• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1996.tde-20210729-012124
Document
Author
Full name
Maria Luiza Paiva e Silva Lelis
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1996
Supervisor
Title in Portuguese
Formas p-invariantes em algebras de bernstein
Keywords in Portuguese
Anéis E Álgebras Não Associativos
Abstract in Portuguese
Introduzimos o conceito de formas lineares p-invariantes numa algebra barica, como uma generalizacao das formas invariantes definidas por lyubich. O conjunto das formas lineares p-invariantes numa algebra barica (a,w) e um subespaco vetorial 'J IND.P' do espaco dual a*, com dimensao pelo menos 1. Calculamos anulador de j p para todo train polinomio p de grau arbitrario, no caso em que a e uma algebra de bernstein. Algumas consequencias sao demonstradas, relacionadas ao problema de comparar train algebras e algebras de bernstein. Como outra consequencia, demonstramos que o subespaco uz + 'U POT.2'z tem dimensao invariante sob mudanca de idempotentes. Na secao final, provamos alguns resultados para algebras de bernstein excepcionais
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.