• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.1998.tde-20210729-015902
Documento
Autor
Nombre completo
Maxwell Mariano de Barros
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 1998
Director
Título en portugués
Folheações transversalmente projetivas
Palabras clave en portugués
Geometria Diferencial
Resumen en portugués
Estudamos as folheações transversalmente projetivas, denotadas por (M,F), sobre o ponto de vista da geometria transversa. Este tipo de folheaçào é interessante pois inclui as folheações afins e riemannianas. Um modelo para tais folheações é dado pela projeção 'P POT.q'(R) x R 'SETA'P POT.q'(R), onde 'P POT.q'(R) é o espaço projetivo real de dimensão q. Introduzimos a álgebra de Lie 'ANTIIND 'delta' 'CONTÉM' (M,F) das transformações projetivas infinitesimais transversas, a qual possui dimensão '< OU =' 'q POT.2' + 2q, onde q = codim(M,F) e conseguimos alguns resultados globais. Provamos por exemplo, que se dim'delta'CONTÉM' (M,F) = 'q POT.2' + 2q então (M,F) é rasa, que se (M,F) é uma folheaçào transversalmente projetiva completa, toda transformação projetiva infinitesimal transversa é completa e que se a folheação levantada no fibrado dos 2-referenciais transversos de (M,F) não possui funções básicas diferentes das constantes, então todas as folhas de (M,F) são densas em M
Título en inglés
not available
Resumen en inglés
not available
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.