• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.45.2018.tde-18012018-152530
Document
Auteur
Nom complet
Euripedes Carvalho da Silva
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2017
Directeur
Jury
Gomes, André de Oliveira (Président)
Almeida, Sebastiao Carneiro de
Brito, Fabiano Gustavo Braga
Silva, Márcio Fabiano da
Silva, Marcos Martins Alexandrino da
Titre en portugais
Folheações ortogonais em variedades riemannianas
Mots-clés en portugais
Folheação totalmente umbílica
Fórmula integra
Vetor curvatura média
Resumé en portugais
Neste trabalho, estabelecemos uma equação que relaciona a curvatura de Ricci de uma variedade riemanniana M e as segundas formas fundamentais de duas folheações ortogonais de dimensões complementares, F e F, definidas em M. Usando essa equação, encontramos uma estimativa da curvatura média da folheação F e uma condição necessária e suficiente para que tal folheação seja totalmente geodésica. Mostramos também uma condição suficiente para que M seja localmente um produto riemanniano das folhas de F e F, se uma das folheações for totalmente umbílica. Por fim, provamos ainda uma fórmula integral válida para tais folheações.
Titre en anglais
Orthogonal foliations on riemannian manifolds
Mots-clés en anglais
Integral formula
Mean curvature vector
Totally umbilical foliation
Resumé en anglais
In this work, we and an equation that relates the Ricci curvature of a riemannian manifold M and the second fundamental forms of two orthogonal foliations of complementary dimensions, F and F, defined on M. Using this equation, we and an estimate of the mean curvature of the foliation F and a necessary and suficient condition for the foliation F to be totally geodesic. We also show a suficient condition for the manifold M to be locally a riemannian product of the leaves of F and F, if one of the foliations is totally umbilical. Finally, we also prove an integral formula for such foliations.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
euripedes.pdf (415.99 Kbytes)
Date de Publication
2018-02-08
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.