• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1998.tde-20210729-021953
Document
Author
Full name
Maria Aparecida Couto
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1998
Supervisor
Title in Portuguese
O radical em algumas álgebras não associativas e álgebras dibáricas
Keywords in Portuguese
Anéis E Álgebras Não Associativos
Abstract in Portuguese
Este trabalho consta de três partes. Na primeira parte estudamos as álgebras alternativas báricas de dimensão finita sobre um espaço F de característica distinta de dois. Essas álgebras possuem dois radicais, a saber, o radical nilpotente que é oideal nilpotente maximal da álgebra e o bar radical que é a intersecção dos ideais báricos maximais. Esses dois radicais não são necessariamente iguais e isto mostra-se com um exemplo. Assim, foi feito uma comparação entre esses dois radicais e,denotando por R(A) o radical nilpotente e 'R IND.B'(A) o bar radical, chegamos que 'R IND.B'(A) = R(A) ÍNTERSECÇÃO' (bar(A))'POT.2', onde bar(A) é o núcleo do homomorfismo peso da álgebra A. Na segunda parte estudamos a álgebra de multiplicaçãode uma álgebra bárica arbitrárioa A de dimensão finita. Partindo do pressuposto de que a álgebra A é semisimples no sentido bárico, o objetivo era saber se a álgebra de multiplicação aqui denotada por M(A) seria semisimples no sentido bárico. Aresposta é negativa e isso mostramos com um exemplo. Assim buscamos condições que tornem esse fato verdadeiro. Finalizamos essa parte com uma espécie de recíproca, ou seja, adicionando a hipótese de que 'A POT.2'= A, chegamos que se M(A) ésemisimples no sentido bárico, então a álgebra A também é. Na terceira e última parte estudamos um tipo de álgebra cuja motivação vem de modelos genéticos mas que não é bárica. Não é associativa e possue um homorfismo sobrejetor cuja imagem é aálgebra de diferenciação sexual que tem dimensão dois. Tais álgebras são chamadas de álgebras dibáricas. Aqui estudamos esse homomorfismo ao qual chamamos de homomorfismo peso dibárico, definimos semisimplicidade e finalizamos com uma versão doTeorema de Krull-Schmidt e a definição de radical dibárico
Title in English
not available
Abstract in English
not available
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.