ′)𝜃𝐼𝜃𝑄 ⊗ Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

,

∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 ) [𝜃

𝐽 𝜕
𝜕𝜃𝑞

, 𝜃𝑃] ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

= ∑
𝑃⊊𝐼 ′

𝑠(𝑃, 𝐼 ′)(−1)|𝑃 ||𝐽 |𝜃𝑃𝜃𝐽 ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

.

The last sum given by Lemma 3.9.2 is

∑
𝑃⊊𝐼
𝑄⊊𝐽

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 )(−1)(|𝑃
𝑐 |+1)|𝑄|𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

= ∑
𝑃⊊𝐼
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)(|𝑃
𝑐 |+1)|𝑄|+|𝑄|𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑝Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]
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+ ∑
𝑃⊊𝐼
𝑄⊊𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)(|𝑃
𝑐 |+1)(|𝑄|+1)𝜃𝑃𝜃𝑝𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

=′ ∑
𝑃⊂𝐼 ′
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 ′)(−1)(|𝑃
𝑐 |+1)|𝑄|+|𝑄|+|𝑃 |𝜃𝑃𝜃𝑄 ⊗ [Θ𝑞Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑝Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

+ ∑
𝑃⊊𝐼 ′
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 ′)(−1)(|𝑃
𝑐 |+1)|𝑄|+|𝑄|𝜃𝑞𝜃𝑃𝜃𝑄 ⊗ [Θ

𝑃 𝑐 𝜕
𝜕Θ𝑝

,Θ𝑝Θ𝑄
𝑐 𝜕
𝜕Θ𝑞 ]

− ∑
𝑃⊂𝐼 ′
𝑄⊊𝐽 ′

𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 |(|𝑄|+1)+|𝑃 |+|𝑃 𝑐 |(|𝑄𝑐 |+1)𝜃𝑃𝜃𝑝𝜃𝑄 ⊗ [Θ

𝑄𝑐 𝜕
𝜕Θ𝑞

,Θ𝑞Θ𝑃
𝑐 𝜕
𝜕Θ𝑝 ]

= ∑
𝑃⊂𝐼 ′
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|+|𝑃 |𝜃𝑃𝜃𝑄 ⊗(Θ𝑞Θ

𝑃 𝑐Θ𝑄
𝑐 𝜕
𝜕Θ𝑞

− (−1)|𝑃
𝑐 ||𝑄𝑐 |Θ𝑝Θ𝑄

𝑐
Θ𝑃

𝑐 𝜕
𝜕Θ𝑞)

+ ∑
𝑃⊊𝐼 ′
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|𝜃𝑞𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

− ∑
𝑃⊂𝐼 ′
𝑄⊊𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 |(|𝐽 |+1)+|𝑃 |𝜃𝑃𝜃𝑝𝜃𝑄 ⊗ Θ𝑄

𝑐
Θ𝑃

𝑐 𝜕
𝜕Θ𝑝

= ∑
𝑃⊊𝐼
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

− ∑
𝑃⊂𝐼 ′
𝑄⊊𝐽

(−1)|𝑃
𝑐 |(|𝐽 |+1)+|𝑃 |𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 )𝜃𝑃𝜃𝑄 ⊗ Θ𝑄

𝑐
Θ𝑃

𝑐 𝜕
𝜕Θ𝑝

.

With all in place, we have that

[𝜑(𝜃
𝐼 𝜕
𝜕𝜃𝑝)

, 𝜑(𝜃
𝐽 𝜕
𝜕𝜃𝑞)]

=𝜑(𝜃
𝐼𝜃𝐽

′ 𝜕
𝜕𝜃𝑞)

− (−1)(|𝐼 |+1)(|𝐽 |+1)𝜑(𝜃
𝐽𝜃𝐼

′ 𝜕
𝜕𝜃𝑝)

− (−1)(|𝐼 |+1)(|𝐽 |+1) ∑
𝑃⊊𝐼 ′

𝑠(𝑃, 𝐼 ′)𝜃𝐽𝜃𝑃 ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝

+ ∑
𝑃⊊𝐼
𝑄⊂𝐽 ′

𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝐽 ′)(−1)|𝑃
𝑐 ||𝑄|𝜃𝑃𝜃𝑄 ⊗ Θ𝑃

𝑐
Θ𝑄

𝑐 𝜕
𝜕Θ𝑞

− ∑
𝑃⊂𝐼 ′
𝑄⊊𝐽

(−1)|𝑃
𝑐 |(|𝐽 |+1)+|𝑃 |𝑠(𝑃, 𝐼 ′)𝑠(𝑄, 𝐽 )𝜃𝑃𝜃𝑄 ⊗ Θ𝑄

𝑐
Θ𝑃

𝑐 𝜕
𝜕Θ𝑝

=𝜑(𝜃
𝐼𝜃𝐽

′ 𝜕
𝜕𝜃𝑞)

− (−1)(|𝐼 |+1)(|𝐽 |+1)𝜑(𝜃
𝐽𝜃𝐼

′ 𝜕
𝜕𝜃𝑝)

=𝜑([𝜃
𝐼 𝜕
𝜕𝜃𝑝

, 𝜃𝐽
𝜕
𝜕𝜃𝑞 ])

,

thus equation (3.6) is satisfied when 𝑞 ∈ 𝐼 , and 𝑝 ∈ 𝐽 .
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Lemma 3.9.4. 𝜑 is an isomorphism.

Proof. We start by proving that 𝜑 is surjective. Since 𝜑 is an algebra homomorphism,

we only need to show that generators of D and 𝑈 (L+) are elements of its image. Let

𝐽 ⊂ {1,… , 𝑛} and 𝑝, 𝑝1,… , 𝑝𝑘 ∈ {1,… , 𝑛}, then

𝜑(𝜃
𝐽#(

𝜕
𝜕𝜃𝑝1)

⋯(
𝜕
𝜕𝜃𝑝𝑘))

= 𝜃𝐼 (
𝜕
𝜕𝜃𝑝1)

⋯(
𝜕
𝜕𝜃𝑝𝑘)

⊗ 1

Furthermore,

𝜑
(
∑
𝐼⊂𝐽

(−1)|𝐼 |𝑠(𝐼 𝑐, 𝐽 )𝜃𝐼
𝑐
#𝜃𝐼

𝜕
𝜕𝜃𝑝)

=∑
𝐼⊂𝐽

(−1)|𝐼 |𝑠(𝐼 𝑐, 𝐽 )𝜃𝐼
𝑐
𝜑(1#𝜃𝐼

𝜕
𝜕𝜃𝑝)

=∑
𝐼⊂𝐽

(−1)|𝐼 |𝑠(𝐼 𝑐, 𝐽 )𝜃𝐼
𝑐
𝜃𝐼

𝜕
𝜕𝜃𝑝

⊗ 1 +∑
𝐼⊂𝐽

∑
𝑃⊊𝐼

(−1)|𝐽 |−|𝐼
𝑐 |𝑠(𝐼 𝑐, 𝐽 )𝑠(𝑃, 𝐼 )𝜃𝐼

𝑐
𝜃𝑃 ⊗ Θ𝑃

𝑐 𝜕
𝜕Θ𝑝

=∑
𝐼⊂𝐽

(−1)|𝐼 |𝜃𝐽
𝜕
𝜕𝜃𝑝

⊗ 1

+∑
𝑄⊊𝐽 (

∑
𝑃⊂𝑄

(−1)|𝐽 |−|𝑄|+|𝑃 |𝑠(𝑄 ⧵ 𝑃, 𝐽 )𝑠(𝑃, 𝑃 ∪ 𝑄𝑐)𝑠(𝑃, 𝑄)
)
𝜃𝑄 ⊗ Θ𝑄

𝑐 𝜕
𝜕Θ𝑝

=(−1)|𝐽 | ⊗ Θ𝐽
𝜕
𝜕Θ𝑝

.

Therefore, 𝜑 is surjective.

Let 𝜓 ∶ D ⊗ 𝑈 (L+) → Λ#𝑈 (W) be the map defined by

𝜓(𝜃
𝐽 𝜕
𝜕𝜃𝑝1

⋯
𝜕
𝜕𝜃𝑝𝑘

⊗ 1) = 𝜃𝐽#
𝜕
𝜕𝜃𝑝1

⋯
𝜕
𝜕𝜃𝑝𝑘

,

𝜓(1 ⊗ Θ𝐼
𝜕
𝜕Θ𝑝)

= ∑
𝐼⊂𝐽

(−1)|𝐼 |𝑠(𝐼 𝑐, 𝐽 )𝜃𝐼
𝑐
#𝜃𝐼

𝜕
𝜕𝜃𝑝

,

for each 𝐼 , 𝐽 ⊂ 𝑛, 𝐼 ≠ ∅, and 𝑝, 𝑝1,… , 𝑝𝑘 ∈ 𝑛. Note that we have shown that 𝜑 ◦ 𝜓 is the

identity of D ⊗ 𝑈 (L+). On the other hand,

𝜓
(
𝜃𝐼

𝜕
𝜕𝜃𝑝

⊗ 1 +∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )𝜃𝑃 ⊗ Θ𝑃

𝑐 𝜕
𝜕Θ𝑝)

=𝜓(𝜃
𝐼 𝜕
𝜕𝜃𝑝

⊗ 1) +∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )𝜓(𝜃

𝑃 ⊗ Θ𝑃
𝑐 𝜕
𝜕Θ𝑝)

=𝜃𝐼#
𝜕
𝜕𝜃𝑝

+∑
𝑃⊊𝐼
𝑠(𝑃, 𝐼 )∑

𝑄⊂𝑃
(−1)|𝑄

𝑐 |𝑠(𝑄𝑐, 𝑃 𝑐)𝜃𝑃𝜃𝑄
𝑐
#𝜃𝑄

𝜕
𝜕𝜃𝑝
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=∑
𝑃⊂𝐼

∑
𝑄⊂𝑃𝑐

(−1)|𝑄|𝑠(𝑃, 𝐼 )𝑠(𝑄𝑐, 𝑃)𝑠(𝑃, 𝑃 ∪ 𝑄𝑐)𝜃𝑃∪𝑄
𝑐
#𝜃𝑄

𝜕
𝜕𝜃𝑝

=∑
𝑄⊂𝐼
𝑠(𝑄𝑐, 𝐼 )

(
∑
𝑄⊂𝑃⊂𝐼

(−1)|𝑄|𝑠(𝑃 ⧵ 𝑄, 𝐼 ⧵ 𝑄)
)
𝜃𝑄

𝑐
#𝜃𝑄

𝜕
𝜕𝜃𝑝

=1#𝜃𝐼
𝜕
𝜕𝜃𝑝

,

because 𝑠(𝑃, 𝐼 )𝑠(𝑄, 𝑃) = 𝑠(𝑄, 𝐼 ) if 𝑄 ⊂ 𝑃 ⊂ 𝐼 . Thus, 𝜓 ◦ 𝜑 is the identity of Λ#𝑈 (W).
Therefore, 𝜑 is an isomorphism, and its inverse is 𝜓.

Therefore, 𝜑 is an isomorphism of associative superalgebras by Lemma 3.9.3, and

Theorem 3.9.1 follows.

Corollary 3.9.5. The map 𝜓 ∶ D ⊗ 𝑈 (L+) → Λ#𝑈 (W) defined on the previous lemma is a
homomorphism of associative superalgebras and it is the inverse of 𝜙.

Remark 3.9.6. By PBW Theorem, there is a canonical linear isomorphism

Λ#𝑈 (W) ≅ (Λ(𝜃1,… , 𝜃𝑛)#Λ(
𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛))

(1#𝑈 (W+)) .

The first term is isomorphic to D and the second to 𝑈 (L+). However,

[1#
𝜕
𝜕𝜃𝑝

, 𝜃𝑙
𝜕
𝜕𝜃𝑞 ]

= 1#
𝜕
𝜕𝜃𝑝

(𝜃𝑙)
𝜕
𝜕𝜃𝑞

is non-zero if 𝑝 ≠ 𝑙. Therefore, the isomorphism given by the PBW Theorem is not an

isomorphism of associative superalgebras, since the subalgebras D and 𝑈 (L+) do not

commute in this case.

3.9.2 Rudakov modules
Let 𝑈 be a W+-module. We can make 𝑈 a Λ-module by evaluation:

𝜃𝑃𝑢 =

{
0, if ∅ ≠ 𝑃 ⊂ {1,… , 𝑛}
𝑢 if 𝑃 = ∅

The action of k ⊂ Λ is the same of 𝑈 as a vector space. Therefore, J𝑈 = 0, and

𝜃𝑃
𝜕
𝜕𝜃𝑞

(𝜃𝑄𝑣) = 𝜃𝑃
𝜕
𝜕𝜃𝑞

(𝜃𝑄)𝑣 + 𝜃𝑄 (𝜃
𝑃 𝜕
𝜕𝜃𝑞

𝑣) = 𝜃𝑄 (𝜃
𝑃 𝜕
𝜕𝜃𝑞

𝑣)

for each 𝑃, 𝑄 ⊂ {1,… , 𝑛}, 𝑃 ≠ ∅, 𝑞 ∈ {1,… , 𝑛}. Therefore, 𝑈 is a Λ#𝑈 (W+)-module.

The Rudakov module associated to 𝑈 is the infeq Λ-module

(𝑈 ) = Λ#𝑈 (W) ⊗Λ#𝑈 (W+) 𝑈.

If 𝑈 is a finite-dimensional vector space, then (𝑈 ) is a finite-dimensional vector space,
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thus it is finitely generated as an Λ-module. This is a major difference between Rudakov

modules over Λ#𝑈 (W) and other settings.

Let 𝑀 be an infeq Λ-module, and define the body module 𝑀 = 𝑀/J𝑀 . If ∅ ≠ 𝑃, 𝑄 ⊂
{1,… , 𝑛}, then

𝜃𝑃
𝜕
𝜕𝜃𝑝

(𝜃𝑄𝑣) = 𝜃𝑃
𝜕
𝜕𝜃𝑝

(𝜃𝑄)𝑣 + (−1)(|𝑃 |+1)|𝑄|𝜃𝑄 (𝜃
𝑃 𝜕
𝜕𝜃𝑝

𝑣) ∈ J𝑀

for each 𝑝 ∈ {1,… , 𝑛}, and 𝑣 ∈ 𝑀 . Therefore, 𝑀 is a module over W+.

Define 𝑀∗ = Homk(𝑀, k) the dual space of 𝑀 . If 𝑀 = 𝑀0 ⊕𝑀1 is ℤ2-graded, then 𝑀∗

is ℤ2-graded by

𝑀∗
𝑖 =

{
𝛼 ∈ 𝑀∗ ∣ 𝛼 (𝑀𝑖+1) = 0

}
.

Moreover, it is a Λ#𝑈 (W+)-module with the standard actions of Λ and W+,

(𝑓 𝛼)(𝑚) = (−1)|𝑓 ||𝛼|𝛼(𝑓 𝑚),
(𝜂𝛼)(𝑚) = −(−1)|𝜂||𝛼|𝛼(𝜂𝑚)

for all 𝜂 ∈ W+, 𝑓 ∈ Λ, 𝛼 ∈ 𝑀∗
, and 𝑚 ∈ 𝑀 .

Let 𝜋 ∶ 𝑀 → 𝑀 be the Λ#𝑈 (W+)-homomorphism given by the canonical projection,

then the pullback of 𝜋 defines a homomorphism 𝜋∗ ∶ 𝑀∗ → 𝑀∗
between the dual modules

by

𝜋∗(𝛼) = 𝛼 ◦ 𝜋, 𝛼 ∈ 𝑀∗.

Proposition 3.9.7. The canonical homomorphism 𝜋 ∶ 𝑀 → 𝑀 extends uniquely to a
Λ#𝑈 (𝑊 )-homomorphism 𝜋∗ ∶  (𝑀

∗
) → 𝑀∗.

Proof. The induction functor (_) ∶ Λ#𝑈 (W+) − Mod → Λ#𝑈 (W) is left adjoint to the

restriction functor Res𝜄 ∶ Λ#𝑈 (W) − Mod → Λ#𝑈 (W+) − Mod induced by the inclusion

map 𝜄 ∶ Λ#𝑈 (W+) ↪ Λ#𝑈 (W). Hence,

HomΛ#𝑈 (W+) (𝑀
∗, 𝑀∗) ≅HomΛ#𝑈 (W+) (𝑀

∗,Res𝜄 (𝑀∗))
≅HomΛ#𝑈 (W) ((𝑀∗), 𝑀∗) .

Therefore, the canonical homomorphism 𝜋 ∈ HomΛ#𝑈 (W+) (𝑀
∗, 𝑀∗) corresponds to a

unique Λ#𝑈 (W)-homomorphism 𝜋∗ ∈ HomΛ#𝑈 (W) ((𝑀∗), 𝑀∗). Explicitly,

𝜋∗(𝑓 #𝑢 ⊗ 𝛼)(𝑚) = 𝛼(𝜋(𝑓 (𝑢𝑚)))

for each 𝑓 #𝑢 ⊗ 𝛼 ∈ Λ#𝑈 (W) ⊗Λ#𝑈 (W+) 𝑀
∗
.

The dual module 𝑀∗ = Homk(𝑀,k) is a super vector space if 𝑀 is, and it is an infeq

Λ-module with the standard actions of Λ and W

(𝑓 𝛼)(𝑚) = (−1)|𝑓 ||𝛼|𝛼(𝑓 𝑚), (𝜂𝛼)(𝑚) = −(−1)|𝜂||𝛼|𝛼(𝜂𝑚)
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for all 𝜂 ∈ W, 𝑓 ∈ Λ, 𝛼 ∈ 𝑀∗
, and 𝑚 ∈ 𝑀 . It is not always true that 𝑀 and 𝑀∗

are

isomorphic as Λ-infeq modules, but this is the case when 𝑀 = Λ.

Example 3.9.8. The superalgebra Λ is naturally an infeq Λ-module, thus its dual Λ∗
is

also an infeq Λ-module. For 𝑃 ⊂ 𝑛, we denote 𝜃𝑃(0) = 0 if 𝑃 ≠ ∅, and 𝜃∅(0) = 1. A point

derivation 𝐷 ∶ Λ → k is a map such that 𝐷(𝑎𝑏) = 𝐷(𝑎)𝑏(0) + (−1)|𝐷||𝑏 |𝑎(0)𝐷(𝑏). For each

𝑝 ∈ 𝑛, the map 𝜕𝑝(𝜃𝑞) = 1 defines a point derivation 𝜕𝑝 ∶ Λ → k. We define the product

𝜕𝑝𝜕𝑞 ∶ Λ → k by

(𝜕𝑝𝜕𝑞)(𝜃𝑃) = 𝜕𝑝 (
𝜕
𝜕𝜃𝑞

(𝜃𝑃))

Note that 𝜕𝑝𝜕𝑞 = −𝜕𝑞𝜕𝑝, and we define 𝜕𝑃 for each 𝑃 ⊂ 𝑛 accordingly (note that 𝜕∅(1) = 1
and it is zero otherwise). The set {𝜕𝑃 ∣ 𝑃 ⊂ 𝑛} has 2𝑛 linearly independent elements, hence

it is a basis of Λ∗
. The action of Λ on 𝜕𝑃 is by derivation, i.e.

𝜃𝑝(𝜕𝑝𝜕𝑄) = 𝜕𝑄 , 𝑝 ∈ 𝑛, 𝑄 ⊂ 𝑛 ⧵ {𝑝}.

On the other hand, the action of W−1 is given by a product

𝜕
𝜕𝜃𝑝

𝜃𝑃 = −(−1)|𝑃 |𝜕𝑃𝜕𝑝 = −𝜕𝑝𝜕𝑃 .

We have that 1 and 𝜕𝑛 are a basis of Λ(𝑛) and Λ∗
as Λ-modules, respectively. Therefore,

we may consider the unique Λ-module homomorphism 𝑇 ∶ Λ → Λ∗
such that 𝑇 (1) = 𝜕𝑛.

Because it satisfies

𝑇 (
𝜕
𝜕𝜃𝑝

(𝜃𝑃)) =
𝜕
𝜕𝜃𝑝

(𝜃𝑃)𝜕𝑛 =
𝜕
𝜕𝜃𝑝

(𝜃𝑃𝜕𝑛) − (−1)|𝑃 |𝜃𝑃 (
𝜕
𝜕𝜃𝑝

𝜕𝑛) =
𝜕
𝜕𝜃𝑝

𝑇 (𝜃𝑃),

𝑇 is an isomorphism of Λ#𝑈 (W)-modules.

The dual𝑀∗∗
of𝑀∗

is an infeq module as well. For each 𝑚 ∈ 𝑀 , we define 𝑚∗ ∈ 𝑀∗∗
by

𝑚∗(𝛼) = (−1)|𝑚||𝛼|𝛼(𝑚) for each 𝛼 ∈ 𝑀∗
. Since 𝑀 is finite-dimensional, the map 𝜙 ∶ 𝑀 →

𝑀∗∗
defined by 𝜙(𝑚) = 𝑚∗

gives an isomorphism between 𝑀 and 𝑀∗∗
. Furthermore,

(𝑓 𝑚∗)(𝛼) = (𝑓 𝑚)∗(𝛼), (𝜂𝑚∗)(𝛼) = (𝜂𝑚)∗(𝛼), 𝑓 ∈ Λ, 𝜂 ∈ W, and 𝑚 ∈ 𝑀.

Therefore, 𝜙 is an isomorphism of Λ#𝑈 (W)-modules.

Let 𝑈 = 𝑀∗/J𝑀∗
the body module of 𝑀∗

. As we know, 𝑈 is a module over Λ#𝑈 (W+).
By Proposition 3.9.7, the canonical homomorphism 𝜋 ∶ 𝑀∗ → 𝑈 extends uniquely to

a Λ#𝑈 (W)-homomorphism 𝜋∗ ∶ (𝑈 ∗) → 𝑀∗∗
. Thus, 𝜙 ◦ 𝜋∗ ∶ (𝑈 ∗) → 𝑀 is an

isomorphism. Therefore, we have proved the following proposition.

Proposition 3.9.9. Every finite infeq Λ-module is a Rudakov module. Explictly, if 𝑀 is a
finite infeq Λ-module, then 𝑀 ≅  ((𝑀∗)∗).

Therefore, the functor  defined on the category W+-mod of finite-dimensional W+-

modules to the category InfEq(Λ) of finite infeq Λ-modules is an essentially surjective

functor, i.e. each object of InfEq(Λ) is isomorphic to an object of the form (𝑈 ) for some

object 𝑈 of W+-mod. We want to prove that  is an equivalence of categories, thus it
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remains to prove that  is a fully faithful functor. A fully faithful functor  ∶  → ′

between the two categories  and ′
is a functor such that the map

Hom(𝑥, 𝑦) → Hom′(𝐹𝑥, 𝐹𝑌 )

induced by  is bijective for each 𝑥, 𝑦 ∈ ℂ.

Lemma 3.9.10. If 𝑉 is a W+-module and 𝑣 ∈ (𝑉 ), then J𝑣 = 0 if and only if 𝑣 ∈ 𝑉 .

Proof. By the PBW Theorem

(𝑉 ) ≅ (Λ ⊗ Λ(
𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛))

𝑈 (Λ#𝑈 (W+)) ⊗Λ#𝑈 (W+) 𝑉 ≅ Λ(
𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛)

⊗ 𝑉

as a vector space, where Λ(
𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛)

denotes the exterior product in variables

𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛

. Using the notation introduced in the Example 3.9.8, there is an isomorphism

of modules over Λ#𝑈 (W) between this exterior product and Λ∗
, which is defined by

𝜕
𝜕𝜃𝑝

↦ 𝜕𝑝. If 𝑃 ⊂ 𝑛, then

𝜃𝑝𝜕𝑃𝑣 = (−1)|𝑃 |𝜕𝑃𝜃𝑝𝑣 + 𝑐𝑃,𝑝𝜕𝑃⧵{𝑝}𝑣 = 𝑐𝑃,𝑝𝜕𝑃⧵{𝑝}𝑣,

where 𝑐𝑃,𝑝 = 0 if 𝑝 ∉ 𝑃 and 𝑐𝑃,𝑝 ∈ {1,−1} otherwise. Thus, 𝜃𝑝𝜕𝑃𝑣 = 0 for every 𝑝 ∈ 𝑛 if and

only if 𝑣 ∈ k ⊗ 𝑉 .

Proposition 3.9.11. The functor  ∶ W+-mod → InfEq(Λ) is a fully faithful functor.

Proof. By definition,  is a fully faithful functor if the map

HomW+ (𝑈, 𝑉 ) → HomΛ#𝑈 (W)((𝑈 ),(𝑉 ))

induced by the functor  is bijective for every object 𝑈, 𝑉 of W+-mod. Because the

induction functor  is left adjoint to the restriction functor Res𝜄, we have that

HomΛ#𝑈 (W)((𝑈 ),(𝑉 )) ≅ HomΛ#𝑈 (W+) (𝑈,Res𝜄 ((𝑉 ))) .

Additionally, the action of Λ in both 𝑈 and 𝑉 is given by evaluation on J, thus if

𝛼 ∈ HomΛ#𝑈 (W+) (𝑈,(𝑉 )) then 0 = 𝛼(𝑓 𝑢) = 𝑓 𝛼(𝑢) for each 𝑓 ∈ J and 𝑢 ∈ 𝑈 . By

Lemma 3.9.10, the image of 𝛼 is a subset of 𝑉 ≅ k ⊗ 𝑉 ⊂ (𝑉 ), therefore 𝛼 ∶ 𝑈 → 𝑉 is a

W+-homomorphism. In other words,

HomW+ (𝑈, 𝑉 ) ≅ HomΛ#𝑈 (W+) (𝑈,(𝑉 )) .

We conclude that HomW+ (𝑈, 𝑉 ) ≅ HomΛ#𝑈 (W)((𝑈 ),(𝑉 )), thus  is a fully faithful

functor.

Theorem 3.9.12. The functor  ∶ W+-mod → InfEq(Λ) is an equivalence of categories.
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Proof. By Proposition 3.9.9 and Proposition 3.9.11, the functor  is essentially surjective,

full and faithful. Thus, it is an equivalence of categories.

We can use this theorem and the previous discussions to describe simple finite infeq

Λ-modules. Because the functor  is an equivalence of categories, a finite-dimensional W+-

module 𝑈 is simple if and only if the finite infeq Λ-module (𝑈 ) is simple. Let us describe

simple finite infeq Λ-modules in terms of irreducible representations of W+. We start

analyzing finite-dimensional simple W+-modules by applying the following lemma.

Lemma 3.9.13 ([CK98, Lemma 1]). Let g be a finite-dimensional Lie superalgebra and
let n be a solvable ideal of g. Let a be an even subalgebra of g such that n is a completely
reducible ad a-module with no trivial summand. Then n acts trivially in any irreducible
finite-dimensional g-module.

Lemma 3.9.14. Let 𝑉 be a simple finite-dimensional W+-module, then W+,𝑖𝑉 = 0 for each
𝑖 > 1. In particular, 𝑉 is a simple module over W+/JW+ ≅ gl𝑛.

Proof. Assume g = W+, n = JW+ and a = W+,0 =
𝑛

⨁
𝑖,𝑗=1

k𝜃𝑖
𝜕
𝜕𝜃𝑗

. We have that a ≅ gl𝑛(k)

and the adjoint representation makes n is a module over a. With this action, n is a weight

module over a with non trivial weights because

[𝜃𝑖
𝜕
𝜕𝜃𝑖
, 𝜃𝑖𝜃𝐼

𝜕
𝜕𝜃𝑘 ]

= 𝜃𝐼
𝜕
𝜕𝜃𝑘

where 𝑖, 𝑘 ∈ 𝑛 with 𝑖 ≠ 𝑘 and ∅ ≠ 𝐼 ⊂ 𝑛 with 𝑖 ∉ 𝐼 . Hence, g, n and a satisfy the hypothesis

of Lemma 3.9.13. Therefore, JW+ acts trivially in any irreducible finite-dimensional W+-

module.

Let 𝜌 ∶ W+ → glk(𝑈 ) be a representation of W+ on the finite-dimensional super vector

space 𝑈 . As we saw in proof of Lemma 3.9.10,

(𝑈 ) ≅ Λ(
𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛)

⊗ 𝑈

as a vector space. If ∅ ≠ {𝑖1,… , 𝑖𝑘} = 𝐼 ⊂ 𝑛with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘, denote

𝜕
𝜕𝜃𝐼

=
𝜕
𝜕𝜃𝑖1

⋯
𝜕
𝜕𝜃𝑖𝑘

.

The action of Λ in
𝜕
𝜕𝜃𝐼 ⊗ 𝑈 is given by

𝜃𝑄 (
𝜕
𝜕𝜃𝐼

⊗ 𝑣) =

{
0 if 𝑄 ⧵ 𝐼 ≠ ∅,
𝑠(𝑄, 𝐼 ) 𝜕

𝜕𝜃𝐼⧵𝑄 if 𝑄 ⊂ 𝐼 ,

for each 𝑣 ∈ 𝑈 . Passing the isomorphism Λ ≅ Λ∗ ≅ Λ(
𝜕
𝜕𝜃1

,… ,
𝜕
𝜕𝜃𝑛)

as Λ-modules

constructed in Example 3.9.8, we have that (𝑈 ) ≅ Λ ⊗ 𝑈 as Λ-modules.

𝜃𝑄 (𝜃𝐼 ⊗ 𝑣) = (𝜃𝑄𝜃𝐼) ⊗ 𝑣 = 𝑠(𝑄, 𝐼 )𝜃𝑄∪𝐼 ⊗ 𝑣
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for each 𝑣 ∈ 𝑈 .

Assume that 𝑈 is a simple W+-module, then JW+𝑈 = 0 by Lemma 3.9.14. Therefore,

𝑈 is simply a gl𝑛-module. Let 𝜌 ∶ gl𝑛 → gl(𝑈 ) be the associated representation, then the

action of W on (𝑈 ) ≅ Λ ⊗ 𝑈 in the above isomorphism is given by

(𝜃
𝐼 𝜕
𝜕𝜃𝑞)

(𝜃𝑃 ⊗ 𝑣) = 𝜃𝑃
𝜕𝜃𝑄

𝜕𝜃𝑝
+

𝑛

∑
𝑖=1
𝑠({𝑖}, 𝐼 )𝜃𝑄

𝜕𝜃𝐼

𝜕𝜃𝑖
⊗ 𝜌 (𝐸𝑖𝑞) 𝑣 (3.7)

for each 𝐼 , 𝑃 ⊂ 𝑛, 𝑞 ∈ 𝑛 and 𝑣 ∈ 𝑈 , where

{
𝐸𝑖𝑞 ∣ 𝑖, 𝑗 ∈ 𝑛

}
⊂ gl𝑛 is the canonical basis of

gl𝑛.

A tensor module over Λ is an infeq Λ-module defined in the tensor product 𝑇 (𝑈 ) =
Λ ⊗ 𝑈 , where 𝑈 is a gl𝑛-module. The action of Λ is given by left-side multiplication and

the action of W is defined by (3.7). In the above discussion, we proved the following

theorem.

Theorem 3.9.15. Every simple finite infeq Λ-module is a tensor module. That is, if 𝑀 is a
simple finite infeq Λ-module, then there exists an irreducible representation 𝜌 ∶ gl𝑛 → gl(𝑈 )
of gl𝑛 such that𝑀 ≅ Λ⊗𝑈 as a vector space. The action of Λ is defined by left multiplication
and the action of W is given by

(𝜃
𝐼 𝜕
𝜕𝜃𝑞)

(𝜃𝑃 ⊗ 𝑣) = 𝜃𝑃
𝜕𝜃𝑄

𝜕𝜃𝑝
+

𝑛

∑
𝑖=1
𝑠({𝑖}, 𝐼 )𝜃𝑄

𝜕𝜃𝐼

𝜕𝜃𝑖
⊗ 𝜌 (𝐸𝑖𝑞) 𝑣 (3.8)

for each 𝐼 , 𝑃 ⊂ 𝑛, 𝑞 ∈ 𝑛 and 𝑣 ∈ 𝑈 .

Remark 3.9.16. A peculiarity about simple finite infeq modules over Λ is that Rudakov

modules and tensor modules are isomorphic. This does not happen when the even dimen-

sion is positive, since Rudakov modules are not finitely generated as modules over the

algebra of functions, see [BFN19].

3.10 Summary of results

In this chapter, we extended results about the Lie algebra of vector fields and its

representations to supergeometry, including results given in Chapter 2.

After establishing the preliminary results, we proved that the Lie superalgebra of vector

fields on a smooth affine supervariety is simple.

Theorem (Theorem 3.6.6). Let 𝑋 = Spec (𝑆) be a smooth integral affine supervariety with
dim𝑋 = 𝑟 |𝑠 ≠ 0|0. Then, the Lie superalgebra Der(𝑆) = Γ(𝑋,Θ𝑋 ) is simple.

This result gives us an infinite family of infinite-dimensional simple Lie superalgebras.

We studied representations of Lie superalgebras in this family that admit a compatible

action of the superalgebra of functions of the affine supervariety. When this representation

is finitely generated as a module over the ring of functions, we proved that the coherent

sheaf associated with it is an infinitesimally equivariant sheaf.
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Theorem (Theorem 3.7.13). Let 𝑋 = Spec (𝑆) be a smooth integral affine supervariety
and 𝑀 a finite infinitesimally equivariant 𝑆-module with associated Der(𝑆)-representation
𝜌 ∶ Der(𝑆) → gl(𝑀). Then, the coherent sheaf �̃� is an infinitesimally equivariant sheaf on
𝑋 . In particular, its Lie map 𝐿 ∶ Θ𝑋 → glk(�̃�) is given by

𝐿𝐷(𝑓 )(
𝜂
𝑓 𝑘)

=
∞

∑
𝑝=0

𝑝

∑
𝑙=0

(−1)𝑙(
𝑝
𝑙)

1
𝑓 𝑘𝑙+𝑘

𝜌(𝑓 𝑘𝑙𝜂) =
∞

∑
𝑝=0

𝑝

∑
𝑙=0

(−1)𝑙(
𝑝 + 𝑘
𝑝 )(

𝑝
𝑙)

1
𝑓 𝑘+𝑙

𝜌 (𝑓 𝑙𝜂)

for every 𝑓 ∈ 𝑆 ⧵ 𝐽𝑆 and 𝜂 ∈ Der(𝑆).

With this result, we proved that the associated Lie map of an infinitesimally equivariant

sheaf on a smooth supervariety is a differential operator.

Theorem (Theorem 3.8.6). Let𝑋 be a smooth integral supervariety and an infinitesimally
equivariant coherent sheaf with Lie map 𝐿 ∶ Der(𝑆) → gl(𝑀). Then 𝐿 is a differential operator
of order bounded by a constant that depends on the rank of 𝑀 .

A special family of Lie superalgebras of vector fields is the family W(𝑛) of vector fields

on the exterior algebra Λ(𝑛) in 𝑛 variables. We studied the associative algebra that governs

infeq Λ(𝑛)-modules and established the following isomorphism theorem.

Theorem (Theorem 3.9.1). The associative superalgebra Λ(𝑛)#𝑈 (W(𝑛)) is isomorphic to
the tensor product of associative superalgebras Endk(Λ(𝑛))⊗𝑈 (W(𝑛)+), where W(𝑛)+ is the
subalgebra of W(𝑛) of vector fields vanishing at the point of Spec (Λ(𝑛)).

Using this isomorphism, we studied finite infinitesimally equivariant Λ(𝑛)-modules

and constructed an equivalence of categories between the category InfEq(Λ(𝑛)) of fi-

nite infinitesimally equivariant Λ(𝑛)-modules and the category W(𝑛)+ − mod of W(𝑛)+-

modules.

Theorem (Theorem 3.9.12). The induction functor  ∶ W(𝑛)+ − mod → InfEq(Λ(𝑛)) is
an equivalence of categories, where

(𝑈 ) = Λ(𝑛)#𝑈 (W(𝑛)) ⊗Λ(𝑛)#𝑈 (W(𝑛)+) 𝑈

for every W(𝑛)+-module 𝑈 .

We wrapped up this chapter by illustrating a unique aspect within this context: the

isomorphism between the tensor modules and Rudakov modules.

Theorem (Theorem 3.9.15). Every simple finite infeq Λ(𝑛)-module is a tensor module. That
is, if 𝑀 is a simple finite infeq Λ(𝑛)-module, then there exists an irreducible representation
𝜌 ∶ gl𝑛 → gl(𝑈 ) of gl𝑛 such that 𝑀 ≅ Λ(𝑛) ⊗ 𝑈 as a vector space. The action of Λ(𝑛) is
defined by left multiplication and the action of W(𝑛) is given by

(𝜃
𝐼 𝜕
𝜕𝜃𝑞)

(𝜃𝑃 ⊗ 𝑣) = 𝜃𝑃
𝜕𝜃𝑄

𝜕𝜃𝑝
+

𝑛

∑
𝑖=1
𝑠({𝑖}, 𝐼 )𝜃𝑄

𝜕𝜃𝐼

𝜕𝜃𝑖
⊗ 𝜌 (𝐸𝑖𝑞) 𝑣 (3.9)

for each 𝐼 , 𝑃 ⊂ 𝑛, 𝑞 ∈ 𝑛 and 𝑣 ∈ 𝑈 .
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Chapter 4

Finite weight modules

In this chapter, we will shift away from the theory of Lie algebras of vector fields on

algebraic varieties and delve into the realm of the representation theory of another (impor-

tant) infinite-dimensional Lie superalgebra: the map superalgebra. The map superalgebra

is a Lie superalgebra defined on the tensor product  = g ⊗ 𝑆 of a Lie superalgebra g and

an unital commutative (super)algebra 𝑆. Most of the time, the representation theory of 
depends heavily on the structure and representation theory of both g and 𝑆. For instance,

when g is a simple Lie algebra and 𝑆 is a finitely generated algebra, the classification of

bounded weight modules over  was done in terms of evaluation modules in [BLL15],

which are modules over  constructed using maximal ideals of 𝑆 and simple modules over

g.

We will assume that g is a basic classical Lie superalgebra and use its structure to define

and study weight modules with finite multiplicities over . Throughout the chapter, we will

also need to put restrictions over 𝑆, since its characteristics influence the representation

theory of  as well. This chapter is the fruit of a collaboration with Vyacheslav Futorny

and Lucas Calixto [CFR23]. All results are stated explicitly in the last Section 4.10 of this

chapter.

We will start the chapter with the basics of Lie superalgebras and introduce the basic

Lie superalgebras that we will use throughout the chapter. This will be done in Section 4.1

and our main reference for it is the paper by Kac that gives the classification of all simple

finite-dimensional Lie superalgebras [Kac77].

In Section 4.2, we will prove some basic results on the representation theory of Lie

superalgebras, like Schur’s lemma and the density theorem. However, the main result of

this section is Proposition 4.2.5 which shows how the irreducible representations of the

direct sum of two superalgebras will behave. This is also the section where we will define

the irreducible tensor product of two irreducible representations.

We will also prove a few propositions on Lie superalgebras that admit a weight decom-

position through the adjoint action of an abelian subalgebra. We will define in Section 4.3

weight representations for this kind of Lie superalgebras and show that a simple weight

module with finite multiplicities over the direct sum of two of such Lie superalgebras is

given by an irreducible tensor product of two irreducible representations of the involved
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Lie superalgebras.

We will then focus on the representations of map superalgebra  = g ⊗ 𝑆 associated

with a basic classical Lie superalgebra g and a commutative finitely generated superalgebra

𝑆. In Section 4.4, we study the 𝑆-annihilator of a weight representation, which is the largest

ideal 𝐼 of 𝑆 such that g ⊗ 𝐼 annihilates a module. As it happens in the Lie algebra case, we

will show this ideal of 𝑆 has a finite codimension.

Afterward, we study the shadow of a module in Section 4.5. To summarize, this exposes

the actions of  on the finite weight module associated with it, showing which parts of

 act locally nilpotently or injectively on the representation. It also allows us to define

a partition of the root system of g that will be used in Section 4.6 on one of the main

theorems of this chapter.

Section 4.6 dives into the relation of the structure of the weight representation and

its shadow. For instance, we will show that if the set of injective roots is empty, then the

representation is finite-dimensional. On the other hand, if the whole root system acts

injectively, then the module is cuspidal and bounded (i.e. the dimension of its weight

spaces is bounded by a fixed number). We will use the concepts analyzed so far to show

that each simple weight -module with weight spaces with finite dimension is either a

cuspidal bounded -module or parabolically induced from a simple cuspidal bounded

module over a certain subalgebra of .

After talking briefly about evaluation modules in Section 4.7, we will classify in Sec-

tion 4.8 cuspidial bounded modules over map superalgebras associated with a basic classical

Lie superalgebra g with even part g0 semisimple and a commutative algebra. We will show

that in this case, cuspidal bounded modules are evaluation modules.

We will finish this chapter applying our results to affine Lie algebras, which is the

central extension of the map algebra g ⊗ k[𝑡, 𝑡−1].

4.1 Basic Lie superalgebras
This chapter begins with a concise overview of the theory surrounding finite-

dimensional simple Lie superalgebras. However, our primary emphasis will be on delving

into the theory of classical basic Lie superalgebras right from the outset. All results in this

section are well-known and most of them may be found in the work of Kac [Kac77].

We recall that a Lie superalgebra is a super vector space g = g0 ⊕ g1 with a bilinear

map [⋅, ⋅] ∶ g × g → g, called bracket, that satisfies

1. [𝑥, 𝑦] + (−1)|𝑥 ||𝑦 |[𝑦, 𝑥] = 0 for each 𝑥, 𝑦 ∈ g;

2. (Super Jacobi Identity) (−1)|𝑥 ||𝑧|[𝑥, [𝑦, 𝑧]]+ (−1)|𝑦 ||𝑥 |[𝑦, [𝑧, 𝑥]]+ (−1)|𝑥 ||𝑦 |[𝑧, [𝑥, 𝑦]] = 0.

Subalgebras and ideals of Lie superalgebras are defined as in other algebra structures with

the added part that they need to be ℤ2-graded. Homomorphisms of two superalgebras

need to preserve the ℤ2-gradation.

Lemma 4.1.1. Let g0 be a Lie algebra with bracket [⋅, ⋅]0 and 𝑉 a g0-module with associated
representation 𝜌. Suppose we have a g0-homomorphism 𝜎 ∶ 𝑆2(𝑉 ) → g0. Consider the
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super vector space g = g0 ⊕ 𝑉 with even part g0 and odd part 𝑉 . Define a bilinear map
[⋅, ⋅] ∶ g × g → g by

[𝑥, 𝑦] = [𝑥, 𝑦]0, [𝑥, 𝑣] = −[𝑣, 𝑥] = 𝑥 ⋅ 𝑣, [𝑣, 𝑢] = 𝜎(𝑣 ⊗ 𝑢)

for each 𝑥, 𝑦 ∈ g0, 𝑣, 𝑢 ∈ 𝑉 . Then, g = g0 ⊕ 𝑉 is a Lie superalgebra if

𝜎(𝑢 ⊗ 𝑣)𝑤 + 𝜎(𝑣 ⊗ 𝑤)𝑢 + 𝜎(𝑤 ⊗ 𝑢)𝑣 = 0 for 𝑢, 𝑣, 𝑤 ∈ 𝑉 .

Conversely, if g = g0 ⊕ g1 is a Lie superalgebra, then

1. g0 is a Lie algebra,

2. g1 is a g0 induces by the adjoint action,

3. 𝑢 ⊗ 𝑣 ↦ [𝑢, 𝑣] defined a g0-homomorphism 𝑆2(g1) → g0,

4. the bracket satisfies the super Jacobi identity.

From now on, suppose that g is a finite-dimensional Lie superalgebra. We say that g
is simple if g is not abelian and it has exactly two ideals, 0 and itself. A Lie superalgebra

g is called classical if it is simple and the adjoint action makes g1 a completely reducible

module over the Lie algebra g0. A classical Lie superalgebra g is called basic if it is classical

and it admits a non-degenerate bilinear form similar to a Killing form of Lie algebras, that

is, a non-degenerate bilinear form ⟨⋅, ⋅⟩ ∶ g × g → g such that ⟨𝑥, [𝑦, 𝑧]⟩ = ⟨[𝑥, 𝑦], 𝑧⟩ for

all 𝑥, 𝑦, 𝑧 ∈ g. A bilinear form that satisfies this last condition is called invariant. If g is a

simple Lie superalgebra, then any invariant bilinear form on g is supersymmetric, that is,

⟨𝑥, 𝑦⟩ = (−1)|𝑥 ||𝑦 |⟨𝑦, 𝑥⟩ for 𝑥, 𝑦 ∈ g.

The classification of all simple finite-dimensional Lie superalgebras was done by

Kac [Kac77]. It was shown that a simple Lie superalgebra need not be classical. The non-

classical simple Lie superalgebras are called Cartan type Lie superalgebras. Not all classical

Lie superalgebras are basic. In his classification, Kac showed there are two series of Lie

superalgebras that do not admit a non-degenerate invariant bilinear form. They are divided

into two infinite families called strange series. We will construct most of the basic classical

Lie superalgebras, and we will give realizations of their root systems.

For a super vector space 𝑉 , we denote by gl(𝑉 ) the super vector space of endomor-

phisms of 𝑉 . If 𝑉 = k𝑚|𝑛, then gl(𝑉 ) may be identified with the super vector space of

𝑚|𝑛 × 𝑚|𝑛 super matrices gl(𝑚|𝑛). As a vector space, gl(𝑚|𝑛) is the set M𝑚+𝑛(k) of square

(𝑚 + 𝑛) × (𝑚 + 𝑛) matrices. For 𝑋 ∈ gl(𝑚|𝑛), write 𝑋 in blocs of matrices

𝑋 = [
𝐴 𝐵
𝐶 𝐷] ,

where 𝐴 ∈ M𝑚(k), 𝐷 ∈ M𝑛(k), 𝐵 ∈ M𝑚×𝑛(k) e 𝐶 ∈ M𝑛×𝑚(k). Then the even part of gl(𝑚|𝑛)
consists of matrices 𝑋 with 𝐵 = 0 and 𝐶 = 0, and the odd part of gl(𝑚|𝑛) consists of

matrices with 𝐴 = 0 and 𝐷 = 0. Therefore, dim gl(𝑚|𝑛) = 𝑚2 + 𝑛2|2𝑚𝑛, and

gl(𝑚|𝑛)0 =
{

[
𝐴 0
0 𝐷] ∣ 𝐴 ∈ M𝑚(k), 𝐷 ∈ M𝑛(k)

}
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gl(𝑚|𝑛)1 =
{

[
0 𝐵
𝐶 0] ∣ 𝐵 ∈ M𝑚×𝑛(k), 𝐶 ∈ M𝑛×𝑛(k)

}

The usual product of matrices makes gl(𝑚|𝑛) an associative superalgebra, and it is a Lie

superalgebra with the bracket

[𝑋, 𝑌 ] = 𝑋𝑌 − (−1)|𝑋 ||𝑌 |𝑌𝑋, 𝑋, 𝑌 ∈ gl(𝑚|𝑛).

For a supermatrix 𝑋 = (𝑥𝑖𝑗) ∈ gl(𝑚|𝑛), we define the supertrace str ∶ gl(𝑚|𝑛) → k
by

str(𝑋) =
𝑚

∑
𝑖=1
𝑥𝑖𝑖 −

𝑛

∑
𝑗=1
𝑥𝑗𝑗 .

Its kernel

sl(𝑚|𝑛) = {𝑋 ∈ gl(𝑚|𝑛) ∣ str(𝑋) = 0}

is a subalgebra of gl(𝑚|𝑛) called special linear Lie superalgebra. When 𝑚 = 𝑛, the iden-

titiy matrix 𝐼2𝑚 ∈ sl(𝑚|𝑚) and it generates an ideal of sl(𝑚|𝑚). In this case, the quotient

psl(𝑚|𝑚) = sl(𝑚|𝑚)/k𝐼2𝑚 is called projective special linear Lie superalgebra. Their even

parts are

sl(𝑚|𝑚)0 = sl𝑚 ⊕ sl𝑚 ⊕ k and psl(𝑚|𝑚)0 = sl𝑚 ⊕ sl𝑚.

For 𝑚, 𝑛 ≥ 1, we define

A(𝑚, 𝑛) =

{
sl(𝑚 + 1|𝑛 + 1), if 𝑚 ≠ 𝑛
psl(𝑚 + 1|𝑚 + 1). if 𝑚 = 𝑛.

For the analogs of orthogonal and sympletic Lie algebras, consider the bilinear form 𝜙
in k𝑚|𝑛 given by the matrices

𝜙 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 𝐼𝑘 0 0 0
𝐼𝑘 0 0 0 0
0 0 1 0 0
0 0 0 0 𝐼𝑘
0 0 0 −𝐼𝑘 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

if 𝑚 = 2𝑘 + 1, 𝑛 = 2𝑘,

𝜙 =

⎡
⎢
⎢
⎢
⎢
⎣

0 𝐼𝑘 0 0 0
𝐼𝑘 0 0 0 0
0 0 0 0 𝐼𝑘
0 0 0 −𝐼𝑘 0

⎤
⎥
⎥
⎥
⎥
⎦

if 𝑚 = 2𝑘, 𝑛 = 2𝑘.

The orthosymplectic Lie superalgebra is defined by

osp(𝑚|𝑛) =
{
𝑋 ∈ gl(𝑚|𝑛) ∣ 𝑋𝜙 + 𝜙𝑋 𝑠𝑡 = 0

}
,

where 𝑋 𝑠𝑡
is the supertranspose of 𝑋 = [

𝐴 𝐵
𝐶 𝐷] given by 𝑋 𝑠𝑡 = [

𝐴𝑡 𝐶𝑡
−𝐵𝑡 𝐷𝑡]. Similarly to

what happens in the Lie algebra case, there are differences in the structure of the orthosym-
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plectic Lie superalgebras depending on the dimension of the defining representation. For

this reason, we define

B(𝑚, 𝑛) = osp(2𝑚 + 1|2𝑛), 𝑚 ≥ 0, 𝑛 ≥ 1,
C(𝑛) = osp(2|2𝑛 − 2), 𝑛 ≥ 2,

D(𝑚, 𝑛) = osp(2𝑚|2𝑛), 𝑚 ≥ 2, 𝑛 ≥ 1.

In this case, their even part is

B(𝑚, 𝑛)0 ≅ 𝐵𝑚 ⊕ 𝐶𝑛,
C(𝑛)0 ≅ k ⊕ 𝐶𝑛−1,

D(𝑚, 𝑛)0 ≅ 𝐷𝑚 ⊕ 𝐶𝑛,

where 𝐵𝑚, 𝐶𝑛, 𝐷𝑚 are the usual simple Lie algebras of type 𝐵, 𝐶, 𝐷.

There are a few exceptional Lie superalgebras. The first is the one parameter family

D(2, 1, 𝛼). For each 𝑖 = 1, 2, 3, let g𝑖 be the Lie algebra sl2, and denote by 𝑉𝑖 the standard sl2-
module associated to g𝑖. A g𝑖-module homomorphism 𝑆2(𝑉𝑖) → g𝑖 will be an isomorphism,

it is given by a non-zero scalar 𝑎𝑖 ∈ k by Schur’s Lemma. By Lemma 4.1.1, the super vector

space g(𝑎1, 𝑎2, 𝑎3) = g0 ⊕ g1, with g0 = g1 ⊕ g2 ⊕ g3 and g1 = 𝑉1 ⊗ 𝑉2 ⊗ 𝑉3, will be a

Lie superalgebra if 𝑎1 + 𝑎2 + 𝑎3 = 0. For any nonzero scalar 𝑐 ∈ k, g(𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3) and

g(𝑎1, 𝑎2, 𝑎3) are isomorphic. Furthermore, if we change the order of g𝑖 and 𝑉𝑖, we will have

isomorphic superalgebras. Therefore, g(𝑎1, 𝑎2, 𝑎3) ≅ g (1, 1
𝑎1
,− 1

𝑎1
− 1). Thus, we have a

one-parameter family of Lie superalgebras given by nonzero scalar 𝑎 ∈ k

D(2, 1, 𝛼) = g(1,
1
𝛼
,−

1
𝛼
− 1)

The Lie superalgebra D(2, 1, 𝛼) is simple if 𝛼 ≠ 0,−1. Note that its even part is the

semisimple Lie algebra sl2 ⊕ sl2 ⊕ sl2.

There are other two exceptional Lie superalgebras, F(4) and G(3). The even part of

F(4) is the semisimple Lie algebra sl2 ⊕ so7. On the other hand, the Lie superalgebra G(3)
has an even part isomorphic to sl2 ⊕ 𝐺2.

If g is a classical basic simple Lie superalgebra, then g is either a simple Lie algebra or

isomorphic to one of the following algebras

A(𝑚, 𝑛) with 𝑚 > 𝑛 ≥ 0, A(𝑛, 𝑛) with 𝑛 > 0,

B(𝑚, 𝑛) with 𝑚 ≥ 0, 𝑛 > 0, C(𝑛) with 𝑛 ≥ 2,

D(𝑚, 𝑛) with 𝑚 ≥ 2, 𝑛 ≥ 1, D(2, 1, 𝛼) with 𝛼 ≠ 0,−1,

F(3), G(4).

Some of these Lie superalgebras are isomorphic to each other. For instance, 𝐷(2, 1) ≅
𝐷(2, 1, 1) and A(2, 1) ≅ C(2). Furthermore, D(2, 1, 𝛼) ≅ D(2, 1, 1𝛼 ) ≅ D(2, 1,−1 − 𝛼). Using

the last number of each 3-uple in these isomorphisms, we may define an action of the
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permutation group 𝑆3 in ℂ⧵ {0, 1}. This action gives the isomorphism classes of the various

D(2, 1, 𝛼). There are no further isomorphisms between the above superalgebras.

From now on, we suppose that g is a classical basic simple Lie superalgebra. It is

known the representation of g0 on g1 is either irreducible or a direct sum of two irreducible

representations. We say g is of type II if g1 is a simple g0-module. Otherwise, we say that

g is of type I. There exists a distinguished ℤ-grading g = ⨁
𝑛∈ℤ

g𝑛 such that g0 = ⨁
𝑛∈2ℤ

g𝑛,

g1 = ⨁
𝑛∉2ℤ

g𝑛, and it satisfies:

1. g0 = g0 and g1 = g−1 ⊕ g1 if g is of type I, and

2. g0 = g−2 ⊕ g0 ⊕ g2 and g1 = g−1 ⊕ g1 if g is of type II.

We summarize in Table 4.1 the list of all basic classical Lie superalgebras, their type,

their even part and dimensions.

g g0 Type Dimension

A(𝑚, 𝑛), 𝑚 > 𝑛 ≥ 0 𝐴𝑚 ⊕ 𝐴𝑛 ⊕ k I 𝑚2 + 𝑛2 − 1|2𝑚𝑛
A(𝑛, 𝑛), 𝑛 ≥ 1 𝐴𝑛 ⊕ 𝐴𝑛 I 2𝑛2 − 2|2𝑛2
C(𝑛 + 1), 𝑛 ≥ 1 𝐶𝑛 ⊕ k I 2𝑛2 + 𝑛 + 1|4𝑛

B(𝑚, 𝑛), 𝑚 ≥ 0, 𝑛 ≥ 1 𝐵𝑚 ⊕ 𝐶𝑛 II 2𝑚2 + 𝑚 + 2𝑛2 + 𝑛|4𝑚𝑛 + 2𝑛
D(𝑚, 𝑛), 𝑚 ≥ 2, 𝑛 ≥ 1 𝐷𝑚 ⊕ 𝐶𝑛 II 2𝑚2 − 𝑚 + 2𝑛2 + 𝑛|4𝑚𝑛

F(4) 𝐴1 ⊕ 𝐵3 II 24|16
G(3) 𝐴1 ⊕ 𝐺2 II 17|14

D(2, 1, 𝛼), 𝛼 ≠ 0,−1 𝐴1 ⊕ 𝐴1 ⊕ 𝐴1 II 9|8

Table 4.1: Basic classical Lie superalgebras that are not Lie algebras, their even part and their type

A Cartan subalgebra of a basic Lie superalgebra g is a Cartan subalgebra of the reductive

Lie algebra g0. If h is a Cartan subalgebra of g, then g is a weight module over h with

g0 = h. Denote by Δ the set of nonzero weights of g as a h-module. The set Δ is called the

root system of g. Denote by Δ0 the weights of g0 and Δ1 the weights of g1.

We finish this section with a theorem that shows how similar basic classical Lie

superalgebras are to semisimple Lie algebras.

Theorem 4.1.2. Let g be a basic Lie superalgebra with a Cartan subalgebra h.

1. We have a root space decomposition of g with respect to h

g = h ⊕⨁
𝛼∈Δ

g𝛼 and g0 = h

2. dim g𝛼 = 1 for 𝛼 ∈ Δ.

3. [g𝛼 , g𝛽] ⊂ g𝛼+𝛽 for each 𝛼, 𝛽 ∈ Δ such that 𝛼 + 𝛽 ∈ Δ.

4. There exists a non-degenerate even invariant supersymmetric bilinear form ⟨⋅, ⋅⟩ on g.
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5. ⟨g𝛼 , g𝛽⟩ = 0 unless 𝛼 = −𝛽 ∈ Δ.

6. The restriction of the bilinear form ⟨⋅, ⋅⟩ on h × h is non-degenerate.

7. Δ = −Δ, Δ0 = −Δ0, and Δ1 = −Δ1.

8. Let 𝛼 ∈ Δ. Then 𝑘𝛼 ∈ Δ for 𝑘 ≠ ±1 if and only if 𝛼 ∈ Δ1 and ⟨𝛼, 𝛼⟩ ≠ 0; in this case
𝑘 = ±2.

9. There exists 𝑥𝛼 ∈ g𝛼 such that [𝑥𝛼 , 𝑥−𝛼] = ⟨𝑥𝛼 , 𝑥−𝛼⟩ℎ𝛼 where ℎ𝛼 is the cooroot deter-
mined by ⟨ℎ𝛼 , ℎ⟩ = 𝛼(ℎ) for ℎ ∈ h.

From now on, if g is a basic Lie superalgebra, we define 𝑥𝛼 ∈ g𝛼 , ℎ𝛼 ∈ h, elements such

that [𝑥𝛼 , 𝑥−𝛼] = ℎ𝛼 for each 𝛼 ∈ Δ. An odd root 𝛼 ∈ Δ is called isotropic if ⟨𝛼, 𝛼⟩ = 0.

4.2 Tensor product theorem

In this section, we will show a few general results about the representation theory of

Lie superalgebras. Unless otherwise stated, we will not make any assumptions about g
other than being over k.

For a vector space 𝑉 , we denote 𝜄𝑉 as the identity map of 𝑉 .

Lemma 4.2.1 (Schur’s Lemma). Let g be a Lie superalgebra and 𝑉 be an irreducible g-
module. Then either Endg(𝑉 ) = Endg(𝑉 )0 = k𝜄𝑉 or 𝑉0 ≅ 𝑉1 and Endg(𝑉 ) = k𝜄𝑉 ⊕ k𝜎,
where 𝜎2 = 𝜄𝑉 is a parity reversing map that permutes 𝑉0 and 𝑉1.

Proof. First, note that every element of Endg(𝑉 ) is an isomorphism, because 𝑉 is simple,

and kernels and images of g-endomorphisms of 𝑉 are submodules of it. Since composition

of g-modules isomorphisms is an isomorphism and 𝜄𝑉 ∈ Endg(𝑉 )0, the vector space

Endg(𝑉 )0 is a division ring. Hence, Endg(𝑉 )0 = k𝜄𝑉 by the argument of the Schur’s lemma

(due to Diximier) for Lie algebras. If Endg(𝑉 )1 = 0, then Endg(𝑉 ) = Endg(𝑉 )0 = k𝜄𝑉 .

Suppose Endg(𝑉 )1 ≠ 0. Take a non-zero element 𝜎 ∈ Endg(𝑉 )1, then 𝜎2 ∈ Endg(𝑉 )1 is a

non-zero even element. So 𝜎2 = 𝑐𝜄𝑉 for some non-zero 𝑐 ∈ k. We may assume that 𝑐 = 1.

The restriction 𝜎|𝑉0 is a g0-isomorphism between 𝑉1 and 𝑉0 with inverse 𝜎|𝑉1 , thus 𝜎 is

a parity reversing map. If 𝜏 ∈ Endg(𝑉 )1 is any other non-zero element, then 𝜏2 = 𝑎𝜄𝑉
for some non-zero scalar 𝑎 ∈ k, and 𝜏 = 𝑏𝜎 for some 𝑏 ∈ k with 𝑏2 = 𝑎. Therefore,

Endg(𝑉 )1 = k𝜎.

Remark 4.2.2. Note that 𝜎 ∶ 𝑉0 → 𝑉1 is an isomorphism of g0-modules. We used that

k is an uncountable algebraically closed field of characteristic zero. If we assume that g
is finite-dimensional, we may drop the assumption that k is uncountable using Quillen’s

argument, see [Qui69].

Lemma 4.2.3 (Density Theorem). Let g be a Lie superalgebra, and 𝑉 be a simple g-module

1. Assume Endg(𝑉 )1 = 0. If 𝑣1,… , 𝑣𝑛 ∈ 𝑉 are linearly independent and 𝑤1,… , 𝑤𝑛 ∈ 𝑉 ,
then there exists 𝑢 ∈ 𝑈 (g) such that 𝑢𝑣𝑖 = 𝑤𝑖 for each 𝑖 = 1,… , 𝑛.
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2. Assume Endg(𝑉 )1 ≠ 0. If 𝑣1,… , 𝑣𝑛 ∈ 𝑉𝑖 are linearly independent homogeneous elements
and 𝑤1,… , 𝑤𝑛 ∈ 𝑉𝑖 with 𝑖 ∈ {0, 1}, then there exists an even element 𝑢 ∈ 𝑈 (g)0 such
that 𝑢𝑣𝑗 = 𝑤𝑗 for each 𝑗 = 1,… , 𝑛.

Proof. Using that Endg(𝑉 )0 = k𝜄𝑉 , both statements follow from the Jacobson Density

Theorem (see [Isa09, Theorem 14.15]) and Schur’s Lemma (Lemma 4.2.1).

Lemma 4.2.4. Let g1 and g2 be Lie superalgebras, and 𝑉1, 𝑉2 be simple modules over g1 and
g2, respectively. If Endg1(𝑉1) ≅ k, then 𝑉1 ⊗ 𝑉2 is a simple g1 ⊕ g2-module.

Proof. We only need to show that each non-zero homogeneous element of 𝑉1⊗𝑉2 generates

the whole g1⊕ g2-module. Let 𝑣 ∈ 𝑉1⊗𝑉2 be an arbitrary non-zero homogeneous element,

and write 𝑣 =
𝑛

∑
𝑗=1
𝑣1𝑗 ⊗ 𝑣

2
𝑗 . We may assume that {𝑣11 ,… , 𝑣1𝑛} is a linearly independent set of

homogeneous elements, and 𝑣21 ≠ 0. By Lemma 4.2.3 (1), there exists 𝑢 ∈ 𝑈 (g) such that

𝑢𝑣1𝑗 = 𝛿𝑗1𝑣11 . Therefore,

𝑢𝑣 =
𝑛

∑
𝑗=1

(𝑢𝑣1𝑗 ) ⊗ 𝑣
2
𝑗 = 𝑣

1
1 ⊗ 𝑣

2
1 ≠ 0.

Take 𝑤1 ∈ 𝑉1 and 𝑤2 ∈ 𝑉2. Since both 𝑉1 and 𝑉2 are simple, there exist 𝑢1 ∈ 𝑈 (g1) and

𝑢2 ∈ 𝑈 (g2) such that 𝑢1𝑣11 = 𝑤1 and 𝑢2𝑣21 = 𝑤2. Hence,

𝑢2(𝑢1(𝑢𝑣)) = (−1)|𝑢2 ||𝑣
1
1 |𝑤1 ⊗ 𝑤2.

We conclude that any simple tensor is an element of 𝑈 (g1⊕ g2)𝑣. Therefore, 𝑈 (g1⊗ g2)𝑣 =
𝑉1 ⊗ 𝑉2.

Proposition 4.2.5. Let g1 and g2 be Lie superalgebras, and 𝑉1, 𝑉2 be simple modules over g1
and g2, respectively. Then 𝑉1 ⊗ 𝑉2 is either a simple g1 ⊕ g2-module, or it is isomorphic to
𝑉 ⊕ 𝑉 , where 𝑉 is a simple g1 ⊕ g2-module.

Proof. If Endg1(𝑉1) ≅ k or Endg2(𝑉2) ≅ k, then 𝑉1 ⊗ 𝑉2 is a simple g1 ⊕ g2-module by

Lemma 4.2.4. By Lemma 4.2.1, we assume that Endg1(𝑉1) = k𝐼𝑉1 ⊕ k𝜎1 and Endg2(𝑉2) ≅
k𝐼𝑉2 ⊕ k𝜎2, where 𝜎2

1 = 𝐼𝑉1 and 𝜎2
2 = −𝐼𝑉2 .

The endomorphism 𝜎 ∶ 𝑉1⊗𝑉2 → 𝑉1⊗𝑉2 given by 𝜎(𝑣1⊗𝑣2) = (−1)|𝑣1 |𝜎1(𝑣1)⊗𝜎2(𝑣2)
is a g1 ⊕ g2-module isomophism. Therefore, 𝜎2 = 𝑖𝑑𝑉1⊗𝑉2 .

For each 𝑥 ∈ 𝑉1 ⊗ 𝑉2

𝑥 =
𝑥 + 𝜎(𝑥)

2
+
𝑥 − 𝜎(𝑥)

2
.

Thus, 𝑉1 ⊗ 𝑉2 = 𝑉 ⊕ 𝑉 ′
with

𝑉 = {𝑥 ∈ 𝑉1 ⊗ 𝑉2 ∣ 𝜎(𝑥) = 𝑥} and 𝑉 ′ = {𝑥 ∈ 𝑉1 ⊗ 𝑉2 ∣ 𝜎(𝑥) = −𝑥}.

Since 𝜎 is a g1 ⊕ g2-module homomorphism, both 𝑉 and 𝑉 ′
are g1 ⊕ g2-submodules of

𝑉1 ⊗ 𝑉2.
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The map 𝜎2 gives an isomorphism between the even and the odd part of 𝑉2, so if

{𝑤𝑖 ∈ 𝑉2 ∣ 𝑖 ∈ 𝐼 } is a basis of the even part of 𝑉2, then {𝑤𝑖, 𝜎2(𝑤𝑖) ∣ 𝑖 ∈ 𝐼 } is a basis of 𝑉2.

𝑉1⊗𝑉2 is generated, as a vector space, by the set {𝑣 ⊗𝑤𝑗 ±𝜎(𝑣 ⊗𝑤𝑗) ∣ 𝑣 ∈ 𝑉1, 𝑗 ∈ 𝐼 }. Since

{𝑣 ⊗𝑤𝑗 + 𝜎(𝑣 ⊗𝑤𝑗) ∣ 𝑣 ∈ 𝑉1, 𝑗 ∈ 𝐼 } ⊂ 𝑉 and {𝑣 ⊗𝑤𝑗 − 𝜎(𝑣 ⊗𝑤𝑗) ∣ 𝑣 ∈ 𝑉1, 𝑗 ∈ 𝐼 } ⊂ 𝑉 ′
, they

generate 𝑉 and 𝑉 ′
as vector spaces, respectively. For each 𝑗 ∈ 𝐼 and 𝑣 ∈ 𝑉 , we have

𝜎 (𝑣 ⊗ 𝑤𝑗 + (−1)|𝑣|𝜎1(𝑣) ⊗ 𝜎2(𝑤𝑗)) = (−1)|𝑣|𝜎1(𝑣) ⊗ 𝜎2(𝑤𝑗) − 𝜎2
1(𝑣) ⊗ 𝜎

2
2(𝑤𝑗)

= −𝑣 ⊗ 𝑤𝑗 + (−1)|𝑣|𝜎1(𝑣) ⊗ 𝜎2(𝑤𝑗).

Similarly, 𝜎 (𝑣 ⊗ 𝑤𝑗 − (−1)|𝑣|𝜎1(𝑣) ⊗ 𝜎2(𝑤𝑗)) = 𝑣 ⊗ 𝑤𝑗 + (−1)|𝑣|𝜎1(𝑣) ⊗ 𝜎2(𝑤𝑗). Therefore,

𝜎 sends 𝑉 to 𝑉 ′
and 𝑉 ′

to 𝑉 . Thus, 𝑉 and 𝑉 ′
are isomorphic.

It remains to prove that 𝑉 is a simple g1 ⊕ g2-module. Let 𝑣 ∈ 𝑉 be a non-zero

homogeneous element of 𝑉 . Then there exists homogeneous elements 𝑣1,… , 𝑣𝑛 such that

𝑣 =
𝑛

∑
𝑗=1
𝑣𝑗 ⊗ 𝑤𝑖𝑗 + 𝜎(𝑣𝑗 ⊗ 𝑤𝑖𝑗 )

where 𝑖𝑗 ≠ 𝑖𝑙 if 𝑗 ≠ 𝑙, and 𝑣1 ≠ 0. By Lemma 4.2.3, there exists 𝑢 ∈ 𝑈 (g2) such that

𝑢𝑤𝑖𝑗 = 𝛿1𝑗𝑤𝑖1 . Hence, 𝑢𝑣 = 𝑣1 ⊗ 𝑤𝑖1 + 𝜎(𝑣𝑗 ⊗ 𝑤𝑖1). Take a non-zero homogeneous element

𝑣0 ∈ 𝑉1 and 𝑘 ∈ 𝐼 , then there exists 𝑎 ∈ 𝑈 (g1) such that 𝑎𝑣1 = 𝑣0 and 𝑏𝑤𝑖1 = 𝑤𝑗 because 𝑉1
and 𝑉2 are simple. Thus,

𝑎(𝑏(𝑢𝑣)) = 𝑣0 ⊗ 𝑤𝑘 + 𝜎(𝑣0 ⊗ 𝑤𝑘).

We conclude that the generating set {𝑣 ⊗ 𝑤𝑗 + 𝜎(𝑣 ⊗ 𝑤𝑗) ∣ 𝑣 ∈ 𝑉1, 𝑗 ∈ 𝐼 } of 𝑉 is a subset

of 𝑈 (g1 ⊕ g2)𝑣 for every non-zero homogeneous element 𝑣 ∈ 𝑉 . Therefore, 𝑉 is a simple

g1 ⊕ g2-module.

Definition 4.2.6. Using the notation of Proposition 4.2.5, we define the irreducible tensor
product of 𝑉1 and 𝑉2 as

𝑉1⊗̂𝑉2 =

{
𝑉1 ⊗ 𝑉2, if 𝑉1 ⊗ 𝑉2 is simple,
𝑉 , if 𝑉1 ⊗ 𝑉2 is not simple,

where 𝑉 is a simple submodule of 𝑉1 ⊗ 𝑉2, obtained in the proof of Proposition 4.2.5, for

which we have an isomorphism of (g1 ⊕ g2)-modules 𝑉1 ⊗ 𝑉2 ≅ 𝑉 ⊕ 𝑉 .

4.3 Weight modules
Let  be a Lie superalgebra and h ⊂  be an abelian subalgebra. An h-module 𝑉 is said

to be a weight module if

𝑉 = ⨁
𝜆∈h∗

𝑉 𝜆,

where 𝑉 𝜆 = {𝑣 ∈ 𝑉 ∣ ℎ𝑣 = 𝜆(ℎ)𝑣}. The set Supp(𝑉 ) = {𝜆 ∈ h∗ ∣ 𝑉 𝜆 ≠ 0} is called the support
of 𝑉 , and an element 𝜆 ∈ Supp(𝑉 ) is called a weight of 𝑉 . We say that 𝑉 𝜆

is a weight space
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and its nonzero elements are called weight vectors. It is known that every submodule of a

weight module is a weight module.

If the adjoint representation makes a weight module over h and h is finite-dimensional,

we say that (, h) is a splitting pair. If (, h) is a splitting pair, a module over  is weight
-module if it is a weight module as a module over h. A weight -module is called finite if

the dimension of its weight spaces is finite. A weight -module is called bounded if the set

of the dimensions of all its weight spaces is bounded by some positive number.

Example 4.3.1. If (g, h) is splitting pair and𝐴 is commutative superalgebra, then  = g⊗𝐴
is a Lie superalgebra with bracket given by

[𝑥 ⊗ 𝑓 , 𝑦 ⊗ 𝑔] = (−1)|𝑓 ||𝑦 |[𝑥, 𝑦] ⊗ 𝑓 𝑔, 𝑥, 𝑦 ∈ g, 𝑓 , 𝑔 ∈ 𝑆.

Therefore, the adjoint representation makes  a weight module over h ≅ h⊗k ⊂ . Hence,

(, h ⊗ k) is a splitting pair.

Example 4.3.2. If (1, h1) and (2, h2) are splitting pairs, then (1⊕2, h1⊕h2) is a splitting

pair.

Lemma 4.3.3. Let (g, h) be a splitting pair and 𝑉 be a finite weight g-module. If there is
𝜆 ∈ h∗ such that {𝑤 ∈ 𝑊 ∣ ℎ𝑤 = 𝜆(ℎ)𝑤 for all ℎ ∈ h} is nonzero for all submodule 𝑊 ⊂ 𝑉 ,
then 𝑉 contains a simple g-module.

Proof. It follows from the same argument given in the Lie algebra case, see [BLL15,

Lemma 3.3].

Proposition 4.3.4. Let (1, h1) and (2, h2) be splitting pairs and 𝑉 a simple finite weight
module over 1 ⊕ 2. Then, there exist finite weight modules 𝑉1 and 𝑉2 over 1 and 2,
respectively, such that 𝑉 ≅ 𝑉1⊗̂𝑉2.

Proof. This proof is heavily based on the argument given for Lie algebras, see [BLL15,

Proposition 3.4]. Let 𝑣 ∈ 𝑉 (𝜆,𝜇)
be a non-zero vector of weight (𝜆, 𝜇) ∈ h∗1 × h∗2. For each 𝑢 ∈

𝑈 (2) and ℎ1 ∈ h∗1, ℎ1𝑢𝑣 = 𝜆(ℎ1)𝑢𝑣. Therefore, (𝑈 (2)𝑣)𝜂 ⊂ 𝑉 (𝜆,𝜂)
, and 𝑊 = 𝑈 (2)𝑣 ⊂ 𝑉 is

a finite weight module over 2.

Let 𝑁 be any non-zero 2-submodule of𝑊 . Consider the subspace 𝐻𝑁
of Homk(𝑁 , 𝑉 )

of all generated by all homogeneous elements 𝜑 ∈ Homk(𝑁 , 𝑉 ) such that 𝑦𝜑(𝑤) =
(−1)|𝜑||𝑦 |𝜑(𝑦𝑤) for all 𝑦 ∈ 2, 𝑤 ∈ 𝑁 . Then 𝐻𝑁

is a 1-module with action given by

(𝑥𝜑)(𝑤) = 𝑥𝜑(𝑤) for each 𝑥 ∈ 1, 𝜑 ∈ 𝐻𝑁
, and 𝑤 ∈ 𝑊 . For a 1-submodule 𝑀 ⊂ 𝐻𝑁

, the

map

Ψ𝑀,𝑁 ∶ 𝑀 ⊗ 𝑁 → 𝑉
𝜑 ⊗ 𝑤 ↦ 𝜑(𝑤)

is a 1 ⊕ 2-module homomorphism. Suppose 𝑀 is non-zero, then Ψ𝑀,𝑁 is surjective

because 𝑉 is simple. Therefore, the image of (𝑀⊗𝑁 )(𝜆,𝜇) = 𝑀𝜆⊗𝑁 𝜇
under Ψ𝑀,𝑁 is exactly

𝑉 (𝜆,𝜇)
. Thus, both 𝑀𝜆

and 𝑁 𝜇
are non-zero.
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For every non-zero submodule 𝑁 ⊂ 𝑊 , we have that 𝑁 𝜇 ≠ 0. By Lemma 4.3.3, 𝑊
contains a simple 2-module 𝑄. By the simplicity of 𝑄 and the finiteness of the weight

spaces of 𝑉 , it is possible to show that 𝐻𝑄
is a finite weight module over 1. Since for

every weight module 𝑀 ⊂ 𝐻𝑄
we have that 𝑀𝜆 ≠ 0, there exists a simple 1-submodule 𝑃

of 𝐻𝑄
.

By Proposition 4.2.5, 𝑃 ⊗ 𝑄 is either simple or there exists a simple 1 ⊕ 2-module 𝐿
such that 𝑃 ⊗ 𝑄 ≅ 𝐿 ⊕ 𝐿. If 𝑃 ⊗ 𝑄 is simple, then Ψ𝑃,𝑄 is an isomorphism. On the other

hand, if 𝑃 ⊗ 𝑄 ≅ 𝐿 ⊕ 𝐿, then every non-trivial proper submodule and quotient of 𝑃 ⊗ 𝑄 is

isomorphic to 𝐿. Therefore, Ψ𝑃,𝑄 induces a isomorphism between 𝐿 and 𝑉 . We conclude

that 𝑉 ≅ 𝑃⊗̂𝑄.

4.4 The 𝑆-annihilator of a representation
From now on, let g be a basic classical Lie superalgebra, 𝑆 an unital finitely generated

commutative superalgebra and  = g ⊗ 𝑆. Let h be a Cartan subalgebra of g. Then, (g, h)
is a splitting pair. By example 4.3.1, (, h ⊗ k) is a splitting pair as well. We aim to give a

classification of finite weight -modules in terms of maximal ideals of 𝑆 and finite weight

g-modules. To do it, we need to define and study 𝑆-annihilator of a -representation.

Definition 4.4.1. If 𝑉 is a -module, then we define the 𝑆-annihilator Ann𝑆(𝑉 ) of 𝑉 as

the largest ideal 𝐼 of 𝑆 with the property (g ⊗ 𝐼 )𝑉 = 0.

Lemma 4.4.2. If 𝑉 is a finite -module, then

Ann𝑆(𝑉 ) = {𝑓 ∈ 𝑆 ∣ (g ⊗ 𝑓 )𝑉 = 0}.

Proof. The set 𝐼 = {𝑓 ∈ 𝑆 ∣ (g⊗ 𝑓 )𝑉 = 0} is the largest set with the property (g⊗ 𝐼 )𝑉 = 0.

We have that (g ⊗ 𝑓 𝑔)𝑉 = [g ⊗ 𝑓 , g ⊗ 𝑔]𝑉 for every 𝑓 ∈ 𝐼 and 𝑔 ∈ 𝑆 because [g, g] = g.

Thus, 𝐼 is an ideal.

Proposition 4.4.3. Let g be a basic classical Lie superalgebra, and 𝑆 a commutative super-
algebra. If 𝜌 ∶  → End(𝑉 ) is a representation of , then ker(𝜌) = g ⊗ Ann𝑆(𝑉 ).

Proof. Set  = ker(𝜌). Fix a homogeneous element 𝑣 ∈ , then there exists 𝑎𝛼 ∈ 𝑆, 𝛼 ∈ Δ,

𝑤 ∈ h ⊗ 𝑆 such that

𝑣 = ∑
𝛼∈Δ
𝑥𝛼 ⊗ 𝑎𝛼 + 𝑤.

Since  is a submodule of the weight -module , we have that  is a weight module, and

its weight spaces are (g𝛼 ⊗ 𝑆) ∩ . Therefore, we have that 𝑥𝛼 ⊗ 𝑎𝛼 ∈  for each 𝛼 ∈ Δ
because dim g𝛼 = 1. If 𝑥 ⊗ 𝑎 ∈ , we may consider the g-module generated by 𝑥 ⊗ 𝑎 inside

of . We have that 𝑈 (g)(𝑥 ⊗ 𝑎) = (𝑈 (g)𝑥) ⊗ 𝑎 = g ⊗ 𝑎, because g is simple. Therefore,

g ⊗ 𝑎𝛼 ∈ , so 𝑎𝛼 ∈ Ann𝑆(𝑉 ).

Now, consider 𝑤 ∈  ∩ (h⊗𝑆). Since g is a basic classical Lie superalgebra, there exists

an even nondegenerated g-invariant bilinear form ⟨⋅, ⋅⟩ on g such that [𝑥𝛼 , 𝑥𝛼] = ⟨𝑥𝛼 , 𝑥−𝛼⟩ℎ𝛼
where ℎ𝛼 is such that ⟨ℎ𝛼 , ℎ⟩ = 𝛼(ℎ). This form is still nondegenerate when restricted to h.
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Consider a simple root system 𝛼1,… , 𝛼𝑟 of Δ, and write

𝑤 =
𝑟

∑
𝑖=1
ℎ𝛼𝑖 ⊗ 𝑎𝑖.

Hence,

[
𝑥𝛼𝑗 ⊗ 1,

𝑟

∑
𝑖=1
ℎ𝛼𝑖 ⊗ 𝑎𝑖]

= 𝑥𝛼𝑗 ⊗(
−(−1)|𝑥𝛼𝑗 |

𝑟

∑
𝑖=1
𝛼𝑗(ℎ𝛼𝑖)𝑎𝑖)

∈ 

for each 𝑗 = 1,… , 𝑟 . By a similar argument we gave before, we have that

𝑟

∑
𝑖=1
𝛼𝑗(ℎ𝛼𝑖)𝑎𝑖 ∈

Ann𝑆(𝑉 ). Since ⟨⋅, ⋅⟩ is non-degenrated, the matrix (⟨𝛼𝑖, 𝛼𝑗⟩)𝑟𝑖,𝑗=1 = (𝛼𝑖(ℎ𝛼𝑗 ))
𝑟
𝑖,𝑗=1 is invertible.

Hence, the linear system

𝑟

∑
𝑖=1
𝛼𝑗(ℎ𝛼𝑖)𝑎𝑖, 𝑖 = 1,… , 𝑟 , has a solution, and this implies that

𝑎𝑖 ∈ Ann𝑆(𝑉 ).

Proposition 4.4.4. If 𝑉 is a simple finite weight -module, then dim 𝑆/Ann𝑆(𝑉 ) < ∞.

Proof. To prove that 𝑆/Ann𝑆(𝑉 ) is a finite-dimensional algebra, we will use the same

argument given in [BLL15]. We will leave it here for completion. Since Ann𝑆(𝑉 ) is an

ideal, we only need to prove the vector space 𝑆/Ann𝑆(𝑉 ) has finite dimension. For each

𝜆 ∈ Supp(𝑉 ), define

𝐽 (𝜆) =
{
𝑎 ∈ 𝑆 ∣ (𝑥 ⊗ 𝑎)𝑉 𝜆 = 0 ∀𝑥 ∈ g

}
,

and 𝐽 (𝜆,Δ) = ⋂
𝜇∈𝜆+Δ∪{0}

𝐽 (𝜇). Let𝐵𝛼 be a basis of g𝛼 and𝐵𝜇 is a basis for𝑉 𝜇
for each 𝛼 ∈ Δ∪{0},

𝜇 ∈ Supp(𝑉 ).

Claim 1: dim 𝑆/𝐽 (𝜆,Δ) < ∞.

For each 𝛼 ∈ Δ ∪ {0}, 𝑥 ∈ g, and 𝑣 ∈ 𝑉 𝜇
where 𝜇 ∈ 𝜆 + Δ, the map 𝜂𝑥,𝑣 ∶ 𝑆 → 𝑉 𝜇+𝛼

given by 𝜂(𝑎) = (𝑥 ⊗ 𝑎)𝑣 induces an injection from 𝑆/ker 𝜂𝑥,𝑣 to the finite-dimensional

vector space 𝑉 𝜇+𝛼
. Therefore, the vector space 𝑆/ker 𝜂𝑥,𝑣 has finite dimension, and

𝐽 (𝜆,Δ) = ⋂
𝜇∈𝜆+Δ∪{0}

⋂
𝑣∈𝐵𝜇

⋂
𝛼∈Φ

⋂
𝑥∈𝐵𝛼

ker𝑥,𝑣

is the intersection of finitely many vector spaces with finite codimension. Hence, the map

𝑆/𝐽 (𝜆,Δ) → ⨁
𝛼,𝛽∈Δ∪{0}

𝑥∈𝐵𝛼 , 𝑣∈𝐵𝜆+𝛽

𝑆/ker 𝜂𝑥,𝑣

𝑎 + 𝐽 (𝜆,Δ) ↦ (𝑎 + ker 𝜂𝑥,𝑣)

is a monomorphism on a finite-dimensional vector space. Thus, 𝑆/𝐽 (𝜆,Δ) has finite di-

mension.



4.5 | THE SHADOW OF A MODULE

109

Claim 2: 𝐽 (𝜆,Δ)𝑆 ⊂ 𝐽 (𝜆).

Let 𝑎 ∈ 𝐽 (𝜆,Δ)𝑆, 𝑏 ∈ 𝑆, 𝑣 ∈ 𝑉 𝜆
. If 𝛼, 𝛽 ∈ Δ ∪ {0}, 𝑥 ∈ 𝐵𝛼 and 𝑦 ∈ 𝐵𝛽 , then

((−1)|𝑏 ||𝑦 |[𝑥, 𝑦] ⊗ 𝑏𝑎)𝑣 =[𝑥 ⊗ 𝑏, 𝑦 ⊗ 𝑎]𝑣
=(𝑥 ⊗ 𝑏)(𝑦 ⊗ 𝑎)𝑣 − (−1)(|𝑥 |+|𝑏 |)(|𝑦 |+|𝑏 |)(𝑦 ⊗ 𝑎)(𝑥 ⊗ 𝑏)𝑣
=(𝑥 ⊗ 𝑏)(𝑦 ⊗ 𝑎)𝑣 ∈ (𝑥 ⊗ 𝑟)𝑉 𝜆+𝛽 = {0}.

Since g is simple, ([g, g] ⊗ 𝑏𝑎)𝑣 = (g ⊗ 𝑏𝑎)𝑣 for all 𝑣 ∈ 𝑉 𝜆
. Thus, 𝐽 (𝜆,Δ)𝑆 ⊂ 𝐽 (𝜆).

Claim 3: 𝑆/Ann𝑆(𝑉 ) has finite dimension.

Let 𝑣 ∈ 𝑉 𝜆
be a nonzero weight vector. Since 𝑉 is simple, every element of 𝑉 is equal

to a linear combination of elements of the form (𝑥1 ⊗ 𝑎1)⋯ (𝑥𝑘 ⊗ 𝑎𝑘)𝑣, where 𝑥1,… , 𝑥𝑘 ∈,

and 𝑎1,… , 𝑎𝑘 ∈ 𝑆. We will use induction on 𝑘 ≥ 0 to prove that

(𝑥 ⊗ 𝑟𝑎)(𝑥1 ⊗ 𝑎1)⋯ (𝑥𝑘 ⊗ 𝑎𝑘)𝑣 = 0

for every 𝑥 ∈ g, 𝑟 ∈ 𝐽 (𝜆,Δ), 𝑎 ∈ 𝑆. If 𝑘 = 0, then (𝑥 ⊗ 𝑟𝑎)𝑣 = 0 by Claim 2. Assume 𝑘 > 0.

Thus,

(𝑥 ⊗ 𝑟𝑎)(𝑥1 ⊗ 𝑎1)⋯ (𝑥𝑘 ⊗ 𝑎𝑘)𝑣 =(−1)(|𝑥1 |+|𝑎1 |)(|𝑥 |+|𝑟𝑎|)(𝑥1 ⊗ 𝑎1)(𝑥 ⊗ 𝑟𝑎)⋯ (𝑥𝑘 ⊗ 𝑎𝑘)𝑣
+ (−1)|𝑟𝑎||𝑥1 |([𝑥, 𝑥1] ⊗ 𝑟𝑎𝑎1)⋯ (𝑥𝑘 ⊗ 𝑎𝑘)𝑣

By induction hypotheses, both summands on the right-hand side of the previous equa-

tion are zero. If we take 𝑎 = 1, we conclude that 𝐽 (𝜆,Δ) ⊂ Ann𝑆(𝑉 ). By Claim 1,

dim(𝑆/Ann𝑆(𝑉 )) ≤ dim(𝑆/𝐽 (𝜆,Δ)) < ∞.

4.5 The shadow of a module
Recall that h is a Cartan subalgebra of the basic classical Lie superalgebra g. The

following proposition is a simple generalization of a well-known result on weight modules

over Lie algebras.

Proposition 4.5.1. Let 𝑉 be a simple finite weight -module. If 𝛼 is an even root and 𝑎 ∈ 𝑆0,
then 𝑥𝛼 ⊗ 𝑎 acts either injectively or nilpotently on 𝑉 . Furthermore, the following conditions
are equivalent:

1. For each 𝜆 ∈ Supp(𝑉 ), the weight space 𝑉 𝜆+𝑛𝛼 is zero for all but finitely many 𝑛 > 0.

2. There exists 𝜆 ∈ Supp(𝑉 ) such that the weight space 𝑉 𝜆+𝑛𝛼 is zero for all but finitely
many 𝑛 > 0.

3. The element 𝑥𝛼 ⊗ 𝑠 acts locally nilpotently on 𝑉 for all 𝑠 ∈ 𝑆0.

4. The element 𝑥𝛼 ⊗ 1 acts locally nilpotently on 𝑉 .

Proof. It follows from the same arguments given for Lie algebras, see [Lau18, Lemma 2.1,

Proposition 2.2].
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Definition 4.5.2. The set inj(𝑉 ) ⊂ Δ0 is defined as the set of all 𝛼 ∈ Δ0 such that 𝑥𝛼 ⊗ 1
acts injectively on 𝑉 .

Lemma 4.5.3. If 𝑉 is a simple finite weight -module, then inj(𝑉 ) is closed, i.e., if 𝛼, 𝛽 ∈
inj(𝑉 ) with 𝛼 + 𝛽 ∈ Δ, then 𝛼 + 𝛽 ∈ inj(𝑉 ).

Proof. Let 𝛼, 𝛽 ∈ Δ0 such that 𝛼 + 𝛽 ∈ Δ. By Proposition 4.5.1, 𝑉 𝑥+𝑛𝛼+𝑛𝛽 = 𝑉 𝛼+𝑛(𝛼+𝛽)
is

non-zero for infinite many 𝑛 > 0 and 𝜆 ∈ Supp(𝑉 ). By the same proposition, 𝑥𝛼+𝛽 ⊗ 1 acts

injectively on 𝑉 , so 𝛼 + 𝛽 ∈ inj(𝑉 ).

Let 𝑉 be a simple finite weight -module. We want to extend the definition of inj(𝑉 )
for odd roots as well. However, elements like 𝑥𝛼 ⊗ 1 will always act nilpotently on 𝑉 if 𝛼
is an isotropic root because 2(𝑥𝛼 ⊗ 1)2 = [𝑥𝛼 ⊗ 1, 𝑥𝛼 ⊗ 1] = 0. Therefore, we will use the

ideas presented in [DMP00] to extend our definition.

A cone 𝐶 is a finitely generated submonoid of . The saturation 𝐶 of a cone 𝐶 is the

set

𝐶 = {𝛼 ∈  ∣ 𝑚𝛼 ∈ 𝐶 for some integer 𝑚 > 0}.

For a weight module 𝑉 , define 𝐶1
𝑉 as the cone generated by inj(𝑉 ) and 𝐶2

𝑉 as the cone

generated by all 𝛼 ∈  such that 𝛼 + Supp(𝑉 ) ⊂ Supp(𝑉 ).

Definition 4.5.4. A simple finite weight -module is called compatible if there exists a

finite set Θ ⊂ Supp(𝑉 ) such that Supp(𝑉 ) = Θ + 𝐶1
𝑉 .

Proposition 4.5.5. Let 𝑉 be a simple finite weight -module. If 𝑆1 = 0, then 𝑉 is compatible.
In particular, 𝐶1

𝑉 = 𝐶2
𝑉 .

Proof. Since 𝑆1 = 0,

𝑈 () ≅ 𝑈 (g𝛼𝑡 ⊗ 𝑆)⋯𝑈 (g𝛼1)𝑈 (h ⊗ 𝑆)⋀(g1 ⊗ 𝑆)

as a vector space, where Δ0 = {𝛼1,… , 𝛼𝑡}. Let 𝜆 ∈ Supp(𝑉 ), and define

𝑊0(𝜆) = (𝑈 (h ⊗ 𝑆)⋀(g1 ⊗ 𝑆))𝑉 𝜆,

𝑊𝑖(𝜆) = 𝑈 (g𝛼𝑖 ⊗ 𝑆)⋯𝑈 (g𝛼1 ⊗ 𝑆)𝑊0(𝜆).

for each 𝑖 = 1,… , 𝑡. Each𝑊𝑖(𝜆) is a weight module over h. Define 𝑆𝑖(𝜆) as the set of weights

of 𝑊𝑖(𝜆).

Because both 𝑉 𝜆
and 𝑆/Ann𝑆(𝑉 ) are finite-dimensional super vector spaces and the

exterior algebra of a finite-dimensional vector space is finite-dimensional, we have that

(⋀ 𝑔1 ⊗ 𝑆/Ann𝑆(𝑉 ))𝑉 𝜆
is finite-dimensional. Thus, the subspace

𝑊0(𝜆) = (𝑈 (h ⊗ 𝑆/Ann𝑆(𝑉 ))⋀ (g1 ⊗ (𝑆/Ann𝑆(𝑉 ))))𝑉 𝜆

has finite dimension as well, since it has the same weights as (⋀ 𝑔1 ⊗ 𝑆/Ann𝑆(𝑉 ))𝑉 𝜆
.

Therefore, 𝑆0(𝜆) is a finite set. Assume that Δ0 ⧵ inj(𝑉 ) = {𝛼1,… , 𝛼𝑎} and inj(𝑉 ) =
{𝛼𝑎+1,… , 𝛼𝑡}. By Proposition 4.5.1, the set Supp𝑉 ∩ {𝛾 + 𝑛𝛼𝑘 ∣ 𝑛 ≥ 0} is finite for each
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𝛾 ∈ Supp𝑉 . Therefore, for each 0 < 𝑘 ≤ 𝑎,

𝑆𝑘(𝜆) = ⋃
𝛾∈𝑆𝑘−1(𝜆)

Supp𝑉 ∩ {𝛾 + 𝑛𝛼𝑘 ∣ 𝑛 ≥ 0}

is a finite union of finite sets. We conclude that 𝑆𝑎(𝜆) is a finite set. Set Θ = 𝑆𝑎(𝜆). Since

each root 𝛼𝑎+𝑖 is injective, 𝛾 +𝑛𝛼𝑎+𝑖 ∈ Supp(𝑉 ) for every 𝛾 ∈ Θ. Therefore, 𝑆𝑡(𝜆) = Θ+𝐶1
𝑉 .

Since 𝑉 is simple, 𝑆𝑡(𝜆) = Supp(𝑉 ). We conclude that Supp(𝑉 ) = Θ + 𝐶1
𝑉 .

Remark 4.5.6. We note that the same proof works for the case where g is a simple Lie

algebra and 𝑆 is a commutative superalgebra.

For a simple compatible finite weight -module 𝑉 , we denote by 𝐶𝑉 the saturation of

the cone 𝐶1
𝑉 and 𝐶2

𝑉 .

Proposition 4.5.7. Let 𝑉 a simple compatible finite weight -module, and 𝛼 ∈ Δ1. Then
𝑉 𝜆+𝑛𝛼 is non-zero for infinitely many 𝑛 > 0 and any 𝜆 ∈ Supp(𝑉 ) if and only if 𝛼 ∈ 𝐶𝑉 .

Proof. Suppose 𝑉 𝜆+𝑛𝛼
is non-zero for infinitely many 𝑛 > 0 and any 𝜆 ∈ Supp(𝑉 ). Let

Θ ⊂ Supp(𝑉 ) be a finite set given by Proposition 4.5.5 such that Supp(𝑉 ) = 𝐶1
𝑉 + Θ.

There exists a sequence 𝑛1 < 𝑛2 < 𝑛3 < ⋯ of positive integers and 𝛾 ∈ Θ such that

𝛾 + 𝑛𝑘𝛼 ∈ Supp(𝑀) ⧵ Θ for every 𝑘 > 0. Since the set {𝑛𝑘 ∣ 𝑘 > 0} is infinite and every

𝛾 + 𝑛𝑘𝛼 is in the same coset of Θ + 𝐶1
𝑉 , there exists 𝜆 ∈ Θ and 0 < 𝑝 < 𝑞 such that

𝛾 + 𝑛𝑝𝛼 = 𝜆 + 𝛽1 and 𝛾 + 𝑛𝑞𝛼 = 𝜆 + 𝛽2

for some 𝛽1, 𝛽2 ∈ 𝐶1
𝑉 . Note that we can assume 𝑛𝑞 is big enough in such a way that

𝛽2 − 𝛽1 ∈ 𝐶1
𝑉 . Therefore, we have that (𝑛𝑞 − 𝑛𝑝)𝛼 ∈ 𝐶1

𝑉 , and we conclude 𝛼 ∈ 𝐶1
𝑉 = 𝐶𝑉 .

On the other hand, assume that 𝛼 ∈ 𝐶𝑉 . Thus there exists 𝛼1,… , 𝛼𝑟 ∈ inj(𝑉 ) and

positive integers 𝑎1,… , 𝑎𝑟 , 𝑚 such that 𝑚𝛼 =
𝑟

∑
𝑖=1
𝑎𝑖𝛼𝑖. If 𝜆 ∈ Supp(𝑀), we see that 𝑉 𝜆+𝑚𝑛𝛼

is non-zero infinitely many 𝑛 > 0 by Proposition 4.5.1.

Suppose 𝑉 is compatible. Elements of 𝐶𝑉 ∩ Δ are called injective roots, and 𝛼 ∈ Δ is

said to be locally finite if 𝛼 is not injective. Decompose Δ in the four disjoint sets Δ𝑖𝑉 , Δ𝑓𝑉 ,

Δ+
𝑉 , Δ−

𝑉 given by

Δ𝑖𝑉 = {𝛼 ∈ Δ ∣ ±𝛼 ∈ 𝐶𝑉 },

Δ𝑓𝑉 = {𝛼 ∈ Δ ∣ ±𝛼 ∉ 𝐶𝑉 },
Δ+
𝑉 = {𝛼 ∈ Δ ∣ −𝛼 ∈ 𝐶𝑉 , 𝛼 ∉ 𝐶𝑉 },

Δ−
𝑉 = {𝛼 ∈ Δ ∣ 𝛼 ∈ 𝐶𝑉 , −𝛼 ∉ 𝐶𝑉 }.

Call the decomposition Δ = Δ𝑖𝑉 ⊔ Δ𝑓𝑉 ⊔ Δ+
𝑉 ⊔ Δ−

𝑉 as the 𝑉 -decomposition of Δ.

For a root 𝛼 ∈ Δ and 𝜆 ∈ Supp(𝑉 ), define the 𝛼-string through 𝜆 as the set {𝑥 ∈ ℚ ∣
𝜆 + 𝑥𝛼 ∈ Supp(𝑉 )}. It may be bounded, unbounded from bellow or above, or unbounded
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in both directions as a subset of ℚ. The following is a corollary of Proposition 4.5.1 and

Proposition 4.5.7.

Corollary 4.5.8. Let 𝑉 be a simple compatible finite weight -module, 𝛼 ∈ Δ, and 𝜆 ∈
Supp(𝑉 ). Then,

1. 𝛼 ∈ Δ𝑖𝑉 if and only if the 𝛼-string through any 𝜆 ∈ Supp(𝑉 ) is unbounded in both
directions.

2. 𝛼 ∈ Δ𝑓𝑉 if and only if the 𝛼-string through any 𝜆 ∈ Supp(𝑉 ) is bounded.

3. 𝛼 ∈ Δ+
𝑉 if and only if the 𝛼-string through any 𝜆 ∈ Supp(𝑉 ) is bounded from above

only.

4. 𝛼 ∈ Δ−
𝑉 if and only if the 𝛼-string through any 𝜆 ∈ Supp(𝑉 ) is bounded from bellow

only.

Therefore, it is clear that Δ𝑖𝑉 , Δ𝑓𝑉 , Δ+
𝑉 , Δ−

𝑉 are closed subsets of Δ. Thus, the sub-

spaces

g+𝑉 = ⨁
𝛼∈Δ+

𝑉

g𝛼 , g𝑖𝑉 = h ⊕⨁
𝛼∈Δ𝑖𝑉

g𝛼 , g−𝑉 = ⨁
𝛼∈Δ−

𝑉

g𝛼 .

of g are subalgebras. The triple (g+𝑉 , g𝑖𝑉 , g−𝑉 )will be called g-shadow of 𝑉 . The -shadow of 𝑉
is defined as the triple (+

𝑉 ,𝑖𝑉 ,−
𝑉), where +

𝑉 = g+𝑉⊗𝑆, 𝑖𝑉 = g𝑖𝑉⊗𝑆, and −
𝑉 = g−𝑉⊗𝑆.

Lemma 4.5.9. Let 𝑉 be a simple compatible finite weight -module. Then, the monoid 𝑖
𝑉

generated by all even roots in Δ𝑖𝑉 is a group, and for every odd root 𝛼 ∈ Δ𝑖𝑉 there is 𝑚 > 0
such that 𝑚𝛼 ∈ 𝑖

𝑉 .

Proof. By Lemma 4.5.3, inj(𝑉 ) ⊂ Δ0 is closed, thus the group generated by inj(𝑉 ) ∩ Δ𝑖𝑉 =
inj(𝑉 )∩−inj(𝑉 ) is 𝑖

𝑉 = 𝐶1
𝑉 ∩(−𝐶1

𝑉 ). If 𝛼 ∈ Δ𝑖𝑉 is odd, then 𝛼 ∈ 𝑖
𝑉 by Corollary 4.5.8.

Remark 4.5.10. The previous lemma was proved for weight modules over a simple Lie

superalgebra in [DMP00, Theorem 3.6].

4.6 Parabolic induction theorem
We start this section by providing two results about some extreme cases. The first is

Δ𝑓𝑉 = Δ, and the second case is Δ𝑖𝑉 = Δ. Then we define what is a triangular decomposition

in our setting, which leads to a construction similar to Verma modules. We prove that

every finite -module is either cuspidal or parabolically induced module from a cuspidal

module over a certain subalgebra of . For some of these statements, we will assume that

𝑉 is compatible.

Proposition 4.6.1. Let 𝑉 be a simple finite weight -module. Then Δ𝑓𝑉 = Δ if and only if 𝑉
has finite dimension.

Proof. If 𝑉 has finite dimension, then every even root is locally finite by Proposition 4.5.1.

Therefore, 𝐶𝑉 = {0}, and Δ𝑓𝑉 = Δ.
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Assume that Δ𝑓𝑉 = Δ. We use ideas presented in the proof of Proposition 4.5.5 to show

that 𝑉 has finite dimension. By PBW theorem,

𝑉 ≅
(
⨂
𝛼∈Δ1

𝑈 (g𝛼 ⊗ 𝑆1))(
⨂
𝛼∈Δ0

𝑈 (g𝛼 ⊗ 𝑆0))
𝑈 (h ⊗ 𝑆)⋀(g0 ⊗ 𝑆1)⋀(g1 ⊗ 𝑆0)𝑉 𝜆

as a vector space for every 𝜆 ∈ Supp(𝑉 ). With this in mind, fix 𝜆 ∈ Supp(𝑉 ), and define

𝑊0(𝜆) = 𝑈 (h ⊗ 𝑆)⋀(g0 ⊗ 𝑆1)⋀(g1 ⊗ 𝑆0)𝑉 𝜆

Furthermore, enumerate Δ0 = {𝛼1,… , 𝛼𝑎} and Δ1 = {𝛼𝑎+1,… , 𝛼𝑎+𝑏}. Finally, define

𝑊𝑖(𝜆) = 𝑈 (g𝛼𝑖 ⊗ 𝑆0)⋯𝑈 (g𝛼1 ⊗ 𝑆0)𝑊0(𝜆)

for 𝑖 = 1,… , 𝑎, and

𝑊𝑖(𝜆) = 𝑈 (g𝛼𝑖 ⊗ 𝑆1)⋯𝑈 (g𝛼𝑎+1 ⊗ 𝑆1)𝑊𝑎(𝜆).

for 𝑖 = 𝑎 + 1,… , 𝑎 + 𝑏 .

Note that 𝑊𝑖(𝜆) is a weight h ⊗ k-module. Thus, we can consider 𝑆𝑖(𝜆) the set of its

weights. Since 𝑉 is simple, 𝑊𝑎+𝑏(𝜆) = 𝑉 and 𝑆𝑎+𝑏(𝜆) = Supp(𝑉 ) by the PBW Theorem.

We will prove by induction on 𝑘 that 𝑆𝑘(𝜆) is finite. The weights of

𝑊0(𝜆) = 𝑈 (h ⊗ 𝑆/Ann𝑆(𝑉 ))⋀(g0 ⊗ 𝑆1/Ann𝑆(𝑉 ))⋀ (g1 ⊗ (𝑆/Ann𝑆(𝑉 )))𝑉 𝜆

contains the weights of ⋀(g0 ⊗ 𝑆1/Ann𝑆(𝑉 ))⋀ (g1 ⊗ (𝑆/Ann𝑆(𝑉 )))𝑉 𝜆
, which is finite-

dimensional because both 𝑉 𝜆
and 𝑆/Ann𝑆(𝑉 ) are finite-dimensional. Thus, we have that

𝑊0(𝜆) is finite-dimensional and the exterior algebra of a finite-dimensional vector space is

finite-dimensional. Therefore, 𝑆0(𝜆) is a finite set. Suppose 𝑘 > 0, then

𝑆𝑘(𝜆) ⊂ ⋃
𝛾∈𝑆𝑘−1(𝜆)

Supp𝑉 ∩ {𝛾 + 𝑛𝛼𝑘 ∣ 𝑛 ≥ 0}.

By Corollary 4.5.8 and the assumption that Δ𝑓 = Δ, the set Supp𝑉 ∩ {𝛾 + 𝑛𝛼𝑘 ∣ 𝑛 ≥ 0}
is finite for every element of the finite set 𝑆𝑘−1(𝜆). Hence, 𝑆𝑘(𝜆) is finite because it is

a finite union of finite sets. We conclude that 𝑆𝑎+𝑏(𝜆) = Supp(𝑉 ) is finite, thus 𝑉 is a

finite-dimensional vector space because it has finite support and its weight spaces have

finite dimension.

Proposition 4.6.2. Let 𝑉 be a simple compatible finite weight -module. If Δ𝑖𝑉 = Δ (equiv-
alently, inj(𝑉 ) = Δ0), then 𝑉 is bounded. Furthermore, there exists a finite set Θ ⊂ Supp(𝑉 )
such that Θ +0 = Supp(𝑉 ), and dim𝑉 𝜆 = dim𝑉 𝜇 if 𝜆, 𝜇 ∈ 𝛾 +0 for some 𝛾 ∈ Θ.

Proof. Since 𝑉 is compatible, there exists a finite set Θ ⊂ Supp(𝑉 ) such that Supp(𝑉 ) =
Θ + 𝐶1

𝑉 . Since every root is injective, 𝐶1
𝑉 = 0. Therefore, Supp(𝑉 ) = Θ +0.
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Let 𝛼 ∈ Δ0 and 𝛾 ∈ Θ. Then, 𝛼,−𝛼 ∈ inj𝑉 and 𝑉 𝛾+𝑛𝛼 ≠ 0 for every 𝑛 ∈ ℤ by

Corollary 4.5.8. Since 𝑥𝛼 ⊗ 1 acts injectively, the linear map

𝑉 𝜆 → 𝑉 𝜆+𝛼

𝑣 ↦ (𝑥𝛼 ⊗ 1)𝑣

is injective. Thus, dim𝑉 𝜆 ≤ dim𝑉 𝜆+𝛼
. Likewise, the map 𝑣 ↦ (𝑥−𝛼 ⊗ 1)𝑣 is injective, hence

dim𝑉 𝜆 ≥ dim𝑉 𝜆+𝛼
. We conclude that dim𝑉 𝜆 = dim𝑉 𝜆+𝑛𝛼

for every 𝑛 ∈ ℤ, therefore

dim𝑉 𝜆 = dim𝑉 𝜆+𝛽
for every 𝛽 ∈ 0.

Definition 4.6.3 (Triangular decomposition). A triangular decomposition 𝑇 of g is a

decomposition g = g+𝑇 ⊕ g0𝑇 ⊕ g−𝑇 and a linear map 𝑙 ∶  → ℤ for which

g+𝑇 = ⨁
𝑙(𝛼)>0

g𝛼 , g0𝑇 = ⨁
𝑙(𝛼)=0

g𝛼 and g−𝑇 = ⨁
𝑙(𝛼)<0

g𝛼 .

Similarly, a triangular decomposition 𝑇 of is a decomposition of the form = +
𝑇⊕0

𝑇⊕−
𝑇 ,

where ∙
𝑇 = g∙𝑇 ⊗ 𝑆 and 𝑇 is a triangular decomposition of g. A triangular decomposition

is proper if g0𝑇 ≠ g. Finally, we set Δ+
𝑇 = {𝛼 ∈ Δ ∣ 𝑙(𝛼) > 0}, Δ−

𝑇 = {𝛼 ∈ Δ ∣ 𝑙(𝛼) < 0} and

Δ0
𝑇 = {𝛼 ∈ Δ ∣ 𝑙(𝛼) = 0}.

Lemma 4.6.4. There is a triangular decomposition 𝑇 of  such that Δ𝑖𝑉 = Δ0
𝑇 , Δ+

𝑉 ⊂ Δ+
𝑇 , and

Δ−
𝑉 ⊂ Δ−

𝑇 .

Proof. The statement follows from Corollary 4.5.8, since it will be possible to construct a

-shadow consisting of Lie subalgebras of .

For a triangular decomposition 𝑇 of  and a weight 0
𝑇 -module 𝑊 , we define the

induced module

𝑀𝑇 (𝑊 ) = 𝑈 () ⊗𝑈(0𝑇⊕+𝑇 )𝑊,

where the action of +
𝑇 on 𝑊 is trivial. This can be seen as a generalization of a Verma

module. In fact, if 0
𝑇 = h⊗ 𝑆, then 𝑀𝑇 (ℂ𝜆) is the Verma module with highest weight 𝜆 for

some 𝜆 ∈ (h ⊗ 𝑆)∗.

Proposition 4.6.5. Let 𝑊 be a weight 0
𝑇 = g0𝑇 ⊗ 𝑆-module whose support is included in a

single 𝑇 -coset, where 𝑇 is the root lattice of g0𝑇 .

1. 𝑀𝑇 (𝑊 ) has a unique submodule 𝑁𝑇 (𝑊 ) which is maximal among all submodules of
𝑀𝑇 (𝑊 ) with trivial intersection with 𝑊 .

2. 𝑁𝑇 (𝑊 ) is maximal if and only if𝑊 is simple. In particular, 𝐿𝑇 (𝑊 ) = 𝑀𝑇 (𝑊 )/𝑁𝑇 (𝑊 )
is a simple -module if and only if 𝑊 is a simple 0

𝑇 -module.

3. If 𝑊 is simple, the space

𝐿𝑇 (𝑊 )
+
𝑇 =

{
𝑣 ∈ 𝐿𝑇 (𝑊 ) ∣ 𝑥𝑣 = 0 for all 𝑥 ∈ +

𝑇

}

of +
𝑇 -invariants is equal to 𝑊 .
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Proof. This proof is standard and follows the same idea as Verma modules. See [DMP00,

Lemma 2.3, Corollary 2.4] for the proof of this proposition on the finite-dimensional simple

Lie superalgebra case.

Theorem 4.6.6. Let 𝑉 be a simple compatible finite weight -module, then there is a
triangular decomposition 𝑇 such that Δ𝑖𝑉 = Δ0

𝑇 , Δ+
𝑉 ⊂ Δ+

𝑇 , Δ−
𝑉 ⊂ Δ−

𝑇 , the vector space of
+
𝑇 -invariants 𝑉 +𝑇 is a simple bounded 𝑖𝑉 -module, and 𝑉 ≅ 𝐿𝑇 (𝑉 +𝑇 ).

Proof. Let 𝑣 ∈ 𝑉 𝜆
be a nonzero weight vector with weight 𝜆 ∈ Supp(𝑉 ). By Lemma 4.5.9,

we may fix a triangular decomposition 𝑇 of  such that Δ𝑖𝑉 = Δ0
𝑇 , Δ+

𝑉 ⊂ Δ+
𝑇 , and Δ−

𝑉 ⊂ Δ−
𝑇 .

Then, 𝑈 (+
𝑇 )𝑣 is a finite-dimensional +

𝑇 -module by a similar argument to the given on

Proposition 4.6.1. Therefore, 𝑈 (+
𝑇 )𝑣 ∩ 𝑉 +𝑇 ≠ 0, and 𝑉 +𝑇 is a non-zero vector space.

Let 𝑤 ∈ 𝑉 +𝑇 be a non-zero weight vector, and 𝑊 = 𝑈 (𝑖𝑣)𝑤. The vector space 𝑖𝑉 ⊕ +
𝑇

is a Lie subalgebra of , and 𝑈 (𝑖𝑉 ⊕ +
𝑇 )𝑤 = 𝑈 (𝑖𝑉 )𝑈 (+

𝑇 )𝑤 = 𝑈 (𝑖𝑉 )𝑤 = 𝑊 by PBW

theorem. Hence, 𝑊 is a 𝑖𝑉 ⊕ +
𝑇 -module. The linear map

𝜑 ∶ 𝑀𝑇 (𝑊 ) → 𝑉
𝑢 ⊗𝑈 (𝑖𝑉⊕+𝑇 ) 𝜈 ↦ 𝑢𝜈

is a well-defined -module homomorphism. Its image contains 𝑊 , so 𝜑 is a non-zero

-module homomorphism on the simple -module 𝑉 . Therefore, it is surjective, 𝑉 ≅
𝑀𝑇 (𝑊 )/ ker(𝜑), and ker(𝜑) is a maximal -module of 𝑀𝑇 (𝑊 ). As a vector space, 𝑀𝑇 (𝑊 )
is isomorphic to 𝑈 (−

𝑇 )−
𝑇 ⊗𝑊 ⊕k⊗𝑊 thus 𝜑(1⊗𝜈) = 𝜈 for every 𝜈 ∈ 𝑊 . The restriction

of 𝜑 to k ⊗𝑊 ≅ 𝑊 is a 𝑖𝑉 -module monomorphism, thus 𝑊 ∩ ker(𝜑) = 0. Being ker(𝜑)
a maximal submodule with trivial intersection with 𝑊 , we apply Proposition 4.6.5 to

conclude that ker(𝜑) = 𝑁𝑇 (𝑊 ), 𝑉 ≅ 𝐿𝑇 (𝑊 ), and 𝑊 = 𝑉 +𝑇 is a simple 𝑖𝑉 -module.

It remains to show that 𝑊 is a bounded 𝑖𝑉 -module. We use Lemma 4.5.9 to conclude

that g𝑖𝑉 is a good Levi subalgebra. For a complete list of all such subalgebras of g, we

refer to [DMP00; DMP04]. The important fact for our proof is that g𝑖𝑉 ≅ z ⊕ l, where

z is the center of g𝑖𝑉 and a subalgebra of Cartan subalgebra h, and l ≅
𝑘

⨁
𝑟=1

l𝑟 is a direct

sum of certain simple finite-dimensional basic Lie superalgebras where at most one l𝑖 has

nontrivial odd part. 𝑊 is a simple module over 𝑖𝑉 = g𝑖𝑉 ⊗ 𝑆 if and only if it is a simple

module over l ⊗ 𝑆. Since all but one l𝑟 are simple Lie algebras, Proposition 4.3.4 says that

𝑊 ≅
𝑘

⨂
𝑟=1

𝑊𝑟

as a module over l𝑟 ⊗ 𝑆, where 𝑊𝑟 is a simple finite weight module over l𝑟 ⊗ 𝑆 for each

𝑟 ∈ {1,… , 𝑟}. We wish to use Proposition 4.6.2 to conclude that 𝑊𝑟 is a bounded module

over l𝑟 ⊗ 𝑆. First, we note that inj(𝑊𝑟) ⊂ Δ𝑖𝑉 as a module over l𝑟 ⊗ 𝑆 is exactly the set of

even roots of l𝑟 . Secondly, since  is compatible, each 𝑊 is compatible as well a l𝑟 ⊗ 𝑆-

module, because Supp(𝑊 ) ⊂ Supp(𝑉 ) = 𝐶1
𝑉 and the root lattice of l𝑟 is equal to 𝐶1

𝑊𝑟
⊂ 𝐶1

𝑉 .

Therefore, each 𝑊𝑟 is a bounded l𝑟 ⊗ 𝑆-module by Proposition 4.6.2. We conclude that 𝑊
is bounded as a module over g𝑖𝑉 ⊗ 𝑆 because l𝑟 ’s are orthogonal among each other.
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We use Theorem 4.6.6 to define what is a cuspidal module in our context.

Definition 4.6.7. Let 𝑉 be a simple compatible finite weight -module. If there exists a

proper triangular decomposition 𝑇 of  and a simple 0
𝑇 -module 𝑊 such that 𝑉 ≅ 𝐿𝑇 (𝑊 ),

we say that 𝑉 is a parabolically induced module. We call 𝑉 a cuspidal module if it is not

parabolically induced.

Theorem 4.6.6 states that every simple compatible finite weight -module is either

cuspidal or parabolically induced. We emphasize that there exist parabolically induced

modules that are not finite weight -modules as the next example demonstrates.

Example 4.6.8. Suppose g is an arbitrary basic classical Lie superalgebra and 𝑆 = k[𝑡]
the polynomial algebra on the variable 𝑡. A choice of simple roots defines a triangular

decomposition 𝑇 of Δ = Δ+∪Δ−
. In this case, 0

𝑇 = h⊗k[𝑡]. Take ℎ ∈ h a non-zero element

of the Cartan subalgebra of g, and a linear functional Λ ∶ h⊗k[𝑡] such that Λ(ℎ⊗𝑡𝑘) = 1
𝑘+1

for every 𝑘 ≥ 0. The 1-dimensional 0
𝑇 -module k𝑣Λ defined by 𝑥𝑣Λ = Λ(𝑥)𝑣Λ is a simple

bounded finite weight 0
𝑇 -module, but the simple module 𝐿𝑇 (k𝑣Λ) has infinite-dimensional

weight spaces by [Sav14, Theorem 4.16].

4.7 Evaluation modules and finite-dimensional
-modules

Let 𝐴 be a commutative finitely generated algebra. Assume that m1,… ,m𝑟 are dis-

tinct maximal ideals of 𝐴 and 𝑛1,… , 𝑛𝑟 are non-negative integers, define the generalized
evaluation map

evm𝑛11 ,…,m𝑛𝑟𝑟 ∶ g ⊗ 𝐴 → g ⊗ 𝐴/m𝑛1
1 ⊕⋯ ⊕ g ⊗ 𝐴/m𝑛𝑟

𝑟

by evm𝑛11 ,…,m𝑛𝑟𝑟 (𝑥 ⊗ 𝑎) = (𝑥 ⊗ 𝑎 + m𝑛1 ,… , 𝑥 ⊗ 𝑎 + m𝑛𝑟
𝑟 ) for each 𝑥 ∈ g and 𝑎 ∈ 𝐴. When

𝑛1 = ⋯ = 𝑛𝑟 = 1, we call evm1,…,m𝑟 evaluation map. In this case, we note that evm𝑛11 ,…,m𝑛𝑟𝑟 ∶
g ⊗ 𝐴 → g⊕𝑟 , because 𝐴/m𝑖 ≅ k since k is algebraically closed.

Let 𝑉𝑖 be simple finite weight g𝑖⊗𝐴/m𝑛𝑖
𝑖 -module for each 𝑖 = 1,… , 𝑟 , then 𝑉1⊗⋯⊗𝑉𝑟

is a

𝑟

⨁
𝑖=1

g𝑖 ⊗ 𝐴/m𝑛𝑖
𝑖 -module with the action given by

(𝑥1,… , 𝑥𝑟)𝑣1 ⊗⋯ ⊗ 𝑣𝑟 =
𝑟

∑
𝑖=1
𝑣1 ⊗⋯ ⊗ 𝑥𝑖𝑣𝑖 ⊗⋯ ⊗ 𝑣𝑟

for each 𝑣𝑖 ∈ 𝑉𝑖, 𝑖 = 1,… , 𝑟 , and 𝑥𝑖 ∈ g⊗ 𝐴/m𝑛𝑖
𝑖 . In other words, if 𝜌𝑖 ∶ g⊗ 𝐴/m𝑛𝑖

𝑖 → gl(𝑉𝑖)
is the representation associated to 𝑉𝑖, then

𝑟

⨁
𝑖=1

g𝑖 ⊗ 𝐴/m𝑛𝑖
𝑖

𝜌1⊗⋯⊗𝜌𝑟−−−−−⟶ gl (𝑉1 ⊗⋯ ⊗ 𝑉𝑟)

is a representation for

𝑟

⨁
𝑖=1

g𝑖 ⊗ 𝐴/m𝑛𝑖
𝑖 .
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With this notation, we define the generalized evaluation module evm𝑛11 ,…,m𝑛𝑟𝑟 (𝑉1,… , 𝑉𝑟),
which is the -module 𝑉1 ⊗…𝑉𝑟 given by the composition


ev

m
𝑛1
1 ,…,m𝑛𝑟𝑟−−−−−−⟶

𝑟

⨁
𝑖=1

g𝑖 ⊗ 𝐴/m𝑛𝑖
𝑖

𝜌1⊗⋯⊗𝜌𝑟−−−−−⟶ gl
(

𝑟

⨁
𝑖=1
𝑉𝑖)

When 𝑛1 = ⋯ = 𝑛𝑟 = 1, we call evm1,…,m𝑟 (𝑉1,… , 𝑉𝑟) evaluation representation and we may

denote it by

𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 .

Theorem 4.7.1. [Sav14] If 𝑉 is a finite-dimensional weight -module, then 𝑉 is a generalized
evaluation module. In particular, if g0 is a semisimple Lie algebra, then 𝑉 is an evaluation
module.

4.8 Cuspidal -modules
In this section, we prove that every bounded cuspidal -module is an evaluation module.

However, we will need the assumption that 𝑆1 = 0, that is, 𝑆 is a commutative algebra

instead of a commutative superalgebra. To make a distinction, we will use the symbol 𝐴
for 𝑆 instead.

Let 𝑉 be a simple finite weight -module. Suppose that Δ𝑖𝑉 is not empty. By Theo-

rem 4.6.6, the vector space of +
𝑇 -invariants 𝑉 +𝑇 is a simple bounded 𝑖𝑉 -module. All roots

of 𝑖𝑉 acts injectively on 𝑉 +𝑇 , hence 𝑉 +𝑇 is a cuspidal 𝑖𝑉 -module. We may regard 𝑉 +𝑇 as

a module over g𝑖𝑉 . Since g𝑖𝑉 and g have the same Cartan subalgebra, 𝑉 +𝑇 is a bounded

finite weight module over g𝑖𝑉 . By [DMP00], it has finite length over g𝑖𝑉 . Therefore, 𝑉 +𝑇

has a cuspidal g𝑖𝑉 -submodule. Thus, g𝑖𝑉 admits cuspidal modules and is a cuspidal Levi
subalgebra of g.

All cuspidal Levi subalgebras were classified in [DMP00; DMP04]. It was shown that

a Levi subalgebra that admits cuspidal modules have components isomorphic to A(𝑛, 𝑛),
osp(𝑛|2𝑚) with 𝑛 ≠ 2 and 𝑛 ≤ 6, D(2, 1, 𝛼), a proper Levi subalgebra of the simple Lie

algebra 𝐺2, or a reductive Lie algebra with simple components of type 𝐴 or 𝐶. We point

out that the notion of weight and cuspidal modules from [DMP00] are different from

ours. Our definition is aligned with that of [EF09]. Therefore, the list of cuspidal Levi

superalgebras presented in [EF09] is precisely the one that might appear in our context,

which is osp(1|2), osp(1|2) ⊕ sl2, osp(𝑛|2𝑛) with 2 < 𝑛 ≤ 6, 𝐷(2, 1; 𝑎), or a reductive Lie

algebra with irreducible components of type 𝐴 and 𝐶. Either way, simple components

will all be either a reductive Lie algebra or a basic classical Lie superalgebra with g0
isomorphic to a semisimple Lie algebra. Not only that, at most one simple component is a

Lie superalgebra. For an extended study of bounded cuspidal modules over g⊗𝑆 where g is

simple Lie algebra and 𝑆 is a commutative Lie algebra, we refer to [BLL15]. Therefore, with

these arguments and Proposition 4.3.4 in mind, we only need to classify cuspidal bounded

weight -modules when g is a basic classical Lie superalgebra with g0 semisimple.

Proposition 4.8.1. Suppose that g is a basic classical Lie superalgebra such that g0 is
semisimple, and 𝐴 is a commutative algebra. If 𝑉 is a simple bounded weight g ⊗ 𝐴-module,
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then the ideal Ann𝐴(𝑉 ) is radical.

Proof. The proof is quite similar to the Lie algebra case done on [BLL15]. We will explicitly

prove only the parts that differ from that setting.

Denote  = g ⊗ 𝐴, 𝐼 = Ann𝐴(𝑉 ), and 𝜌 ∶  → End(𝑉 ) the associated representation

of the -module 𝑉 . By Proposition 4.4.3 and Proposition 4.4.4, 𝐴/𝐼 is a finite-dimensional

algebra, and 𝑉 is a faithful representation of /ker(𝜌) = g ⊗ 𝐴/𝐼 . The commutative

algebra 𝐴/𝐼 is Artinian since it is finite-dimensional. Thus, its Jacobson ideal 𝐽 =
√
𝐼/𝐼 is

nilpotent. If 𝐽 = 0, then 𝐼 is radical and the proof is complete. Suppose 𝐽 ≠ 0. Let 𝑚 be the

smallest integer such that 𝐽𝑚 = 0 but 𝐽𝑚−1 ≠ 0, and 𝑚′
be the smallest integer greater or

equal to 𝑚/2. Denote 𝑁 = 𝐽𝑚′
, thus 𝑁 ≠ 0, and 𝑁 2 = 0.

Claim 1: g𝛼 ⊗ 𝑁 acts nilpotently on 𝑉 for every 𝛼 ∈ Δ.

Let 𝛼 ∈ Δ1 be an odd root, 𝑥 ∈ g𝛼 , and 𝑎 ∈ 𝑁 . Hence, 𝑥 ⊗ 𝑎 is an odd element of , and

for each 𝑣 ∈ 𝑉
0 = ([𝑥, 𝑥] ⊗ 𝑎2)𝑣 = [𝑥 ⊗ 𝑎, 𝑥 ⊗ 𝑎]𝑣 = 2(𝑥 ⊗ 𝑎)𝑣

because 𝑎2 ∈ 𝑁 2 = 0. Therefore, g𝛼 ⊗ 𝑁 acts nilpotently on 𝑉 for every odd root 𝛼. If

𝛼 ∈ Δ0 is an even root, then the proof that g𝛼 ⊗ 𝑁0 acts nilpotently follows from Step 1

and 2 of [BLL15, Proposition 4.4].

Claim 2: There exists a nonzero weight vector 𝑤 ∈ 𝑉 such that (g ⊗ 𝑁 )𝑤 = 0.

Let 𝜆 ∈ Supp(𝑉 ) be a weight of 𝑉 . Then, (h⊗𝑁 )𝑉 𝜆 ⊂ 𝑉 𝜆
, because h⊗𝑁 is an abelian

algebra that commutes with h⊗1. Since h⊗𝑁 is an abelian Lie algebra (so solvable) and 𝑉 𝜆

has finite dimension, there exists a non-zero weight vector 𝑣0 ∈ 𝑉 𝜆
that is an eigenvector

for all elements of (h ⊗ 𝑁 ) by Lie’s Theorem.

Let Δ = Δ− ∪ Δ+
be a choice of positive roots for Δ, and denote n± = ⨁

𝛼∈Δ±

g𝛼 ⊗𝑁 . Since

𝑁 2 = 0, [g𝛼 ⊗ 𝑁, g ⊗ 𝑁 ] ⊂ g ⊗ 𝑁 2 = 0. By Claim 1, 𝑈 (n+ ⊗ 𝑁 )𝑣0 is a finite-dimensional

n+ ⊗ 𝑁 -module. Since n+ ⊗ 𝑁 acts nilpotently on the finite-dimensional vector space

𝑈 (n+ ⊗ 𝑁 )𝑣0, and n+ ⊗ 𝑁 form a family of commutative operators on 𝑈 (n+ ⊗ 𝑁 )𝑣0, then

𝜌(n+ ⊗ 𝑁 ) is family of simultaneously diagonalizable endomophisms of 𝑈 (n+ ⊗ 𝑁 )𝑣0.
Hence, there exists a weight vector 𝑢 ∈ 𝑈 (n+ ⊗ 𝑁 )𝑣0 such that (n+ ⊗ 𝑁 )𝑢 = 0. Similarly,

there exists a weight vector 𝑤 ∈ 𝑈 (n− ⊗ 𝑁 )𝑢 such that (n− ⊗ 𝑁 )𝑤 = 0. Since n− ⊗ 𝑁 and

n+ ⊗ 𝑁 commutes, (n+ ⊗ 𝑁 )𝑤 = 0 as well.

The weight vector 𝑤 is a eigenvector for every element of h ⊗ 𝑁 , because h ⊗ 𝑁
commutes with both n+⊗𝑁 and n−⊗𝑁 , 𝑤 ∈ 𝑈 (n−⊗𝑁 ⊕ n+⊗𝑁 )𝑣0, and (h⊗𝑁 )𝑣0 ⊂ k𝑣0.
By Step 5 of [BLL15, Proposition 4.4], (ℎ𝛼 ⊗𝑁 )𝑤 = 0 for every 𝛼 ∈ Δ0. The Cartan algebra

of g is the Cartan algebra of g0, which is semisimple by hypothesis. Therefore, the set

{ℎ𝛼 ∣ 𝛼 ∈ Δ0} generates h as a vector space. Thus, (h ⊗ 𝑁 )𝑤 = 0.

Claim 3: Ann𝐴(𝑉 ) is a radical ideal.

We wish to conclude that 𝑁 must be equal to 0. Set 𝑊 = {𝑤 ∈ 𝑉 ∣ (g ⊗ 𝑁 )𝑤 = 0}. By

Claim 2, 𝑊 is a non-zero vector space. For each 𝑥 ⊗ 𝑎 ∈ g ⊗ 𝐴/𝐼 , and 𝑦 ⊗ 𝑏 ∈ g ⊗ 𝑁 ,

(𝑦 ⊗ 𝑏)(𝑥 ⊗ 𝑎) = (−1)|𝑦 ||𝑥 |(𝑥 ⊗ 𝑎)(𝑦 ⊗ 𝑏)𝑤 + ([𝑥, 𝑦] ⊗ 𝑏𝑎)𝑤 = 0
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because 𝑏𝑎 ∈ 𝑁 . Therefore, 𝑊 is a (g ⊗ 𝐴/𝐼 )-submodule of 𝑉 . But 𝑉 is simple, thus

𝑉 = 𝑊 . We conclude that 0 ≠ 𝑁 ⊂ Ann𝐴/𝐼 (𝑉 ), which is a contradiction with the fact that

𝑉 is a faithful representation of g ⊗ 𝐴/𝐼 . Hence, 𝑁 = 0, thus 𝐽 =
√
𝐼/𝐼 = 0 as well, which

allows us to conclude that 𝐼 = Ann𝐴(𝑉 ) is a radical ideal.

Lemma 4.8.2. Let 𝑟 ≥ 2, and 𝑉1,… , 𝑉𝑟 be bounded weight g-modules such that Δ = ∪𝑟𝑖=1𝑅𝑉𝑖 .
Then the g-module 𝑉 ∶= ⨂𝑟

𝑖=1 𝑉𝑖 is bounded if and only if dim𝑉𝑖 = ∞ for at most one
𝑖 = 1,… , 𝑟 .

Proof. Suppose dim𝑉𝑖 = ∞ for at most one 𝑖 ∈ {1,… , 𝑟}. Without loss of generality, we

assume that dim(𝑉1) may be infinity. Let 𝜆 ∈ Supp(𝑉 ), and 𝜆𝑖 ∈ Supp(𝑉𝑖) such that

𝜆 = 𝜆1 +⋯ + 𝜆𝑟 . Then,

𝑉 𝜆 = ⨁
𝛼1,…,𝛼𝑟∈
𝛼1+⋯+𝛼𝑟=0

𝑉 𝜆1+𝛼1
1 ⊗⋯ ⊗ 𝑉 𝜆𝑟+𝛼𝑟

𝑟 .

This sum is finite, and the maximum number of non-trivial summands is the sum 𝑁 =
|Supp(𝑉2)|+⋯+ |Supp(𝑉𝑟)| of numbers of weights of 𝑉2,… , 𝑉𝑟 . Therefore, the dimension of

𝑉 𝜆
is bounded by 𝑁 ⋅ 𝐿1 ⋅ dim(𝑉2) ⋅ dim(𝑉3)⋯ dim(𝑉𝑟), where 𝐿1 ∈ ℤ satisfy dim(𝑉 𝛾

1 ) < 𝐿1
for every 𝛾 ∈ Supp(𝑉1).

We wish to prove that if 𝑉 =
𝑟

⨂
𝑖=1
𝑉𝑖 is bounded, then at most one 𝑉𝑖 has infinite

dimension. Assume that dim(𝑉1) = dim(𝑉2) = ∞. Since each 𝑅𝑉𝑖 is closed, the subspace

g𝑖 ∶= ⨁
𝛼∈𝑅𝑉𝑖

kℎ𝛼 ⊕ ⨁
𝛼∈𝑅𝑉𝑖

g𝛼

is a subalgebra of g.

Consider the set 𝑅 = 𝑅𝑉1 +
𝑟

⋃
𝑖=2
𝑅𝑉𝑖 ∩ Δ. If 𝑅 = ∅, then g1 commutes with the algebra

generated by g2 + g3 + ⋯ + g𝑟 . Therefore, g1 is an ideal of g, because g = g1 + ⋯ + g𝑟

and [g1, g1] ⊂ g1. Similarly, if 𝑅 ⊂ 𝑅𝑉1 , then the commutator of an element of g1 with an

element of the algebra generated by g2 + g3 + ⋯ + g𝑟 is an element of g1. Thus, g1 will

also be an ideal of g. Being g simple, we have that g = g1 if 𝑅 = ∅ or 𝑅 ⊂ 𝑅𝑉1 . Since

dim(𝑉2) = ∞, there exists 𝛼 ∈ inj(𝑉2), and 𝑚 > 0 such that �̃� = 𝑚𝛼 ∈ 𝐶1
𝑉1 ∩ 𝐶

1
𝑉2 . Take

𝜆𝑖 ∈ Supp(𝑉𝑖) for each 𝑖 = 1,… , 𝑟 . Then,

0 ≠ 𝑉 𝜆1+𝑙�̃� ⊗ 𝑉 𝜆2+(𝑛−𝑙)𝛼2 ⊗ 𝑉 𝜆3 ⊗⋯ ⊗ 𝑉 𝜆𝑟 ⊂ 𝑉 𝜆1+⋯+𝜆𝑟+𝑛�̃�

for each 𝑛 > 0, and 𝑙 = 0,… , 𝑛. Therefore, the dimension of 𝑉 𝜆1+⋯+𝜆𝑟+𝑛�̃�
grows as 𝑛 gets

larger. We conclude that 𝑅 ≠ ∅ and 𝑅 ⊄ 𝑅𝑉1 .

Hence, we may suppose that there exists 𝛼 ∈ 𝑅𝑉1 and 𝛽 ∈ 𝑅𝑉2 such that 𝛼 + 𝛽 ∈
𝑟

⋃
𝑖=2
𝑅𝑉𝑖 .

If 𝛼 + 𝛽 ∈ 𝑅𝑉2 , then there exists 𝑚 ∈ ℤ+ such that �̃� = 𝑚𝛼 ∈ 𝐶1
𝑉1 , 𝛽 = 𝑚𝛽 ∈ 𝐶1

𝑉2 , and
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�̃� + 𝛽 = 𝑚(𝛼 + 𝛽) ∈ 𝐶1
𝑉2 . In this case, we have that

𝑛

⨁
𝑙=0

𝑉 𝜆1+𝑙�̃� ⊗ 𝑉 𝜆2+𝑙𝛽+(𝑛−𝑙)(�̃�+𝛽) ⊗ 𝑉 𝜆3 ⊗⋯ ⊗ 𝑉 𝜆𝑟 ⊂ 𝑉 𝜆1+⋯+𝜆𝑟+𝑛(�̃�+𝛽).

Therefore, dim𝑉 𝜆1+⋯+𝜆𝑟+𝑛(�̃�+𝛽) > 𝑛, and we would have that 𝑉 is not bounded, a contra-

diction. Thus, it remains to consider the case on which 𝛼 + 𝛽 ∈ 𝑅𝑉𝑖 for some 𝑖 ∈ {3,… , 𝑟}.
Without loss of generality, we assume 𝛼 + 𝛽 ∈ 𝑅𝑉3 . Similarly to the previous case, there

exists 𝑚 such that �̃� = 𝑚𝛼 ∈ 𝐶1
𝑉2 , 𝛽 = 𝑚𝛽 ∈ 𝐶1

𝑉2 , and �̃� + 𝛽 = 𝑚(𝛼 + 𝛽) ∈ 𝐶1
𝑉3 . Therefore,

𝑛

⨁
𝑙=0

𝑉 𝜆1+𝑙�̃� ⊗ 𝑉 𝜆2+𝑙𝛽 ⊗ 𝑉 𝜆3+(𝑛−𝑙)(�̃�+𝛽)
3 ⊗ 𝑉 𝜆4

4 ⊗⋯ ⊗ 𝑉 𝜆𝑟
𝑟 .

Hence, dim𝑉 𝜆1+⋯+𝜆𝑟+𝑛(�̃�+𝛽) > 𝑛, which contradicts the assumption that 𝑉 is bounded.

We conclude that at most one 𝑉𝑖 has infinite dimension.

Theorem 4.8.3. Suppose that  has cuspidal modules. If 𝑉 is a cuspidal bounded -module,
then 𝑉 is isomorphic to an evaluation module.

Proof. We have that g0 is a semisimple Lie algebra because  is a Lie algebra. By Proposi-

tion 4.8.1, Ann𝐴(𝑉 ) is a radical ideal of 𝐴, so there exists pairwise distinct maximal ideals

m1,… ,m𝑟 of 𝐴 such that Ann𝐴(𝑉 ) = m1 ∩ ⋯ ∩ m𝑟 . By the Chinese Remainder Theorem

and the assumption that 𝐴 is a finitely generated algebra over an algebraically closed field,

/
(
g ⊗

𝑟

⋂
𝑖=1

m𝑖)
≅ g ⊕

(
𝐴/

𝑟

⋂
𝑖=1

m𝑖)
≅ g ⊗ (𝐴/m1 ⊕⋯ ⊕ 𝐴/m𝑟) ≅

𝑟

⨁
𝑖=1

g ⊗ (𝐴/m𝑖) ≅ g𝑟 .

Hence, 𝑉 is a simple g𝑟-module. By Proposition 4.3.4, there exist simple weight g-modules

𝑉1,… , 𝑉𝑟 such that 𝑉 is a simple g𝑟-submodule of �̃� = 𝑉1 ⊗⋯ ⊗ 𝑉𝑟 . Furthermore, there

exists 𝑁 such that �̃� ≅
𝑁

⨁
𝑖=1
𝑉 , i.e. �̃� is isomorphic to 𝑁 copies of 𝑉 . We wish to prove that

𝑁 = 1.

The -module 𝑉 is bounded if and only if �̃� is bounded as a g-module. Moreover,

Δ = Δ𝑖𝑉 = 𝑅𝑉 = 𝐶𝑉 ∩Δ, because 𝑉 is a cuspidal -module. Note that 𝑉 𝜆 ⊂ �̃� 𝜆 = ⨂
𝜆1+…𝜆𝑟=𝜆

𝑉 𝜆𝑖
𝑖 .

Thus, if 𝛼 ∈ 𝑅𝑉 , then there exists 𝑖 ∈ {1,… , 𝑟} such that 𝑉 𝜆𝑖+𝑛𝛼
𝑖 ≠ 0 for infinite many 𝑛 > 0,

which implies that 𝛼 ∈ 𝑅𝑉𝑖 . On the other hand, take 𝛼 ∈ 𝑅𝑉𝑙 ∩ Δ0 and 𝑎1,… , 𝑎𝑟 ∈ 𝐴 with

𝑎𝑖 + m𝑗 = 𝛿𝑖𝑗 + m𝑗 . Then, 𝑥𝛼 ⊗ 𝑎𝑖 acts injectively. By Proposition 4.5.1, 𝛼 ∈ 𝑅𝑉 . Since all

injective even roots of𝑉𝑙 are elements of 𝑅𝑉 , we conclude that 𝑅𝑉𝑙 ⊂ 𝑅𝑉 by Proposition 4.5.5.

Hence, 𝑅𝑉 =
𝑟

⋃
𝑖=1
𝑅𝑉𝑖 . By Lemma 4.8.2, at most one 𝑉𝑖 has infinite dimension. We may assume

without loss of generality that 𝑉1 is infinite-dimensional. In particular, for all 𝑖 > 1, the

g-modules 𝑉𝑖 are highest weight modules, which implies that Endg 𝑉𝑖 ≅ k (see [Sav14,
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Lemma 4.7]). By Proposition 4.3.4,

𝑉 ≅ 𝑉1 ⊗⋯ ⊗ 𝑉𝑟 .

We conclude that the associated representation 𝜌 ∶  → gl(𝑉 ) of 𝑉 factors through

 ↠ g ⊗ (𝐴/Ann𝐴(𝑉 ))
evm1 ,…,m𝑛−−−−−−→ g⊕𝑟

𝜌1⊗⋯⊗𝜌𝑟−−−−−−→ gl (𝑉1 ⊗⋯ ⊗ 𝑉𝑟) ,

where 𝜌𝑖 ∶ g → gl(𝑉𝑖) is the associated g-representation of 𝑉𝑖. Hence. 𝑉 is isomorphic to

the evaluation module

𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 .

Proposition 4.8.4. Let 𝑉1,… , 𝑉𝑟 be simple finite weight g-modules and m1,… ,m𝑟 pairwise

distinct maximal ideals of 𝐴. Then the evaluation -module
𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 is a cuspidal bounded

module only if dim𝑉𝑖 = ∞ for precisely one 𝑉𝑖, in which case 𝑉𝑖 is a cuspidal bounded

g-module. In particular, if
𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 is a cuspidal bounded -module, then it is simple.

Proof. Set𝑉 =
𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 . If𝑉1,… , 𝑉𝑟 are all bounded and no more than one of them is infinite-

dimensional, then the dimension of weight spaces of 𝑉 is bounded by the argument given

on Lemma 4.8.2. On the other hand, if 𝑉 is bounded and 𝑁 > 0 is such that dim𝑉 𝜆 ≤ 𝑁
for each 𝜆 ∈ Supp𝑉 , then the dimension of the weight spaces of each 𝑉𝑖 has to be less or

equal to 𝑁 as well. Thus each 𝑉𝑖 is bounded, and, by Lemma 4.8.2, no more than one 𝑉𝑖
can be infinite-dimensional. This proves the first statement.

The second statement follows from Lemma 4.2.4 along with the fact that Endg(𝑉𝑖) ≅ k
for all, except at most one 𝑖 = 1,… , 𝑟 .

4.9 Affine Lie superalgebras
The main example of map superalgebra is the Affine Lie superalgebra. Recall that g

is a basic classical Lie superalgebra. The associated loop superalgebra is the map algebra

𝐿(g) = g⊗ℂ[𝑡, 𝑡−1]. It has a universal central extension (g) called Affine Lie superalgebra
associated to g. It is possible to construct (g) explicitly. Let ⟨⋅, ⋅⟩ be an even invariant

supersymmetric bilinear form on g. As a vector space, (g) = 𝐿(g) ⊕ ℂ𝑐, where 𝑐 is an

even element. The bracket is given by

[𝑐,(g)] = 0, [𝑥 ⊗ 𝑡𝑚, 𝑦 ⊗ 𝑡𝑛] = [𝑥, 𝑦] ⊗ 𝑡𝑚+𝑛 + 𝑛(𝑥, 𝑦)𝛿𝑛,−𝑚𝑐,

for any 𝑥, 𝑦 ∈ g, 𝑚, 𝑛 ∈ ℤ.

If h is a Cartan subalgebra of g, then h̃ = h ⊕ ℂ𝑐 is a Cartan subalgebra of (g). Any

simple 𝐿(g)-module 𝑉 is a simple (g)-module if we assume that 𝑐 acts trivially. On the
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other hand, if we take a (g)-module such that 𝑐 acts trivially, then 𝑉 is a module over

𝐿(g) ≅ (g)/ℂ𝑐.

Proposition 4.9.1. Let 𝑉 be a finite weight (g)-module, then 𝑐 acts trivially on 𝑉 . In other
words, there is a bijection between simple finite weight 𝐿(g)-modules and simple finite weight
(g)-modules.

Proof. By Schur’s Lemma (Lemma 4.2.1), 𝑐 must act as scalar on 𝑉 , i.e. 𝑐𝑣 = 𝑘𝑣 for every

𝑣 ∈ 𝑉 for some fixed 𝑘 ∈ ℂ. Let 𝜆 ∈ Supp(𝑉 ), and ℎ ∈ h with ⟨ℎ, ℎ⟩ ≠ 0. The trace of the

operator

[ℎ ⊗ 𝑡, ℎ ⊗ 𝑡−1] = (ℎ ⊗ 𝑡)(ℎ ⊗ 𝑡−1) − (ℎ ⊗ 𝑡−1)(ℎ ⊗ 𝑡) ∈ Endk(𝑉 𝜆)

is zero. However,

[ℎ ⊗ 𝑡, ℎ ⊗ 𝑡−1] = ⟨ℎ, ℎ⟩𝑐

implies that the trace of [ℎ ⊗ 𝑡, ℎ ⊗ 𝑡−1] is dim(𝑉 𝜆)⟨ℎ, ℎ⟩𝑐. Since both ⟨ℎ, ℎ⟩ and dim(𝑉 𝜆)
are non-zero, we have that 𝑐 acts trivially.

The argument given in the proof of the previous result should work on the universal

central extension of other map superalgebras if they exist. This result was proved for the

case of Lie algebras in [BLL15, Theorem 2.2].

4.10 Summary of results
The main goal of this chapter was to classify simple weight modules with finite-

dimensional weight spaces over the map superalgebra  = g⊗𝐴, where g is a basic classical

Lie superalgebra and 𝐴 is a finitely generated commutative algebra. In some results in this

chapter, 𝐴 can be assumed to be a finitely generated commutative superalgebra.

To attain this goal, we established numerous theorems concerning the representation

of Lie superalgebras. These encompassed theorems addressing simple modules over the

direct sum of Lie superalgebras (Proposition 4.2.5 and Proposition 4.3.4).

We studied the action of the space g𝛼⊗𝑆, where 𝛼 is an element of the root system Δ of

g, and used the shadow of the weight module to prove a parabolic induction theorem.

Theorem (Theorem 4.6.6). Let 𝑉 be a simple a finite weight -module, then there is a
triangular decomposition 𝑇 such that Δ𝑖𝑉 = Δ0

𝑇 , Δ+
𝑉 ⊂ Δ+

𝑇 , Δ−
𝑉 ⊂ Δ−

𝑇 , the vector space of
+
𝑇 -invariants 𝑉 +𝑇 is a simple bounded 𝑖𝑉 -module, and 𝑉 ≅ 𝐿𝑇 (𝑉 +𝑇 ).

We proceed to the classification of modules that are not parabolically induced, the

cuspidal modules. We gave a complete description of these modules in terms of simple

weight g-modules with finite-dimensional weight spaces and maximal ideals of 𝐴.

Theorem (Theorem 4.8.3, Preposition 4.8.4). Suppose that  has cuspidal modules. If 𝑉
is a cuspidal bounded -module, then 𝑉 is isomorphic to an evaluation module. On the
other hand, let 𝑉1,… , 𝑉𝑟 be simple finite weight g-modules and m1,… ,m𝑟 pairwise distinct

maximal ideals of 𝐴. Then the evaluation -module
𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 is a cuspidal bounded module
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only if dim𝑉𝑖 = ∞ for precisely one 𝑉𝑖, in which case 𝑉𝑖 is a cuspidal bounded g-module. In

particular, if
𝑟

⨂
𝑖=1
𝑉 m𝑖
𝑖 is a cuspidal bounded -module, then it is simple.

These findings will be presented in a paper co-authored with Vyacheslav Futorny and

Lucas Calixto [CFR23].
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Appendix A

Sheaves, ringed spaces and
schemes

Let 𝑋 be any topological space and 𝜏(𝑋) the set of all open sets of 𝑋 . We construct

the category 𝐭𝐨𝐩(𝑋) using this data. The objects of this category are the open sets of 𝑋 ,

i.e. the elements of 𝜏(𝑋). If 𝑈, 𝑉 ∈ 𝜏(𝑋), then the morphisms in this category are defined

by inclusions

Hom𝐭𝐨𝐩(𝑋) (𝑈, 𝑉 ) =

{
{𝑈 → 𝑉 } if 𝑈 ⊂ 𝑉 ,
∅ otherwise.

Definition A.0.1. Let 𝑋 be a topological space and consider 𝐭𝐨𝐩(𝑋) the category of

its open sets. A presheaf of commutative algebebras on 𝑋 is a contravariant functor

 ∶ 𝑡𝑜𝑝(𝑀)𝑜𝑝 → CAlg. Explicitly,

1. for each open set 𝑈 of 𝑋 , (𝑈 ) is a commutative algebra;

2. If 𝑈 ⊂ 𝑉 are two open sets of 𝑋 , there exists a morphism 𝑟𝑈,𝑉 ∶ (𝑉 ) →  , called

the restritiction morphism (often denoted by 𝑟𝑉 ,𝑈 (𝑓 ) = 𝑓 |𝑈 ), such that

(a) 𝑟𝑈,𝑈 = 𝑖𝑑,

(b) 𝑟𝑈,𝑉 = 𝑟𝑈,𝑊 ◦ 𝑟𝑤,𝑉 if 𝑊 is an open set of 𝑋 such that 𝑈 ⊂ 𝑊 ⊂ 𝑉 .

A presheaf  is called a sheaf if given an open covering {𝑈 }𝑖∈𝐼 of 𝑈 and a family {𝑓𝑖}𝑖∈𝐼 ,
𝑓𝑖 ∈ (𝑈𝑖), such that 𝑓𝑖|𝑈𝑖∩𝑈𝑗 = 𝑓𝑗 |𝑈𝑖∩𝑈𝑗 for all 𝑖, 𝑗 ∈ 𝐼 , there exists a unique 𝑓 ∈ (𝑈 ) with

𝑓 |𝑈𝑖 = 𝑓𝑖.

If  , are two presheaves on 𝑋 , then a morphism of presheaves 𝜑 ∶  →  if for each

open set 𝑈 ⊂ 𝑋 there exists a morphism of algebras 𝜑𝑈 ∶ (𝑈 ) → (𝑈 ) such that if

𝑉 ⊂ 𝑈 are open sets then the diagram

(𝑈 ) (𝑈 )

(𝑉 ) (𝑉 )

𝑟𝑈,𝑉

𝜑𝑈

𝑟𝑈,𝑉
𝜑𝑉
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commutes. A morphism of sheaves is a morphism of the presheaves associated with it.

We defined sheaves and presheaves of commutative algebras in the previous defini-

tion. The definition of sheaves of abelian groups, algebras, modules and other algebraic

structures can be easily generalized from it.

Notation A.0.2. If  is a sheaf of commutative algebras on 𝑋 , we will often denote (𝑈 )
by Γ(𝑈,), where 𝑈 ⊂ 𝑋 is an open set. Elements of Γ(𝑈,) are often called sections of

 over the open set 𝑈 .

Definition A.0.3. Let  be a sheaf on the topological space 𝑋 and let 𝑥 ∈ 𝑋 . We define

the stalk 𝑥 of  at the point 𝑥 as the direct limit

𝑥 = inj lim
𝑥∈𝑈

(𝑈 ).

Explicitly, 𝑥 consists of the disjoint union of all pairs (𝑈, 𝑠) with 𝑈 open in 𝑋 , 𝑥 ∈ 𝑈 ,

and 𝑠 ∈ (𝑈 ), module the equivalence relation: (𝑈, 𝑠) ≅ (𝑉 , 𝑠) if and only if there exists a

neighborhood 𝑊 of 𝑥 , 𝑊 ⊂ 𝑈 ∩ 𝑉 such that 𝑠|𝑊 = 𝑡 |𝑊 .

Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous function between two topological spaces and  be a

presheaf of commutative algebras on 𝑋 . We define 𝑓∗ to be the presheaf on 𝑌 given by

(𝑓∗)(𝑈 ) = (𝑓 −1(𝑈 )) for each open subset 𝑈 ⊂ 𝑌 . Its restriction morphisms are exactly

the ones from  . If  is a sheaf on𝑋 , then 𝑓∗ is a sheaf on 𝑌 . The sheaf 𝑓∗ is called direct
image and it defines a functor from the category of (pre)sheaves on 𝑌 to the categories of

(pre)sheaves on 𝑋 called direct image functor.

Definition A.0.4. A ringed space is a pair 𝑋 = (|𝑋 |,) consisting of a topological space

|𝑋 | and a sheaf of commutative rings  on |𝑋 |. We say that a ringed space (|𝑋 |,) is a

locally ringed space if the stalk 𝑥 is a local ring for all 𝑥 ∈ |𝑋 |. A morphism of locally ringed
spaces 𝑓 ∶ 𝑋 → 𝑌 between the locally ringed spaces 𝑋 = (𝑋,) and 𝑌 = (𝑌 ,) is a pair

of maps 𝑓 = (|𝑓 |, 𝑓 #) such that |𝑓 | ∶ |𝑋 | → |𝑌 | is a continuous map, 𝑓 # ∶ 𝑌 → |𝑓 |∗𝑋 is a

sheaf morphism and 𝑓 #
𝑝 ∶ 𝑌 ,𝑝 → |𝑓 |∗𝑋,𝑝 is a homomorphism of local algebras.

Remark A.0.5. For a locally ringed space (𝑋,𝑋 ) and an open subset |𝑈 | ⊂ |𝑋 |, we will

often write 𝑈 ⊂ 𝑋 for the locally ringed space (|𝑈 |,𝑋 ||𝑈 |). When the distinction is not

necessary, we might refer to 𝑋 as a topological space instead of |𝑋 |.

Example A.0.6 (Structure sheaf). Let 𝐴 be a commutative algebra. Remember that for

each ℎ ∈ 𝐴
𝐷(ℎ) = {p ∈ Spec𝐴 ∣ ℎ ∉ p}

is an open set on Spec𝐴, and {𝐷(ℎ) ∣ ℎ ∈ 𝐴} is an open basis of the Zariski topology of

Spec𝐴. Then for each ℎ ∈ 𝐴, define

𝐴(𝐷(ℎ)) = 𝐴ℎ,

then this assignment extends uniquely to a sheaf of commutative rings on Spec𝐴
(see [Har77, Section II.2]), called structure sheaf and denoted by 𝐴. The stalk at a point

p ∈ Spec𝐴, 𝐴,p is the localization 𝐴p of the ring 𝐴 at the prime p. The pair (Spec𝐴,𝐴)
is a locally ringed space.
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Definition A.0.7. A locally ringed space 𝑋 is called affine scheme over k if 𝑋 ≅
(Spec𝐴,𝐴) for some commutative k-algebra𝐴. A locally ringed space (𝑋,𝑋 ) is a scheme
over k if there is an open cover {𝑈𝑖}𝑖∈𝐼 of 𝑋 and commutative algebras 𝐴𝑖, 𝑖 ∈ 𝐼 , such that

(𝑈𝑖,𝑋 |𝑈𝑖) ≅ (Spec𝐴𝑖, 𝑂𝐴𝑖) ∀𝑖 ∈ 𝐼 .

In this case, we say {𝑈𝑖 = Spec𝐴𝑖}𝑖∈𝐼 is an affine cover of 𝑋 . A morphism of schemes 𝑋 → 𝑌
is simply a morphism of the locally ringed spaces 𝑋 and 𝑌 .

The category of affine schemes 𝐒𝐜𝐡(k) over k is closely related to the category of

commutative k-algebras k − 𝐂𝐀𝐥𝐠. The functor Γ ∶ 𝐒𝐜𝐡(k) → k − 𝐂𝐀𝐥𝐠𝑜𝑝 that associates

each affine scheme 𝑋 = (|𝑋 |,𝑋 ) = Spec (𝐴) to the global sections Γ(𝑋) = Γ(𝑋,𝑋 ) = 𝐴
gives this equivalence. This follows from the definition and the following proposition.

Proposition A.0.8. Let 𝑋 be any locally ringed space and 𝑌 a scheme, then the map

Hom𝐒𝐜𝐡(k)(𝑋, 𝑌 ) → Homk−𝐂𝐀𝐥𝐠 (𝑌 (𝑌 ),𝑋 (𝑋))

that sends 𝑓 = (|𝑓 |, 𝑓 #) ∶ 𝑋 → 𝑌 to 𝑓 #
|𝑋 | ∶ 𝑌 (|𝑌 |) → 𝑓∗𝑋 (|𝑋 |) is a bijection.

Proof. See [Gro61, Errata (Liste I), Proposition 1.8.1].

Example A.0.9. Let 𝑋 be an algebraic variety with coordinate ring 𝐴 = 𝐴𝑋 . For each basic

open set 𝐷(ℎ) ⊂ 𝑋 , we define (𝐷(ℎ)) = 𝐴ℎ the localization of 𝐴 at ℎ. This defines a sheaf

𝑋 on 𝑋 of commutative algebras, and since 𝑋,𝑝 = 𝐴m𝑝 for every 𝑝 ∈ 𝑋 , we have that

(𝑋,𝑋 ) is a locally ringed space. Thus, (𝑋,𝑋 ) is a locally ringed space. However,𝑋 is not

the structure sheaf 𝐴 of 𝐴, because Spec (𝐴) and 𝑋 are not homeomorphic, hence (𝑋,𝑋 )
is not a scheme. The map 𝑓 ∶ 𝑋 → Spec (𝐴) defined by 𝑓 (𝑝) = m𝑝 defines a bijection

between 𝑋 and the set of all maximal ideals of 𝐴, but it is not surjective. Nevertheless,

the map 𝑓 ∶ 𝑋 → Spec (𝐴) is still a continuous map between 𝑋 and Spec (𝐴), and the

assignment 𝑈 ↦ 𝑓 −1(𝑈 ) defines a bijection between open sets of 𝑋 and open sets of

Spec (𝐴). Since 𝑋 (𝑈 ) = 𝐴(𝑓 −1(𝑈 )) = 𝑓∗𝐴(𝑈 ), the morphism of sheaves 𝑋 → 𝑓∗𝐴
is an isomorphism. Therefore, the assignment 𝑋 ↦ Spec (𝐴𝑋 ) associates a scheme to the

affine algebraic variety 𝑋 . This assignment defines a functor from the category of affine

varieties over k to the category of schemes over k and this functor is a natural fully faithful

functor [Har77, Chapter II, Proposition 2.6]. In this thesis, we will often intertwine both

structures 𝑋 and Spec (𝐴𝑋 ), using scheme theoretically concepts on 𝑋 even though we

are in reality examining Spec (𝐴𝑋 ).

Example A.0.10. It is possible to glue two schemes together creating a new scheme

provided the existence of gluing maps. Let 𝑋1 = (|𝑋1|,1) and 𝑋2 = (|𝑋2|,2) be two

schemes, 𝑈1 ⊂ |𝑋1| and 𝑈2 ⊂ |𝑋2| be open subsets, and suppose there exists an isomorphism

𝜑 ∶ (𝑈1,1|𝑈1)
≅−→ (𝑈2,2|𝑈2) of locally ringed spaces. Consider the relation ∼ in the

disjoint union |𝑋1| ⊔ |𝑋2| defined by

𝑥1 ∼ 𝑥2 ⟺ 𝑥1 ∈ 𝑈1, 𝑥2 ∈ 𝑈2, 𝑥2 = 𝜑(𝑥1).

We wish to define a scheme 𝑋 = (|𝑋 |,𝑋 ), where the topological space |𝑋 | = |𝑋1|⊔ |𝑋2|/ ∼
is the quotient of the disjoint union |𝑋1|⊔ |𝑋2| by the equivalence relation ∼ with projection
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maps 𝜄1 ∶ |𝑋1| → |𝑋 | and 𝜄2 ∶ |𝑋2| → |𝑋 |. For an open subset 𝑈 ⊂ |𝑋 |, the section 𝑋 (𝑈 ) is

defined by

𝑋 (𝑈 ) =
{
(𝑠1, 𝑠2) ∈ 1 (𝜄−11 (𝑈 )) × 2 (𝜄−12 (𝑈 )) ∣ 𝑠2|𝑈2∩𝜄−11 (𝑈 ) = 𝜑 (𝑠1|𝑈1∩𝜄−12 (𝑈 ))

}
.

Then 𝑋 is a sheaf of commutative algebras and 𝑋 = (|𝑋 |,𝑋 ) is a locally ringed space.

Since each 𝑋1 and 𝑋2 are schemes, the locally ringed space 𝑋 is a scheme as well.

Example A.0.11. Let 𝑋1 = Spec (k[𝑥]) and 𝑋2 = Spec (k[𝑦]). We will use Example A.0.10

to glue 𝑋1 and 𝑋2 through the open subsets 𝑈1 = 𝐷(𝑥) and 𝑈2 = 𝐷(𝑦). Note that

Γ(𝑈1,𝑋1) = k[𝑥, 𝑥−1] and Γ(𝑈2,𝑋1) = k[𝑦, 𝑦−1]. Let 𝜑 ∶ 𝑈1 → 𝑈2 be the scheme

isomorphism defined by the isomorphism of algebras 𝑦 ↦ 𝑥−1. The scheme obtained by

gluing 𝑋1 and 𝑋2 through the gluing map 𝜑 is called projective line and it is denoted by

ℙ1
k. Note that if (𝑠1, 𝑠2) ∈ 𝑋1(𝑋1) ×𝑋2(𝑋2) = k[𝑥] × k[𝑦] satisfies 𝜑#

𝑈1 (𝑠2|𝑈2) = 𝑠1|𝑈2 , then

𝑠2( 1𝑥 ) = 𝑠1 (
1
𝑥 ) as rational functions in k[𝑥, 𝑥−1]. Since 𝑠2 ∈ k[𝑦] ≅ k[𝑥−1] is polynomial,

we get that 𝑠2(𝑥) = 𝑠1(𝑥) ∈ k ⊂ k[𝑥, 𝑥−1]. Thus, ℙ1k(|𝑋 |) = k. In particular, ℙ1
k is not affine,

because Spec (k) has a single point while ℙ1k(ℙ
1
k) has infinite many.

Example A.0.12. Let 𝑋 = Spec (𝐴) and 𝑌 = Spec (𝐵). Consider 𝑇 = Spec (𝐴 ⊗k 𝐵), then

there exists projections morphisms 𝑝1 ∶ 𝑇 → 𝑋 and 𝑝2 ∶ 𝑇 → 𝑌 that are defined by the

homomorphism of algebras 𝐴 → 𝐴⊗𝐵 and 𝐵 → 𝐴⊗𝐵 given by 𝑎 ↦ 𝑎⊗ 1 and 𝑏 ↦ 1⊗𝑏 .

By Proposition A.0.8

Hom𝐒𝐜𝐡(k)(𝑍, 𝑇 ) = Homk−𝐂𝐀𝐥𝐠 (𝐴 ⊗ 𝐵,𝑍(𝑍))
= Homk−𝐂𝐀𝐥𝐠 (𝐴,𝑍(𝑍)) × Homk−𝐂𝐀𝐥𝐠 (𝐵,𝑍(𝑍))
= Hom𝐒𝐜𝐡(k)(𝑍, 𝑋) × Hom𝐒𝐜𝐡(k)(𝑍, 𝑌 ).

Therefore, 𝑇 satisfies the universal property that for every morphism of schemes 𝑓1 ∶ 𝑍 →
𝑋 and 𝑓2 ∶ 𝑍 → there exists a unique morphism 𝑓 ∶ 𝑍 → 𝑇 such that the diagram

𝑍

𝑇 𝑋

𝑌 Spec (k)

𝑓

𝑓1

𝑓2

𝑝1

𝑝2

commutes. The affine scheme 𝑇 is usually denoted by 𝑋 × 𝑌 or 𝑋 ×Spec (k) 𝑌 , and it is called

fibre product. For general schemes 𝑋 and 𝑌 , the scheme 𝑋 × 𝑌 is defined by the universal

property above and it comes with projection maps 𝑋 × 𝑌 → 𝑋 and 𝑋 × 𝑌 → 𝑌 .

Definition A.0.13. Let 𝑋 = (|𝑋 |,𝑋 ) be a scheme. We say that 𝑋 is

1. irreducible if the topological space |𝑋 | is irreducible.

2. reduced if 𝑋,𝑝 is a reduced algebra for every 𝑝 ∈ 𝑋 .

3. integral if 𝑋 is both reduced and irreducible.
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4. of finite type if for every affine open subset 𝑈 = Spec (𝐵) ⊂ 𝑋 we have that 𝐵 is a

finitely generated k-algebra.

5. separated if there exists a closed subset 𝐹 ⊂ 𝑌 such that |𝑓 | ∶ |𝑋 | → 𝐹 is a homeomor-

phism and 𝑓 ∗
𝑝 ∶ 𝑋×𝑋,𝑓 (𝑝) → 𝑋,𝑝 is surjective for every 𝑝 ∈ 𝑋 , where 𝑓 ∶ 𝑋 → 𝑋×𝑋

is the diagonal morphism 𝑝1 ◦ 𝑓 = 𝑝2 ◦ 𝑓 = 𝜄𝑋 and 𝑝1, 𝑝2 ∶ 𝑋 × 𝑋 → 𝑋 are the

projections.

Example A.0.14. If𝑋 is an affine algebraic variety with coordinate ring𝐴𝑋 , then Spec (𝐴𝑋 )
is an integral separated affine scheme of finite type over k. Reciprocally, if 𝑌 = Spec (𝐵)
is an integral separated affine scheme of finite type over k, then 𝐵 is a finitely generated

k-algebra because 𝑌 is of finite type. Thus, 𝐵 = k[𝑥1,… , 𝑥𝑛]/𝐼 for some 𝑛 ≥ 1 and ideal

𝐼 of k[𝑥1,… , 𝑥𝑛]. Additionally, 𝐵 is a reduced algebra because 𝐵p is reduced for every

prime ideal p ∈ Spec (𝐵) (see [AM69, Exercise 3.5]). Since 𝑌 is irreducible, the intersection

of two nonempty open subsets must be nonempty. For every 𝑓 , 𝑔 ∈ 𝐵 with 𝑓 ≠ 0 and

𝑔 ≠ 0, 𝐷(𝑓 ) ∩ 𝐷(𝑔) = 𝐷(𝑓 𝑔) ≠ ∅, thus 𝑓 𝑔 is not nilpotent. In particular, 𝑓 𝑔 ≠ 0 for every

𝑓 , 𝑔 ∈ 𝐵 with 𝑓 ≠ 0 and 𝑔 ≠ 0. We conclude that 𝐵 is an integral domain. Therefore,

the ideal 𝐼 is a prime ideal of k[𝑥1,… , 𝑥𝑛], thus 𝑍(𝐼 ) ⊂ 𝔸𝑛
k is an affine algebraic variety,

𝐵 = k[𝑍(𝐼 )] = 𝐴𝑍(𝐼 ) and 𝑌 = Spec (𝐴𝑍(𝐼 )). In other words, in the scheme theoretically

setting, affine algebraic varieties can be defined as integral separated affine schemes of

finite type over k.

Definition A.0.15. Let 𝑋 = (𝑋,𝑋 ) be a scheme and  be a sheaf on 𝑋 of abelian

groups. We say that  is a sheaf of 𝑋 -modules if, for each open set 𝑈 ⊂ 𝑋 , the abelian

group Γ(𝑈,) is a Γ(𝑈,𝑋 )-module, and the restriction morphisms Γ(𝑉 ,) → Γ(𝑉 ,)
is compatible with the module structure via the algebra homomorphism Γ(𝑈,𝑋 ) →
Γ(𝑉 ,𝑋 ) for each inclusion of open sets 𝑈 ⊂ 𝑉 .

Example A.0.16. Let 𝐴 be a commutative ring and 𝑀 an 𝐴-module. For each ℎ ∈ 𝐴,

consider the assignment 𝐷(ℎ) ↦ 𝑀ℎ, where 𝑀ℎ is the 𝐴ℎ-module given by the localization

of 𝑀 at ℎ. This assignment defines a sheaf on Spec𝐴 denoted by �̃� . For all open set

𝑈 ⊂ Spec (𝐴), �̃�(𝑈 ) is an 𝐴(𝑈 )-module, therefore �̃� is a sheaf of Spec (𝐴)-modules.

Furthermore, (�̃�)p = 𝑀p for all p ∈ Spec𝐴, and �̃�(Spec𝐴) = 𝑀 .

Example A.0.17. Let 𝐴 be a commutative ring and 𝑀 an 𝐴-module. Denote T0(𝑀) = 𝐴
and T𝑛(𝑀) = 𝑀 ⊗𝐴 𝑀 ⊗ ⋯ ⊗𝐴 𝑀 the tensor product of 𝑀 with itself 𝑛-times, then the

concatenation of tensors makes T(𝑀) = ⨁
𝑛≥0

T𝑛(𝑀) an unital associative algebra, which is

called tensor algebra of 𝑀 . Denote by S(𝑀) = ⨁
𝑛≥0

the symmetric algebra of 𝑀 , which is

the quotient of T(𝑀) by the ideal generated by 𝑥 ⊗𝐴 𝑦 − 𝑦 ⊗𝐴 𝑥 , 𝑥, 𝑦 ∈ 𝑀 .

Let 𝑋 = (𝑋,𝑋 ) be a scheme and  be a sheaf on 𝑋 -modules. We can use the above

construction to define the tensor algebra T() and the symmetric algebra S() of  , which

Γ(𝑈,T()) = T (Γ(𝑈,T)) and Γ(𝑈, S()) = S (Γ(𝑈, S)) for each open set 𝑈 ⊂ 𝑋 . Both

T() and S() are 𝑋 -algebras and each degree component is an 𝑋 -module.

Definition A.0.18. Let 𝑋 = (𝑋,𝑋 ) be a scheme, and  a sheaf on 𝑋 of 𝑋 -modules, i.e.

(𝑈 ) is an 𝑋 (𝑈 )-module for all 𝑈 open in 𝑋 and the restriction morphism behave nicely

with respect to the 𝑋 -module structure. We say  is quasi-coherent, if there exists an
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open affine cover {𝑈𝑖 = Spec𝐴𝑖}𝑖∈𝐼 of 𝑋 such that  |𝑈𝑖 ≅ �̃�𝑖 (see Example A.0.16), where

�̃�𝑖 is the sheaf on Spec𝐴𝑖 defined for a suitable 𝐴𝑖-module 𝑀𝑖. If 𝑋 is a locally Noetherian

scheme,  is called coherent if the affine cover can be chosen so that the 𝑀𝑖’s are finitely

generated 𝐴𝑖-modules.

Example A.0.19. Let 𝐵 be an associative algebra and 𝐴 ⊂ 𝐵 a commutative subalgebra.

Then, 𝐵 is an 𝐴-module and �̃� is a quasi-coherent sheaf over Spec (𝐴). If 𝐵 is finitely

generated as 𝐴-module, then �̃� is coherent.

Definition A.0.20. Let 𝑋 = (𝑋,𝑋 ) be a scheme and  be quasi-coherent sheaf on 𝑋 . We

say that  is locally free sheaf of 𝑋 -modules if 𝑋 can be covered by open sets {𝑈𝑖 ∣ 𝑖 ∈ 𝐼 }
such that Γ(𝑈𝑖,) is free as an Γ(𝑈𝑖,𝑋 )-module. If 𝑋 is irreducible, then we define the

rank of  as the size of a basis of Γ(𝑈𝑖,) as an Γ(𝑈𝑖,𝑋 )-module, where 𝑖 ∈ 𝐼 .

Example A.0.21. Let 𝐴 be a Noetherian integral domain and 𝑋 = Spec (𝐴), then �̃�
is a locally free sheaf of 𝑋 -modules if and only if 𝑀 is a finitely generated projective

𝐴-module [Eis95, Theorem A3.2].

Example A.0.22. Let 𝑋 = (𝑋,𝑋 ) be a scheme and  be a locally free quasi-coherent

sheaf on 𝑋 with rank 𝑛. Denote by 𝑌 = Spec (S()) be the spectrum of symmetric algebra

of  , then 𝑌 comes with a projection morphism 𝑝 ∶ 𝑌 → 𝑋 . Take 𝑈 ⊂ 𝑋 such that

𝑀 = Γ(𝑈,) is free as 𝐴 = Γ(𝑈,)-module. Choose a basis of 𝑀 . This choice induces an

isomorphism S(𝑀) ≅ 𝐴[𝑥1,… , 𝑥𝑛], which induces an isomorphism 𝑝−1(𝑈 ) → 𝑛
𝑈 . Thus,

for each 𝑥 ∈ 𝑋 , there exists an open affine neighborhood 𝑥 ∈ 𝑈 = Spec (𝐴) of 𝑥 such that

𝑝−1(𝑈 ) is isomorphic to

𝑝−1(𝑈 ) ≅ Spec (𝑛
𝑈 ) ≅ Spec (𝐴[𝑥1,… , 𝑥𝑛]) ≅ Spec (𝐴 ⊗k k[𝑥1,… , 𝑥𝑛])

≅ Spec (𝐴) × Spec (k[𝑥1,… , 𝑥𝑛]) = 𝑈 ×𝔸𝑛
k.

Definition A.0.23. Let 𝑋 = (𝑋,𝑋 ) be a scheme. A vector bundle 𝑌 of rank 𝑛 over 𝑋 is a

scheme 𝑌 together with a morphism 𝑝 ∶ 𝑌 → 𝑋 such that for each 𝑝 ∈ 𝑋 there exists an

open neighborhood 𝑈 ⊂ 𝑋 of 𝑝 such that Γ(𝑌 ,𝑌 ) is isomorphic to 𝑈 ×𝔸𝑛
k.

Example A.0.24. By Example A.0.22, every locally free sheaf of 𝑋 -modules can be associ-

ated uniquely (up to isomorphism) to a vector bundle. This is a one-to-one correspondence

(up to isomorphism) between vector bundles and locally free sheaves of finite rank. [Har77,

Exercise II.5.18].

Several other concepts arise in the scheme theory that we will not cover or explore

further, because we will only need basic definitions in this text since we will be working

with affine algebraic varieties. If the reader is looking for a reference on these concepts

and results related to them, we recommend the books [Har77] and [Mum99].
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