• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2000.tde-20210729-115715
Document
Author
Full name
Daniela Mariz Silva Vieira
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2000
Supervisor
Title in Portuguese
Operadores de composição entre as álgebras clássicas de funções analíticas
Keywords in Portuguese
Holomorfia
Matemática
Abstract in Portuguese
Este trabalho tem como objetivo principal estudar operadores de composição entre as álgebras clássicas `H INFINITO(D)¦e A(D) de funções analíticas sobre o disco aberto unitário D. Apresentamos aqui uma caracterização quando os operadores decomposição de A(D) em A(D) são compactos ou w-compactos. Tal caracterização é uma adaptação da demonstração dada por R. Aron. P. Galindo e M. Lindstrom em [1] para álgebras que são generalizações naturais das álgebras classicas. Estudamosoperadores de forma uC e apresentamos a demonstração dada por H. Kamowitz em [19] que caracteriza a compacidade de operadores desta forma e determina seu espectro. Em seguida estudamos homomorfismos T :`H INFINITO¦(D)`SETA¦¦H INFINITO¦(D), ondeapresentamos a caracterização dada por P. Galindo e M. Lindstrom em [10] para que tais homomorfismos sejam operadores de composição. Finalmente apresentamos a demonstração dada por R. Aron, P. Galindo e M. Lindstrom em [1], onde provam que todohomomorfismo de `H INFINITO¦(D) em `H INFINITO¦(D) w-compacto é compacto
Title in English
not available
Abstract in English
The main purpose of this work is to study composition operators between classic algebras `H INFINITO¦(D) and A(D) of analytic functions on the open unit disc D We shall present here a characterization for compacity and w-compacity of acomposition operator from A(D) on A(D). Such characterization is an adaptation of the proof given by R. Aron, P. Galindo and M. Lindstrom in [1] for algebras that are natural generalization of the classic algebras. We shall study operators ofthe form uC and present the proof given by H. Kamowitz in [19] which characterizes compact operators of this form and determine their spectra. Next we shall study homomorphisms T : `H INFINITO¦(D) `SETA¦`H INFINITO¦(D), and we shall present thecharacterization given by P. Galindo and M. Lindstrom in [10] which shows when such homomorphisms are composition operators. Finaly we shall present the proof given by R. Aron, P. Galindo and M. Lindstrom in [1] which proves that every weaklycompact homomorphism from `H INFINITO¦(D) on `H INFINITO¦(D) is compact
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.