• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2018.tde-13122017-161946
Documento
Autor
Nombre completo
Jéssica Laís Calado de Barros
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2016
Director
Tribunal
Oliveira, Oswaldo Rio Branco de (Presidente)
Martin, Paulo Agozzini
Oliveira, Ernandes Rocha de
Título en portugués
O teorema da aplicação de Riemann: uma prova livre de integração
Palabras clave en portugués
Abordagem Weierstrassiana
Lema de Schwarz
Princípio do argumento
Teorema da aplicação de Riemann
Teorema fundamental da álgebra
Resumen en portugués
Neste trabalho, seguindo a abordagem de Weierstrass, temos o objetivo de responder a seguinte questão: conhecida a equivalência entre holomorfia e analiticidade no caso complexo, quais propriedades das funções analíticas podem ser obtidas sem assumir tal equivalência? Analisando esta situação, resultados interessantes serão obtidos sem o uso de qualquer teorema de integração complexa e, para alcançar tal objetivo, nossas principais ferramentas serão a teoria de somas não ordenadas de famílias em C e propriedades do índice de caminhos fechados. Entre os resultados apresentados estão os conhecidos Teorema Fundamental da Álgebra, Lema de Schwarz, Teorema de Montel, Teorema da Série Dupla de Weierstrass, Princípio do Argumento, Teorema de Rouché, Teorema da Fatoração de Weierstrass, Pequeno Teorema de Picard e o Teorema da Aplicação de Riemann.
Título en inglés
The Riemann mapping theorem: an integration free proof
Palabras clave en inglés
Argument principle
Fundamental theorem of algebra
Riemann's mapping theorem
Schwarz's lemma
Weierstrassian approach
Resumen en inglés
In this work, following the Weierstrass's approach, we aim to answer the following question: knowing the equivalence between holomorphy and analyticity in the complex case, which properties of analytic functions can be obtained without assuming such equivalence? Through analyzing this situation, interesting results will be obtained without employing of any complex integration theorem and in order to achieve this goal, our main tools will be the theory of unordered sums in C and properties of winding numbers of closed paths. Among the proven results are the well known Fundamental Theorem of Algebra, Schwarz's Lemma, Montel's Theorem, Weierstrass's Double Series Theorem, Argument Principle, Rouché's Theorem, Weierstrass's Factorization Theorem, Picard's Little Theorem and the Riemann's Mapping Theorem.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-01-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.