• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.1998.tde-20210729-015833
Documento
Autor
Nome completo
Cláudia Cueva Cândido
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 1997
Orientador
 
Título em português
Superfícies mínimas simplesmente periódicas
Palavras-chave em português
Geometria Diferencial
Resumo em português
Neste trabalho provamos a existência de uma família de superfícies mínimas simplesmente periódicas, completas, mergulhadas, com gênero dois e quatro fins de tipo Scherk no quociente. Para uma certa escolha dos parâmetros, pode-se mostrar que a superfície é um recobrimento da torre de selas de Scherk de gênero zero. Em outra direção, demonstramos um teorema que descreve analiticamente uma construção alternativa de superfícies de Riemann compactas, a partir de duas equações algébricas em que uma delas representa um toro com certas simetrias. O problema da construção de superfícies mínimas modeladas sobre estas estruturas é discutido na parte final do trabalho
 
Título em inglês
not available
Resumo em inglês
not available
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2021-07-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.