• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1992.tde-20210729-003213
Document
Auteur
Nom complet
Jorge Tadashi Hiratuka
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1992
Directeur
Titre en portugais
Aplicações genéricas especiais de uma variedade fechada de dimensão n+1 no 'R POT.N'
Mots-clés en portugais
Topologia Diferencial
Resumé en portugais
O principal objetivo deste trabalho é o estudo de aplicações genéricas especiais de uma variedade m diferenciável ('C POT. INFINITO'), compacta, orientável, (n+1)-dimensional com imagem no 'R POT. N'. Verificaremos que m e o quociente de um fibrado de círculos localmente trivial m' de base 'w IND. F' (fatorização de Stein de F), pela relação de equivalência que identifica os pontos de uma mesma fibra correspondente ao dobro de m' e, reciprocamente, considerando m' um fibrado de círculos, diferenciável, orientável e ortogonal sobre 'w IND. F', o quociente m pela relação de equivalência acima, é uma variedade diferenciável que admite uma aplicação genérica especial. Mostraremos que os grupos fundamentais de m e 'w IND. F' são isomorfos, e que 'w IND. F' é uma variedade diferenciável n-dimensional com o bordo difeomorfo ao conjunto dos pontos singulares de F. Veremos também exemplos, para alguns valores de N, de variedades diferenciáveis orientáveis que admitem aplicações genéricas especiais com 'w IND. F' compacta. Em particular, se 'w IND. F' é um R-toro sólido, então m é homeomorfa à soma conexa de R cópias de 's POT. 3'X's POT. 1'
Titre en anglais
not available
Resumé en anglais
not available
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.