• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.1998.tde-20210729-015930
Document
Auteur
Nom complet
Daniel Vendrúscolo
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1997
Directeur
Titre en portugais
Localização de pontos fixos e coincidências
Mots-clés en portugais
Topologia Algébrica
Resumé en portugais
Nesse trabalho apresentamos alguns resultados de localização de pontos fixos em poliedros obtidos por Helga Schimer. Abordamos também os mesmos problemas para coincidências, enunciando-os, sempre que possível, para complexos simpliciais e não apenas variedades. Demonstramos que: (i) Todo poliedro do tipo W tem a propriedade da invariância completa. (ii) Sejam X e Y n-variedades (n '> OU =' 2), conexas, compactas, orientáveis, triangularizáveis e sem bordo, se A 'DIFERENTE' 0 é um fechado em X, dada f: X 'SETA'Y, existem 'f IND.1', 'f IND.2' homotópicas à f com Coin ('f IND.1', 'f IND.2') = A. (iii) Respeitadas as condições de realização de N(f) e N ('f IND.1', 'f IND.2') podemos realizar as classes de Nielsen essenciais como qualquer conjunto finito de pontos que satisfaçam as condições dos índices das classes (no caso de coincidências as imagens das coincid6encias também podem ser qualquer conjunto).(iv) Seja [Y] um poliedro compacto do tipo W, se A 'ESTÁ CONTIDO EM' [Y] é um fechado então podemos realizar A como imagem do conjunto de coincidências de um par de aplicações de [X] em [Y] onde [X] é um poliedro qualquer de mesma dimensão que [Y]
Titre en anglais
not available
Resumé en anglais
In this work we present several result about the localization of fixed points in polyedra obtained by Helga Schimer. We approach the same problems in coincidence theory, enunciating them (whenever possible) for polyedra and not only for manifolds. We show that: (i) All polyedron of type W have the complete invariance property.(ii) Let X and Y be two orientable connected compact triangulable n-manifold without boundary, if A 'DIFFERENT' O is closed on X and f: X 'seta' Y is a map, then there are 'f IND.1', 'f IND.2' which are homotopics to f with Coin ('f IND.1', 'f IND.2') = A.(iii) Under sufficient conditions for the realization of N(f) and N ('f IND.1', 'f IND.2') we can realize the essencial Nielsen classes like any finite set of points which satisfy the conditions of indices of classes (for coincidences the ranges can be any set).(iv) Let [Y] a compact polihedron of type W if A 'ESTÁ CONTIDO EM' [Y] is closed, then there are 'f IND.1'f IND.2': [X} 'seta'[Y] such that 'f IND.1'(Coin ('f IND.1'f IND.2')) = A and [X] is any polihedron of the same dimension of [Y]
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
VendruscoloDaniel.pdf (4.54 Mbytes)
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.