• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.45.2019.tde-14022019-203839
Documento
Autor
Nombre completo
Jean Cerqueira Berni
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Mariano, Hugo Luiz (Presidente)
Arndt, Peter
Bianconi, Ricardo
Coniglio, Marcelo Esteban
Lopes, Vinicius Cifú
Título en inglés
Some algebraic and logical aspects of C∞-Rings
Palabras clave en inglés
C∞-Rings
Sheaves and logic
Smooth commutative algebra
Resumen en inglés
As pointed out by I. Moerdijk and G. Reyes in [63], C∞-rings have been studied specially for their use in Singularity Theory and in order to construct topos models for Synthetic Differential Geometry. In this work, we follow a complementary trail, deepening our knowledge about them through a more pure bias, making use of Category Theory and accounting them from a logical-categorial viewpoint. We begin by giving a comprehensive systematization of the fundamental facts of the (equational) theory of C∞-rings, widespread here and there in the current literature - mostly without proof - which underly the theory of C∞-rings. Next we develop some topics of what we call a ∞Commutative Algebra, expanding some partial results of [66] and [67]. We make a systematic study of von Neumann-regular C∞-rings (following [2]) and we present some interesting results about them, together with their (functorial) relationship with Boolean spaces. We study some sheaf theoretic notions on C∞-rings, such as ∞(locally)-ringed spaces and the smooth Zariski site. Finally we describe classifying toposes for the (algebraic) theory of ∞ rings, the (coherent) theory of local C∞-rings and the (algebraic) theory of von Neumann regular C∞-rings.
Título en portugués
Alguns aspectos algébricos e lógicos dos C∞-Anéis
Palabras clave en portugués
Álgebra comutativa C∞
C∞-Anéis
Feixes e lógica
Resumen en portugués
Conforme observado por I. Moerdijk e G. Reyes em [63], os anéis C∞ têm sido estudados especialmente tendo em vista suas aplicações em Teoria de Singularidades e para construir toposes que sirvam de modelos para a Geometria Diferencial Sintética. Neste trabalho, seguimos um caminho complementar, aprofundando nosso conhecimento sobre eles por um viés mais puro, fazendo uso da Teoria das Categorias e os analisando a partir de pontos de vista algébrico e lógico-categorial. Iniciamos o trabalho apresentando uma sistematização abrangente dos fatos fundamentais da teoria (equacional) dos anéis C∞, distribuídos aqui e ali na literatura atual - a maioria sem demonstrações - mas que servem de base para a teoria. Na sequência, desenvolvemos alguns tópicos do que denominamos Álgebra Comutativa C∞, expandindo resultados parciais de [66] e [67]. Realizamos um estudo sistemático dos anéis C∞ von Neumann-regulares - na linha do estudo algébrico realizado em [2]- e apresentamos alguns resultados interessantes a seu respeito, juntamente com sua relação (funtorial) com os espaços booleanos. Estudamos algumas noções pertinentes à Teoria de Feixes para anéis ∞, tais como espaços (localmente) ∞anelados e o sítio de Zariski liso. Finalmente, descrevemos toposes classicantes para a teoria (algébrica) dos anéis C∞, a teoria (coerente) dos anéis locais C∞ e a teoria (algébrica) dos anéis C∞ von Neumann regulares.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Tese_final_Jean.pdf (1.81 Mbytes)
Fecha de Publicación
2019-03-26
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.