• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2000.tde-20210729-123306
Document
Author
Full name
Armando Caputi
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2000
Supervisor
 
Title in Portuguese
Hipersuperfícies de co-homogeneidade 1 do espaço hiperbólico
Keywords in Portuguese
Espaços Hiperbólicos
Geometria Diferencial
Abstract in Portuguese
Em [PoSp], foi aprovado que uma hipersuperfície compacta de dimensão n > OU = 4 do espaço euclidiano, sobre a qual age um grupo compacto de isometrias com co-homogeneidade 1 e órbitas principais umbílicas, é uma hipersuperfície de revolução. Em [Se], a hipótese de compacidade da variedade foi enfraquecida: o resultado anterior foi estendido a hipersuperfícies completas com um certo controle sobre a planaridade (introduziu-se o conceito de 'não-planaridade no infinito'). No nosso trabalho, estendemos o resultado de [Se] a hipersuperfícies do espaço hiperbólico, obtendo um teorema similar com alguns exemplos a mais (cf. Teorema 3.9)
 
Title in English
not available
Abstract in English
Let 'M. SUP n' be a cohomogeneity one Riemannian manifold and let f : 'M. SUP n' 'seta'R. SUP n+1' be an isometric immersion. In [PoSp], for M compact and n '> OR =' 4, it was proved that if the principal orbits are umbilical in M, then f is a hypersurface of revolution. In [Se] this result was extended for complete hyperdurfaces with dimension n '> OR =' 3, assuming further a reasonable hypothesis on the flat portion of the manifold M (namely, the hypothesis of 'non-flatness at infinity'). Our purpose is to extend the above theorems for hypersurfaces of the hyperbolic space. We prove a similar result of [Se], obtaining also a class of non-rotational examples (see theorem 3.9)
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
CaputiArmando.pdf (10.04 Mbytes)
Publishing Date
2021-07-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.