• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.2000.tde-20210729-122934
Documento
Autor
Nombre completo
Daniel Victor Tausk
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2000
Director
Título en portugués
O teorema do índice de Morse para métricas indefinidas e para sistemas Hamiltonianos
Palabras clave en portugués
Geometria Diferencial
Resumen en portugués
Se (M,g) é uma variedade Riemanniana e 'gama':[a,b]'seta'M é uma geodésica, então o clássico Teorema do Índice de Morse diz que o índice geométrico de 'gama' (i.e., o número de pontos conjugados ao longo de 'gama' contados com multiplicidade) coincide com o índice de Morse de 'gama' (i.e., o índice da segunda variação do funcional ação E(u)=1/2 'INT.'IND. a POT. b' g(ul,ul) no ponto crítico 'gama'). Neste tese nós provamos uma versão do Teorema do Índice de Morse para geodésicas em variedades semi-Riemannianas, i.e., variedades equipadas com um tensor métrico g de sinal indefinido. Consideramos o o caso geral de geodésicas com extremos variáveis em subvariedades de M. No caso semi-Riemanniano o índice geométrico é substituido pelo indice de Maslov, que genericamente fornece uma contagem algébrica dos pontos conjugados ao longo da geodésica, o índice e o co-índice de restrições adequadas da segunda variação do funcional ação em 'gama'. Provamos também um Teorema do Índice para soluções de sistemas Hamiltonianos em variedades simpléticas equipadas de uma distribuição Lagrangeana
Título en inglés
not available
Resumen en inglés
In (M,g) is a Riemannian manifold and `gama¦:[a,b]`seta¦M is a geodesic then the classical Morse Index Theorem states that the geometric index of `gama¦(i.e., the number of conjugate points along `omega¦ counted with multiplicity) is equal to the Morse index of `omega¦(i.e., the index of the second variation of the action functional E(u)=1/2 `INT.`IND. a POT. b¦ g(ul,ul) at the critical point `gama¦). In this thesis we prove a version of the Morse Index Theorem for geodesics in semi-Riemannian manifolds, i.e., manifolds endowed with and indefinite metric tensor g. We consider the general case of geodesics with end points varying in two submanifolds of M. In the semi-Riemannian case the geometric index is replaced by the Maslov index which gives generically an algebraic count of the conjugate points along the geodesic, the Morse Index (which is infinite in general) is replaced by a difference between the index and the co-index of suitable restrictions of the second variation of the action functional at `gama¦. We also prove an index theorem for solutions of Hamiltonian systems on symplectic manifolds endowed with a Lagrangian distribution
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
TauskDanielVictor.pdf (53.25 Mbytes)
Fecha de Publicación
2021-07-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.