• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1999.tde-20210729-022139
Document
Author
Full name
Juaci Picanço da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1998
Supervisor
Title in Portuguese
Subespaços invariantes em algumas álgebras báricas
Keywords in Portuguese
Anéis E Álgebras Não Associativos
Abstract in Portuguese
Neste trabalho, introduzimos certos subespaços do núcleo de algumas álgebras báricas (A,'ômega'), dentre elas as álgebras de Bernstein. O conjunto Ip(A) dos idempotentes de peso l das álgebras que consideramos é não vazio e cada e 'PERTENCE A'(A)determina uma decomposição de A da seguinte forma: A = K e 'U IND.e' 'V IND.e', onde Ke, 'U IND.e'e 'V IND.e' são os subespaços próprios do operador linear de A definido por 'L IND.E'(x) - ex. Chamamos de P-subespaços aos subespaços que possuemuma expressão polinomial em termos de 'U IND.e' e 'V IND.e', por exemplo: 'U IND.e V IND. e', 'V IND.E POT.2','U IND.e POT.2'+'U IND.e POT.3', 'V IND.e POT 3'+ '('U IND e V IND e') POT.2'. Nosso principal objetivo é estudar a invariância dosP-subespaços e também a invariância da dimensão dos P-subespaços com relação à mudança do idempotente. Também consideramos um caso (A, 'lâmbda'), onde 'lâmbda' é apenas uma forma linear
Title in English
not available
Abstract in English
In this work, we will introduce certain subspaces of the kernel of some baric algebras (A,'ômega') and among them, the Bernstein algebras. The set Ip(A) of idempotents of weight 1 of the algebras which we consider is not empty and each e'PERTENCE A' Ip(A) determines a decomposition of A which has the following form: A = K 'U IND.e'V IND.e', where K e, 'U IND.e' and 'V IND.e' are the proper subspaces of the linear operator of A defined by 'L IND.e(x)'= ex. We will callP-subspaces those subspaces that have a polynomial expression in terms of 'U IND.e' and 'V IND.e' for instance: 'U IND.e V IND.e', 'V IND.E POT.2', 'U IND.e POT.2'+ 'U IND.e POT.3', 'V IND.e POT.3'+ ('U IND.e V IND.e')'V IND.e'+ ( 'U IND.e VIND.e') POT.2'. Our main purpose is to study the invariance of P-subspaces and also the invariance of dimension of P-subspaces under change of idempotent. We also consider a case (A, 'lâmbda'), where 'lâmbda' is only a linear form
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.