• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2000.tde-20210729-123237
Document
Author
Full name
Angela Marta Pereira das Dores Savioli
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2000
Supervisor
 
Title in Portuguese
Extensões por um ponto de álgebras 'shod'
Keywords in Portuguese
Álgebra
Teoria Da Representação
Abstract in Portuguese
O principal objetivo deste trabalho foi o de caracterizar as extensões por um ponto de álgebra 'shod' estritas. As álgebras 'shod' surgiram no trabalho de Coelho-Lanzilotta [1917] e generalizam as álgebras quase-inclinadas introduzidas por Happel-Reiten-Smalo em [1928]. As extensões por um ponto de álgebras shod estritas se dividem em extensões por módulos decomponíveis não-projetivos e projetivos, e por módulos indecomponíveis. Dada uma álgebra 'shod' estrita A e um A-módulo M, estas extensões dependem essencialmente do lugar onde se encontra M em relação às subcategorias 'L. IND A' e 'R. IND A' de ind A
 
Title in English
not available
Abstract in English
The main aim of this work was characterize the one-point extensions of strictly shod algebras. Shod algebras have appeared in the article of Coelho-Lanzilotta [1917] and generalize quasi tilted algebras that were introduced by Happel-Reiten-Smalo in [1928]. One-point extensions of strictly shod algebras can be divided in the following cases: one-point extensions for non-projetive decomposable modules, and for indecomposable modules. When we have a strictly shod algebra A and an A-module M, these extensions essencially depend on the place where the module M lies regarding of the subcategories 'L. IND A' and 'R. IND A' of ind.A
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.