• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.1998.tde-20210729-015444
Document
Author
Full name
Adriana Junko Hissadomi
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1997
Supervisor
Title in Portuguese
Propriedade de Dunford-Pettis polinomial e espaços polinomialmente de Schur
Keywords in Portuguese
Funções Especiais
Holomorfia
Abstract in Portuguese
Este trabalho tem por objetivo estudar a propriedade Dunford-Pettis polinomial e os espaços polinomialmente de Schur ('lâmbda'-espaços). Apresentamos aqui a demonstração dada por Ryan em [30], de que a propriedade Dunford-Pettis e a propriedadeDunford Pettis polinomial são equivalentes. Todo espaço com a propriedade de Schur tem a propriedade de Dunford-Pettis, mas a recíproca não é verdadeira. Com o objetivo de verificar sob que condições um espaço com a propriedade Dunford-Pettistem a propriedade de Schur, passamos a estudar os espaços polinomialmente de Schur e apresentamos aqui a demonstração dada por Carne-Cole-Gamelian em [7] que um espaço tem a propriedade de Schur se e somente se é um espaço polinomialmente deSchur e tem a propriedade Dunford-Pettis
Title in English
not available
Abstract in English
The main purpose of this work is to study the polynomial Dunford-Pettis property and the polynomial Schur spaces (or 'lâmbda'-spaces). We shall present here a proof, given by Ryan in [30], that the Dunford-Pettis property is equivalent to thepolynomial Dunford-Pettis property. It is well-known that each space having the Schur property has also the Dunford- Pettis property, the converse however not being true. We shall study here under which conditions a space with Dunford-Pettisproperty has also the Schur property. In particular, we shall concentrate our attention on the polynomially Schur spaces and we present here a proof given by Carne-Cole-Gamelin in [7], that a space has the Schur property if and only if it hasthe Dunford-Pettis property and the polynomial Schur property
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.