• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.45.2000.tde-20210729-115836
Document
Auteur
Nom complet
Walter Martins Rodrigues
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2000
Directeur
Titre en portugais
O teorema de Nazarova-Roiter e representações de álgebras
Mots-clés en portugais
Álgebra
Teoria Da Representação
Resumé en portugais
Neste trabalho apresentamos o conceito de representação matricial sobre um corpo k de um conjunto finito S dotado de uma ordem parcial de acordo com [21]. O teorema de Nazarova-Roiter que trata da equivalência do tipo de representação de um posetS e de seu derivado S' obtido a partir do algoritmo de Nazarova-Roiter, além disso quando o poset é de tipo de representação finito o teorema nos assegura que o número de indecomponíveis de S é maior que de S', e o teorema de Kleiner queclassifica os conjuntos parcialmente ordenados (posets) de tipo de representação finito, que são apresentados no capítulo IV, são os principais resultados da dissertação. No capítulo I, apresentamos sucintamente os principais conceitos de teoriade representações de álgebras de Artin (de acordo com [4]), e álgebra básica que necessitamos para desenvolvermos aplicações do conhecimento de classificaçÕo dos posets na determinação do tipo de representação de algumas álgebras. No capítuloII, introduzimos o conceito de representação de posets e apresentamos alguns resultados fundamentais dessa teoria. No capítulo III, introduzimos o conceito de S-espaços, de acordo com [9]. Há uma bela conexão entre teoria de representação deposets e de S-espaços que é dada pelo funtor redução de Gabriel. No último capítulo, fazemos algumas aplicações do uso dos teoremas de classificação de teoria de representações de posets (categoria vetorespaciais). Faremos duas aplicações. Aprimeira acontece quando `LAMBDA¦, álgebra de Artin de dimensão finita, é uma extensão por um ponto. A outra, quando `LAMBDA¦ é a álgebra de incidência de um poset com algumas propriedades especiais
Titre en anglais
not available
Resumé en anglais
We present the concept of matricial representation of finite partial ordered set (poset), over a field k, according to Nazarova-Roiter in [21]. The two main theorems shows in this work are: 1) Nazarova-Roiter's theorem which states that if S isthe S-derived posets from S, according [21]. Then they have same representation type and in the case S is finite representation type S' has less indecomposable. 2) Kleiner's theorem which classifies the posets of finite representation type
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2021-07-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2022. Tous droits réservés.