• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.1999.tde-20210729-023125
Document
Author
Full name
Cristian Patricio Novoa Bustos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1999
Supervisor
Title in Portuguese
Tipo de representação e quiver ordinário do bimódulo D A
Keywords in Portuguese
Álgebra
Abstract in Portuguese
Seja A 'APROXIMADAMENTE IGUAL A' 'capa'Q/I uma 'capa'-álgebra conexa, básica de dimensão finita sobre o corpo algebricamente fechado 'capa'. Então neste trabalho mostramos principalmente a estreita relação entre o tipo de representação da álgebra A onde A é livre de 'IÃ IND.n' e o tipo de representação das álgebras dadas pela extensão trivial T(A) e 'A BARRA', numa primeira parte, depois mostramos o quiver ordinário da álgebra 'A BARRA', a partir do quiver ordinário da álgebra A, no caso em que a álgebra A é de livre de 'IÃ IND.n'
Title in English
not available
Abstract in English
Let A 'APROXIMADAMENTE IGUAL A' 'capa' Q/I be connected basic finite-dimensional 'capa'-algebra over an algebraically closed field 'capa'. In the first part of this we establish close relations between the representation type of algebra A, free of 'IÃ IND.n', and the representation type of algebras given by trivial extensions T(A) and 'A BARRA'. Further we provide a construction of the ordinary quiver of algebra 'A BARRA' from the ordinary quiver of algebra A in the case when A is free of 'IÃ IND.n'
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.