• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1995.tde-20210729-011445
Document
Author
Full name
Maria Beatriz do Amaral Assy
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1994
Supervisor
Title in Portuguese
Teoria de Nielsen de coincidência para variedades com fronteira
Keywords in Portuguese
Topologia Algébrica
Abstract in Portuguese
Sejam x e y variedades de dimensao n, compactas, conexas, orientaveis e com fronteiras 'ALFA'x e 'ALFA'y, respectivamente. Quando f.G:x 'SETA'y sao aplicacoes continuas tais que g ('ALFA'x) 'CONTIDO' 'ALFA'y e g (intx) 'CONTIDO' inty definimos um numero de lefschetz 'L IND.B' (f,g), um indice de coincidencia, e consequentemente um numero de nielsen, 'N IND.B' (f,g) de f e g. O pricipal teorema deste trabalho e o teorema de minimizacao que diz que quando x,y,f e g estao nas condicoes acima, e n 'MAIOR OU IGUAL' a 3, entao existem aplicacoes f,g:x 'SETA'y, homotopicas a f e g tem exatamente 'N IND.B' (f,g) pontos de coincidencia
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.