• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1998.tde-20210729-021841
Document
Author
Full name
Ana Claudia Locateli
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1998
Supervisor
Title in Portuguese
Cohomologia de Hochschild de álgebras truncadas
Keywords in Portuguese
Anéis E Álgebras Associativos
Abstract in Portuguese
O objetivo deste trabalho é estudar os grupos e o anel de cohomologia de Hochschild de uma k-álgebra truncada. Dado um corpo k, uma k-álgebra truncada é um quociente de álgebra de caminhos da forma KQ/JN, onde Q é um aljava finita e conexa, J é oideal bilateral de kQ gerado pelas flechas de Q, e N é um inteiro maior ou igual a dois. Obtemos fórmulas combinatórias para calcular as dimensões dos grupos de cohomologia de Hochschild de k-álgebras truncadas no caso em que k é um corpo comcaracterística zero,e para k-álgebras de ciclo truncadas independentemente da característica do corpo k. Uma k-álgebra de ciclo truncada é uma k-álgebra truncada onde a aljava Q é um único ciclo orientado. Provamos que o anel de cohomologia deHochschild de uma k-álgebra truncada com característica de k igual a zero tem dimensão finita se e somente se a aljava Q não possui ciclos orientados. Apresentamos também uma descrição do produto de Yoneda para extensões no caso das álgebrastruncadas consideradas. No caso das álgebras de ciclo truncadas, utilizamos esta descrição para estudar a estrutura de anel de cohomologia de Hochschild. Obtemos geradores para esse anel e provamos que o anel de cohomologia de Hochschild dessetipo de álgebras é sempre finitamente gerado. Apresentamos ainda aplicações dos resultados obtidos. Provamos, por exemplo que duas álgebras de ciclo truncadas são derivadamente equivalentes se e somente se são isomorfas
Title in English
not available
Abstract in English
The purpose of this paper is to study the Hochschild cohomology groups and ring of a truncated quiver k-algebra. Given a field k, a truncated quiver k-algebra is a quocient of a path algebra KQ/JR, where Q is connected finite quiver, J is the twosided ideal of the path algebra kQ generated by the arrows of kQ, and N is an integer greater than or equal to 2. We obtain combinatoric formulas that allow us to calculate the dimensions of the Hochschild cohomology groups of truncated quiverk-algebras when k is a field of characteristic zero, or truncated cycle algebras for any field k. A truncated cycle algebra is a truncated algebra where the quiver Q is a single oriented cycle. We prove that the Hochschild cohomology ring of atruncated quiver algebra over a characteristic zero field is finite dimensional if and only if the quiver Q has no oriented cycles. We also give a description of the Yoneda product for extension in the case of this kind of algebras. Using thisdescription, we study the ring structure of the Hochschild cohomology ring of truncated cycle algebras. We obtain generators for this ring and prove that this ring is always finitely generated. Some aplications are given. For instance, we provethat two truncated cycle algebras are derived equivalent if and only if they are isomorphic
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.