• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1995.tde-20210728-235722
Document
Author
Full name
Carlos Correa Filho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1992
Supervisor
 
Title in Portuguese
Alguns aspectos de dinâmica de folheações
Keywords in Portuguese
Geometria Diferencial
Topologia Algébrica
Abstract in Portuguese
Neste trabalho introduziremos dois conceitos fundamentais da chamada dinamica de folheacoes: o de entropia geometrica e a expansividade para folheacoes em variedades compactas, conceitos estes que generalizam, de uma certa maneira, os conceitos de entropia e expansividade existentes para fluxos. Desenvolveremos os principais resultados sobre entropia geometrica e expansividade, caracterizando totalmente tais nocoes para folheacoes de codimensao 1. Iremos entao demonstrar que se uma folheacao (em codimensao qualquer) e expansiva, entao, sua entropia geometrica e necessariamente positiva
 
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
CorreaFilhoCarlos.pdf (14.14 Mbytes)
Publishing Date
2021-07-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.